
A COMPILER INTERMEDIATE REPRESENTATION FOR RECONFIGURABLE FABRICS

Zhi Guo

Department of Electrical Engineering

Walid Najjar

Department of Computer Science & Engineering

University of California, Riverside

{zguo, najjar}@cs.ucr.edu

ABSTRACT

An intermediate representation (IR) is a central structure

around which tools such as compilers and synthesis tools

are built. In this paper we propose such an IR specifically

designed for reconfigurable fabrics: CIRRF (Compiler

Intermediate Representation for Reconfigurable Fabrics).

We describe an initial implementation of CIRRF as part of

the ROCCC compiler for translating C code to VHDL. A

case study shows that our IR set is a solid foundation to

generate high-performance hardware.

1. INTRODUCTION

Several projects have looked at the translation of

traditional programming languages, such as C/C++ or

Java, to HDLs for mapping onto FPGAs or other similar

fabrics. This is a challenging task. The FPGA is an

amorphous mass of logic onto which the compiler must

create a data-path and schedule the computation. Such a

task requires the harnessing of technologies developed for

parallelizing compilers as well as those developed for

high-level synthesis. At the heart of each compiler or

synthesis tool is an intermediate representation (IR) around

which the tool is built. In this paper we propose CIRRF

(Compiler Intermediate Representation for Reconfigurable

Fabrics), an IR designed for the compilation of traditional

imperative, high-level languages, targeting reconfigurable

devices. CIRRF is intended to be an open standard

halfway-point representation between a high-level

language and a specific reconfigurable platform. A front

tool would translate C/C++, FORTRAN, or Java to

CIRRF. Back tools would map CIRRF to a specific target.

Loop and array transformations are dealt with in the front

tools; target-specific optimizations are implemented in the

back tools. CIRRF is designed to be both language and

target independent. It differs from traditional compiler IRs

in that it supports concurrency, both explicitly and

implicitly, as well as the instantiation of and accesses to

on-chip storage structures. It records information about

loop types, memory interfacing, instruction predication and

pipelining. Special instructions for efficient data-path

generation are introduced.

In this paper we describe an initial implementation of

CIRRF as part of the ROCCC compiler for translating C to

VHDL. The rest of this paper is organized as follows:

Section two reviews related work; Section three presents

CIRRF’s architecture; Section four discusses a case; and

section five concludes the paper.

2. RELATED WORK

The Streams-C [1] has three distinguished objects -

processes, streams and signals - in the user-input

abstraction. Abstract Syntax Tree (AST) is used to

partition a process into the data-path, encompassing basic

blocks and pipeline blocks, and control flow. A state

machine is generated for the control flow in the AST.

User-defined input or output streams form the interfaces

with memories.

Trident [2] uses LLVM (Low Level Virtual Machine

[3]) as a C/C++ front-end to produce low-level object

code. The low-level object code is transformed into a

predicated IR.

SA-C [4]’s input is a single-assignment high-level

synthesizable language. The SA-C compiler translates

loops into a data-dependence and control-flow (DDCF)

graph. A DDCF graph is flattened into a token-driven data-

flow graph. The DFG is eventually translated into an

abstract hardware architecture graph, which includes

timing information.

Pegasus [5] is the IR of the CASH compiler. Pegasus

decomposes a Control Flow Graph (CFG) into

hyperblocks, and hyperblocks are connected by merge and

other specialized nodes.

3. CIRRF ARCHITECTURE

CIRRF is the IR set of our high-level synthesis compiler,

the ROCCC (Riverside Optimizing Compiler for

Configurable Computing) compiler. ROCCC is built using

SUIF2 [7] and Machine-SUIF [8]. CIRRF consists of two

distinct but equivalent representations [Figure 1]. The Hi-

CIRRF format is essentially C code augmented with

macros while the Lo-CIRRF format is semantically similar

to assembly code. The advantage of this approach, which is

commonly used in various compiler IRs, is that it allows

the user to have multiple levels of entry into the IR.

Hi-CIRRF

 = C + macros low level statements

user directives

Lo-CIRRF

Figure 1 – CIRRF overview

16th International Conference on Field Programmable Logic and Applications (FPL 2006), Madrid, Spain.

Debugging, for example, would a lot easier at the Hi-

CIRRF level. A functional-cycle-accurate simulation of the

generated code would be feasible at the Lo-CIRRF level.

The macros in Hi-CIRRF are used to:

• Instantiate and access buffers.

• Indicate pipelining and clock-cycle level hardware

timing constrains. For example: imply back-end to

instantiate registers to eliminate recurrence; enforce a

pipeline delay for IP wrapper generation.

• Invoke hardware bitwise and arithmetic operations,

such as bit-insert, bit-extract, and minimum of two

values.

• Invoke hardware look-up tables and IP cores.

In Lo-CIRRF the code is similar to assembly code. It

consists of a data and control flow graph with the

following characteristics:

• Virtual statically single assigned registers.

• Register name indicates type (signed, unsigned) and

bit size.

• Predicators of predication-guarded instructions and

pipelining information of controller-controlled

instructions.

3.1. Hi-CIRRF

The ROCCC system performs conventional loop

transformations. It also carries out the following hardware-

specific analysis and transformations.

Scalar replacement. The front-end decouples a do-all

loop’s array accesses from computation. Figure 2 (a)

shows the original C code of a gray scale transformation

example. After undergoing scalar replacement, the

computation is isolated from memory accesses [Figure 2

(b)] by a smart buffer. The smart buffer will be synthesized

on configurable fabrics as the interface with memory. One

important characteristic of smart buffers is that they reuse

input data between iterations and push one iteration’s input

data initiatively to the data-path, rather than being accessed

by the data-path [9]. For a 3x3 window sliding over a two-

dimensional array, without the smart buffer, each pixel

needs to be read nine times from memory, while a smart

buffer reduces the memory access to three times. A smart

buffer of an unrolled loop can save more memory access.

The syntax of a two-dimensional smart buffer macro is:

smartbuffer2(input_array_name,address_index_1,

address_index_2, scalar_1, offset_1_1, offset_1_2,

 scalar_2, offset_2_1, offset_2_2, ……);

For example, in the smart buffer macro in Figure 2 (b), the

last three parameters (x4, 1, 1) stands for:

x4 = a[i+1][j+1];

The syntax of FIFO buffers is similar. Currently we have

the following constraints on buffer macros. An array can

only appear in at most one buffer macro. The address

indexes of buffers are also the loop counters. The operator

between an address index variable and the offset can only

be either addition of subtraction.

Feedback variable detection. The compiler detects scalar

recurrence between adjacent iterations. For example, for a

loop having a statement “sum = sum + a[i]”, to eliminate

the loop-carried dependency, the compiler replaces the sum

on the left and the sum on the right with store2next() macro

and load_previous() macro, respectively. These macros

guide the back-end to instantiate a feedback register to

store the current sum for the next iteration, and

consequently transform the loop to a do-all-loop.

The output from the front-end is in the forms of both

an IR file and an intermediate C with macros. Users could

do further optimizations and add pragmas onto the

intermediate C.

3.2. Lo-CIRRF

Starting from a conventional CFG, the compiler finds loops

and loop-depth. Loop types are recorded in the IR by

recovering them from user-added pragmas: Currently, these

include one-dimensional do-all loop, two-dimensional

perfect nested do-all loop, and non-do-all loop. The pre-

process phase of the back-end converts macros in Hi-

CIRRF into corresponding instructions. Particularly, buffer

macros are converted into buffer instructions and put into

separated nodes.

We categorize basic nodes into two types: do-all nodes

and non-do-all nodes. Lo-CIRRF records different data-

flow and scheduling information accordingly.

3.2.1. Building Lo-CIRRF for do-all nodes

For a do-all loop, Lo-CIRRF provides field to exploit both

instruction-level and loop-level parallelisms. The compiler

performs if-converse in a way that any node has at most

two predecessors.

In order to allow the data-path to execute multiple

loops simultaneously, the IR has a “execution level” field

for each instruction inside a do-all node so that each level is

an instantiation of one iteration. Statically single assigned

Figure 2 – A gray scale transformation example in C

16th International Conference on Field Programmable Logic and Applications (FPL 2006), Madrid, Spain.

variables are added by the compiler to duplicate a variable

if that variable’s definition reaches more than one level of

execution lower. Thereby, any variable’s definition is

always one execution level higher. Multiplexers are added,

and speculators are duplicated and propagated along with

execution levels. Notice that each execution level represents

a single iteration at a given execution phase.

Lo-CIRRF provides another field, “pipeline stage” to

record pipelining information. The instructions belonging

to the same execution level are either all latched or all non-

latched. Multiple consecutive execution levels may be

assigned into the same pipeline stage. Having both

execution level and pipeline stage separates data-flow

building and pipelining, and provides compiler designers

the opportunity to implement different pipelining strategies.

The compiler generates the smart buffers and output

FIFOs in VHDL at compile time [9], as well as the data-

paths [6].

3.2.2. Building Lo-CIRRF for non-do-all nodes

A non-do-all basic node either belongs to a non-do-all loop

or does not belong to any loop at all. Multiple instructions

might belong to the same execution level and can be

executed simultaneously to exploit instruction level

parallelism. Notice that for a non-do-all basic node, at most

one iteration is executed at a time.

Lo-CIRRF has a predication field for each instruction

to schedule the execution of non-do-all nodes. Each

pipeline stage is guarded by a predicator. The format is:

ADD $vr4, $vr3, $vr2, $vr1

vr4 is the destination operand and vr3 and vr2 are the

source operands. vr1 is the predicator, which is also a

source operand. Predicators are passed inside basic nodes

for scheduling purpose. A special instruction, PFW

(predicator forward), is used to pass a predicator from the

current stage to the next stage, which may be or may not be

in the same node:

PFW $vr2.u1, $vr1.u1

vr1 and vr2 are two predicators. The instructions guarded

by vr2 are one pipeline stage later than the ones guarded by

vr1. Their types are u1, which stands for unsigned one-bit.

The branch instructions of basic nodes are replaced by

Boolean instructions, whose destination operands are

evaluated by this basic node’s successor nodes.

Essentially, Lo-CIRRF describes a DFG, in which do-

all loop nodes are connected together by non-do-all nodes.

Then the compiler’s VHDL generator emits VHDL code

for the entire DFG, including buffers, at compile time.

4. CASE STUDY

In this case study, besides reporting the synthesis results of

the gray scale transformation example discussed in

previous sections, we examine CIRRF on another

application, an alternative finite impulse response filter

flag = 1;

 for (m = 0; m < 10; m = m + 1) {

 if(flag == 1) {

 for(i = 1; i < 251; i = i + 1)

 b[i]=(3*a[i-1]+5*a[i])+(7*a[i+1]+9*a[i+2])+11*a[i+3]; }

 else {

 for(j = 1; j < 251; j = j + 1)

 d[j]=(3*c[j-1]+5*c[j])+(7*c[j+1]+9*c[j+2])+11*c[j+3]; }

 flag = flag ^ 1;

 }

 return; }

The first highlighted segment is a 5-tap FIR reading array

a and writing array b, while the second highlighted

segment is a 5-tap FIR reading array c and writing array d.

flag switches the execution of these two segments

alternatively. The two inner loops are do-all loops, while

the outer loop (the one with loop counter m) is not.
Figure 3 – An alternative FIR example in C

Figure 4 – The DFG and IR of alternative FIR

16th International Conference on Field Programmable Logic and Applications (FPL 2006), Madrid, Spain.

(FIR).

Figure 3 shows the original C code. The two do-all

inner loops (the two highlighted regions) are executed

alternately. Each of these two inner loops is a 5-tap FIR.

Each FIR’s loop body is aggressively pipelined, and

the resulting data-path has a throughput of one iteration per

clock cycle [Figure 4 (a)]. All the non-do-all nodes are

predicated. We list the instructions of these nodes in Figure

4 (b). Node 2 and node 10 are the head and tail nodes of

the outer loop, respectively. The first instruction of node 2,

the ior instructions, produces the predicator (vr1321) for

the two instructions below it (pfw and sle) by examining a

valid output predicator from either node 1 (not shown), the

first active node; or node 11, the loop tail. Figure 4 (c)

depicts node 2’s circuit in detail. Guarded by vr1321, the

sle instruction asserts its destination operand when the

outer loop is done, or de-asserts its destination operand

when needing to execute a new outer loop iteration. Node

2’s pfw instruction forwards a valid vr1321 to the two

successor nodes, node 3 and node 11, for their predicator

evaluation. Node 3 enables one of the two FIRs by either

asserting or de-asserting vr1325, depending the value of

flag (vr78). Node 10 is activated by the done signal from

one of the FIRs’ loop controller and updates the value of

flag (vr230) and the loop counter m (vr233). Node 11

indicates the completion of the whole procedure.

Table 1 shows the synthesis results of the gray scale

transformation example discussed in previous sections and

the alternative FIR. The targeting FPGA is Xilinx

xc2v8000-5 with 46592 slices in total. The generated

VHDL are synthesized and placed-and-routed using Xilinx

ISE 6.2.03i. The second and the third columns are the data-

path’s bit-size and BRAM bus’s bit-size. # of slices and

clock rate are collected from place-and-route reports. The

last column is the number of do-all loop iterations executed

per clock cycle. For gray scale transformation, the

resulting data flow is capable of executing one iteration

every clock cycle. Notice we configure the BlockRAM’s

data bus (the third column) to have the same bit-size as that

of the data elements (pixels), and every iteration needs four

(2x2) pixels. Though the smart buffer reuses one column

of the pixels loaded in the previous iteration, it still needs

two cycles to load the remaining two new pixels. This

explains the reason that for the gray scale transformation

example, the number of iterations per cycle is 0.5. For the

alternative FIR, when either one of the two do-all loops is

active, the corresponding smart buffer exports one window

of data (five elements) to the data-path every clock cycle,

and therefore the circuit executes one iteration per cycle. #

of slices consists of the hardware of two do-all loops

(including the data-path and controller for each FIR) and

the hardware of the non-do-all nodes, as shown in Figure 4

(a).

5. CONCLUSION

We have presented CIRRF, an intermediate representation

for compiling high-level languages to reconfigurable

fabrics. CIRRF has two parts, Hi-CIRRF and Lo-CIRRF.

Hi-CIRRF is essentially C with macros. The macros are

used to record information associated with buffers,

pipelining, look-up tables, special operations etc. Lo-

CIRRF decomposes conventional CFGs into do-all loop

nodes and non-do-all nodes. The loop body instructions of

a do-all loop are placed into execution levels. Each

execution level is an instantiation of one iteration at

different execution phases. Lo-CIRRF provides a platform

for the compiler to aggressively pipeline do-all loops. Non-

do-all nodes are predicated in Lo-CIRRF and predicators

are passed within and between nodes.

We have shown, through case studies, how CIRRF

models the application examples and provides a solid

foundation for the compiler to generate efficient hardware.

6. REFERENCES

[1] M. B. Gokhale, J. M. Stone, J. Arnold, and M. Lalinowski.

Stream-oriented FPGA computing in the Streams-C high

level language. In IEEE Symp. on FPGAs for Custom
Computing Machines (FCCM), 2000.

[2] J. Tripp, K. Peterson, C. Ahrens, J. Poznanovic, M. Gokhale.

Trident: An FPGA Compiler Framework for Floating-Point

Algorithms, int. Conference on Field Programmable Logic
and Applications (FPL 2005). Finland, 2005

[3] The LLVM Compiler Infrastructure. http://llvm.org/ 2006

[4] W. Najjar, W. Böhm, B. Draper, J. Hammes, R. Rinker, R.

Beveridge, M. Chawathe and C. Ross. From Algorithms to

Hardware - A High-Level Language Abstraction for
Reconfigurable Computing. IEEE Computer, August 2003.

[5] M. Budiu and S. C. Goldstein. Pegasus: An efficient

intermediate representation. Technical Report CMU-CS-02-
107, CMU, May 2002.

[6] Z. Guo, B. Buyukkurt, W. Najjar and K. Vissers. Optimized

Generation of Data-path from C Codes for FPGAs, Int.

ACM/IEEE Design, Automation and Test in Europe
Conference (DATE 2005). Munich, Germany, March, 2005.

[7] SUIF Compiler System. http://suif.stanford.edu, 2006

[8] Machine-SUIF. 2006
http://www.eecs.harvard.edu/hube/research/machsuif.html

[9] Z. Guo, B. Buyukkurt, W. Najjar. Input Data Reuse In

Compiling Window Operations Onto Reconfigurable

Hardware, Proc. ACM Symp. On Languages, Compilers and

Tools for Embedded Systems (LCTES), Washington, DC,
June 2004.

Table 1 - Synthesis results of case study examples

DP-size

(bit)

mem bus

bit-size

of

slices

clock

(MHz)

iter. per

cycle

gray scale tran. 16 16 318 59.7 0.5

altern. FIR 8 8 531 100 1

16th International Conference on Field Programmable Logic and Applications (FPL 2006), Madrid, Spain.

