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ABSTRACT 

An intermediate representation (IR) is a central structure 

around which tools such as compilers and synthesis tools 

are built. In this paper we propose such an IR specifically 

designed for reconfigurable fabrics: CIRRF (Compiler 

Intermediate Representation for Reconfigurable Fabrics). 

We describe an initial implementation of CIRRF as part of 

the ROCCC compiler for translating C code to VHDL. A 

case study shows that our IR set is a solid foundation to 

generate high-performance hardware. 

1. INTRODUCTION 

Several projects have looked at the translation of 

traditional programming languages, such as C/C++ or 

Java, to HDLs for mapping onto FPGAs or other similar 

fabrics. This is a challenging task. The FPGA is an 

amorphous mass of logic onto which the compiler must 

create a data-path and schedule the computation. Such a 

task requires the harnessing of technologies developed for 

parallelizing compilers as well as those developed for 

high-level synthesis. At the heart of each compiler or 

synthesis tool is an intermediate representation (IR) around 

which the tool is built. In this paper we propose CIRRF 

(Compiler Intermediate Representation for Reconfigurable 

Fabrics), an IR designed for the compilation of traditional 

imperative, high-level languages, targeting reconfigurable 

devices. CIRRF is intended to be an open standard 

halfway-point representation between a high-level 

language and a specific reconfigurable platform. A front 

tool would translate C/C++, FORTRAN, or Java to 

CIRRF. Back tools would map CIRRF to a specific target. 

Loop and array transformations are dealt with in the front 

tools; target-specific optimizations are implemented in the 

back tools. CIRRF is designed to be both language and 

target independent. It differs from traditional compiler IRs 

in that it supports concurrency, both explicitly and 

implicitly, as well as the instantiation of and accesses to 

on-chip storage structures. It records information about 

loop types, memory interfacing, instruction predication and 

pipelining. Special instructions for efficient data-path 

generation are introduced. 

In this paper we describe an initial implementation of 

CIRRF as part of the ROCCC compiler for translating C to 

VHDL. The rest of this paper is organized as follows: 

Section two reviews related work; Section three presents 

CIRRF’s architecture; Section four discusses a case; and 

section five concludes the paper. 

2. RELATED WORK 

The Streams-C [1] has three distinguished objects - 

processes, streams and signals - in the user-input 

abstraction. Abstract Syntax Tree (AST) is used to 

partition a process into the data-path, encompassing basic 

blocks and pipeline blocks, and control flow.  A state 

machine is generated for the control flow in the AST. 

User-defined input or output streams form the interfaces 

with memories. 

Trident [2] uses LLVM (Low Level Virtual Machine 

[3]) as a C/C++ front-end to produce low-level object 

code. The low-level object code is transformed into a 

predicated IR. 

SA-C [4]’s input is a single-assignment high-level 

synthesizable language. The SA-C compiler translates 

loops into a data-dependence and control-flow (DDCF) 

graph. A DDCF graph is flattened into a token-driven data-

flow graph. The DFG is eventually translated into an 

abstract hardware architecture graph, which includes 

timing information. 

Pegasus [5] is the IR of the CASH compiler. Pegasus 

decomposes a Control Flow Graph (CFG) into 

hyperblocks, and hyperblocks are connected by merge and 

other specialized nodes. 

3. CIRRF ARCHITECTURE 

CIRRF is the IR set of our high-level synthesis compiler, 

the ROCCC (Riverside Optimizing Compiler for 

Configurable Computing) compiler. ROCCC is built using 

SUIF2 [7] and Machine-SUIF [8]. CIRRF consists of two 

distinct but equivalent representations [Figure 1]. The Hi-

CIRRF format is essentially C code augmented with 

macros while the Lo-CIRRF format is semantically similar 

to assembly code. The advantage of this approach, which is 

commonly used in various compiler IRs, is that it allows 

the user to have multiple levels of entry into the IR. 

 
Hi-CIRRF 

 = C + macros low level statements 

user directives 

Lo-CIRRF 

 
Figure 1 – CIRRF overview 
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Debugging, for example, would a lot easier at the Hi-

CIRRF level. A functional-cycle-accurate simulation of the 

generated code would be feasible at the Lo-CIRRF level. 

The macros in Hi-CIRRF are used to: 

• Instantiate and access buffers. 

• Indicate pipelining and clock-cycle level hardware 

timing constrains. For example: imply back-end to 

instantiate registers to eliminate recurrence; enforce a 

pipeline delay for IP wrapper generation.  

• Invoke hardware bitwise and arithmetic operations, 

such as bit-insert, bit-extract, and minimum of two 

values. 

• Invoke hardware look-up tables and IP cores. 

In Lo-CIRRF the code is similar to assembly code. It 

consists of a data and control flow graph with the 

following characteristics: 

• Virtual statically single assigned registers. 

• Register name indicates type (signed, unsigned) and 

bit size. 

• Predicators of predication-guarded instructions and 

pipelining information of controller-controlled 

instructions. 

3.1. Hi-CIRRF 

The ROCCC system performs conventional loop 

transformations. It also carries out the following hardware-

specific analysis and transformations. 

Scalar replacement. The front-end decouples a do-all 

loop’s array accesses from computation. Figure 2 (a) 

shows the original C code of a gray scale transformation 

example. After undergoing scalar replacement, the 

computation is isolated from memory accesses [Figure 2 

(b)] by a smart buffer. The smart buffer will be synthesized 

on configurable fabrics as the interface with memory. One 

important characteristic of smart buffers is that they reuse 

input data between iterations and push one iteration’s input 

data initiatively to the data-path, rather than being accessed 

by the data-path [9]. For a 3x3 window sliding over a two-

dimensional array, without the smart buffer, each pixel 

needs to be read nine times from memory, while a smart 

buffer reduces the memory access to three times. A smart 

buffer of an unrolled loop can save more memory access. 

The syntax of a two-dimensional smart buffer macro is: 

smartbuffer2(input_array_name,address_index_1, 

address_index_2, scalar_1, offset_1_1, offset_1_2, 

 scalar_2, offset_2_1, offset_2_2, ……); 

For example, in the smart buffer macro in Figure 2 (b), the 

last three parameters (x4, 1, 1) stands for: 

x4 = a[i+1][j+1]; 

The syntax of FIFO buffers is similar. Currently we have 

the following constraints on buffer macros. An array can 

only appear in at most one buffer macro. The address 

indexes of buffers are also the loop counters. The operator 

between an address index variable and the offset can only 

be either addition of subtraction. 

Feedback variable detection. The compiler detects scalar 

recurrence between adjacent iterations. For example, for a 

loop having a statement “sum = sum + a[i]”, to eliminate 

the loop-carried dependency, the compiler replaces the sum 

on the left and the sum on the right with store2next() macro 

and load_previous() macro, respectively. These macros 

guide the back-end to instantiate a feedback register to 

store the current sum for the next iteration, and 

consequently transform the loop to a do-all-loop. 

The output from the front-end is in the forms of both 

an IR file and an intermediate C with macros. Users could 

do further optimizations and add pragmas onto the 

intermediate C. 

3.2. Lo-CIRRF  

Starting from a conventional CFG, the compiler finds loops 

and loop-depth. Loop types are recorded in the IR by 

recovering them from user-added pragmas: Currently, these 

include one-dimensional do-all loop, two-dimensional 

perfect nested do-all loop, and non-do-all loop. The pre-

process phase of the back-end converts macros in Hi-

CIRRF into corresponding instructions. Particularly, buffer 

macros are converted into buffer instructions and put into 

separated nodes.  

We categorize basic nodes into two types: do-all nodes 

and non-do-all nodes. Lo-CIRRF records different data-

flow and scheduling information accordingly. 

3.2.1. Building Lo-CIRRF for do-all nodes 

For a do-all loop, Lo-CIRRF provides field to exploit both 

instruction-level and loop-level parallelisms. The compiler 

performs if-converse in a way that any node has at most 

two predecessors.  

In order to allow the data-path to execute multiple 

loops simultaneously, the IR has a “execution level” field 

for each instruction inside a do-all node so that each level is 

an instantiation of one iteration. Statically single assigned 

 
Figure 2 – A gray scale transformation example in C 
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variables are added by the compiler to duplicate a variable 

if that variable’s definition reaches more than one level of 

execution lower. Thereby, any variable’s definition is 

always one execution level higher. Multiplexers are added, 

and speculators are duplicated and propagated along with 

execution levels. Notice that each execution level represents 

a single iteration at a given execution phase. 

Lo-CIRRF provides another field, “pipeline stage” to 

record pipelining information.  The instructions belonging 

to the same execution level are either all latched or all non-

latched. Multiple consecutive execution levels may be 

assigned into the same pipeline stage. Having both 

execution level and pipeline stage separates data-flow 

building and pipelining, and provides compiler designers 

the opportunity to implement different pipelining strategies. 

The compiler generates the smart buffers and output 

FIFOs in VHDL at compile time [9], as well as the data-

paths [6]. 

3.2.2. Building Lo-CIRRF for non-do-all nodes 

A non-do-all basic node either belongs to a non-do-all loop 

or does not belong to any loop at all. Multiple instructions 

might belong to the same execution level and can be 

executed simultaneously to exploit instruction level 

parallelism. Notice that for a non-do-all basic node, at most 

one iteration is executed at a time.  

Lo-CIRRF has a predication field for each instruction 

to schedule the execution of non-do-all nodes. Each 

pipeline stage is guarded by a predicator. The format is: 

ADD   $vr4, $vr3, $vr2,   $vr1 

vr4 is the destination operand and vr3 and vr2 are the 

source operands. vr1 is the predicator, which is also a 

source operand. Predicators are passed inside basic nodes 

for scheduling purpose. A special instruction, PFW 

(predicator forward), is used to pass a predicator from the 

current stage to the next stage, which may be or may not be 

in the same node: 

PFW  $vr2.u1,  $vr1.u1 

vr1 and vr2 are two predicators. The instructions guarded 

by vr2 are one pipeline stage later than the ones guarded by 

vr1. Their types are u1, which stands for unsigned one-bit. 

The branch instructions of basic nodes are replaced by 

Boolean instructions, whose destination operands are 

evaluated by this basic node’s successor nodes.  

Essentially, Lo-CIRRF describes a DFG, in which do-

all loop nodes are connected together by non-do-all nodes. 

Then the compiler’s VHDL generator emits VHDL code 

for the entire DFG, including buffers, at compile time. 

4. CASE STUDY 

In this case study, besides reporting the synthesis results of 

the gray scale transformation example discussed in 

previous sections, we examine CIRRF on another 

application, an alternative finite impulse response filter 

flag = 1; 

 for (m = 0; m < 10; m = m + 1) { 

   if(flag == 1) { 

    for(i = 1; i < 251; i = i + 1)  

     b[i]=(3*a[i-1]+5*a[i])+(7*a[i+1]+9*a[i+2])+11*a[i+3]; }      

      else            { 

    for(j = 1; j < 251; j = j + 1)  

     d[j]=(3*c[j-1]+5*c[j])+(7*c[j+1]+9*c[j+2])+11*c[j+3];  } 

   flag = flag ^ 1;  

  } 

 return;  } 

 

 
The first highlighted segment is a 5-tap FIR reading array 

a and writing array b, while the second highlighted 

segment is a 5-tap FIR reading array c and writing array d. 

flag switches the execution of these two segments 

alternatively. The two inner loops are do-all loops, while 

the outer loop (the one with loop counter m) is not.  
Figure 3 – An alternative FIR example in C 

 
Figure 4 – The DFG and IR of alternative FIR  
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(FIR).  

Figure 3 shows the original C code. The two do-all 

inner loops (the two highlighted regions) are executed 

alternately. Each of these two inner loops is a 5-tap FIR. 

Each FIR’s loop body is aggressively pipelined, and 

the resulting data-path has a throughput of one iteration per 

clock cycle [Figure 4 (a)]. All the non-do-all nodes are 

predicated. We list the instructions of these nodes in Figure 

4 (b). Node 2 and node 10 are the head and tail nodes of 

the outer loop, respectively. The first instruction of node 2, 

the ior instructions, produces the predicator (vr1321) for 

the two instructions below it (pfw and sle) by examining a 

valid output predicator from either node 1 (not shown), the 

first active node; or node 11, the loop tail. Figure 4 (c) 

depicts node 2’s circuit in detail. Guarded by vr1321, the 

sle instruction asserts its destination operand when the 

outer loop is done, or de-asserts its destination operand 

when needing to execute a new outer loop iteration. Node 

2’s pfw instruction forwards a valid vr1321 to the two 

successor nodes, node 3 and node 11, for their predicator 

evaluation. Node 3 enables one of the two FIRs by either 

asserting or de-asserting vr1325, depending the value of 

flag (vr78). Node 10 is activated by the done signal from 

one of the FIRs’ loop controller and updates the value of 

flag (vr230) and the loop counter m (vr233). Node 11 

indicates the completion of the whole procedure.  

Table 1 shows the synthesis results of the gray scale 

transformation example discussed in previous sections and 

the alternative FIR. The targeting FPGA is Xilinx 

xc2v8000-5 with 46592 slices in total. The generated 

VHDL are synthesized and placed-and-routed using Xilinx 

ISE 6.2.03i. The second and the third columns are the data-

path’s bit-size and BRAM bus’s bit-size. # of slices and 

clock rate are collected from place-and-route reports. The 

last column is the number of do-all loop iterations executed 

per clock cycle. For gray scale transformation, the 

resulting data flow is capable of executing one iteration 

every clock cycle. Notice we configure the BlockRAM’s 

data bus (the third column) to have the same bit-size as that 

of the data elements (pixels), and every iteration needs four 

(2x2) pixels. Though the smart buffer reuses one column 

of the pixels loaded in the previous iteration, it still needs 

two cycles to load the remaining two new pixels. This 

explains the reason that for the gray scale transformation 

example, the number of iterations per cycle is 0.5. For the 

alternative FIR, when either one of the two do-all loops is 

active, the corresponding smart buffer exports one window 

of data (five elements) to the data-path every clock cycle, 

and therefore the circuit executes one iteration per cycle. # 

of slices consists of the hardware of two do-all loops 

(including the data-path and controller for each FIR) and 

the hardware of the non-do-all nodes, as shown in Figure 4 

(a). 

5. CONCLUSION 

We have presented CIRRF, an intermediate representation 

for compiling high-level languages to reconfigurable 

fabrics. CIRRF has two parts, Hi-CIRRF and Lo-CIRRF. 

Hi-CIRRF is essentially C with macros. The macros are 

used to record information associated with buffers, 

pipelining, look-up tables, special operations etc. Lo-

CIRRF decomposes conventional CFGs into do-all loop 

nodes and non-do-all nodes. The loop body instructions of 

a do-all loop are placed into execution levels. Each 

execution level is an instantiation of one iteration at 

different execution phases. Lo-CIRRF provides a platform 

for the compiler to aggressively pipeline do-all loops. Non-

do-all nodes are predicated in Lo-CIRRF and predicators 

are passed within and between nodes. 

We have shown, through case studies, how CIRRF 

models the application examples and provides a solid 

foundation for the compiler to generate efficient hardware.  
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Table 1 - Synthesis results of case study examples 

 
DP-size 

(bit) 

mem bus  

bit-size 

# of 

slices 

clock 

(MHz) 

iter. per 

cycle 

gray scale tran. 16 16 318 59.7 0.5 

altern. FIR 8 8 531 100 1 
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