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Abstract—Parallel Discrete Event Simulation (PDES) can substantially improve the performance and capacity of simulation, allowing
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limited by communication latencies. Traditionally, PDES simulation kernels use message passing; often these simulators are written for
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The multi-threaded implementation eliminates multiple message copying and significantly minimizes synchronization delays. We study
the performance of the simulator on three hardware platforms: an Intel Core i7 machine, and a 48-core AMD Opteron Magny-Cours
system, and a 64-core Tilera TilePro64. We discover that the three platforms encounter substantially different bottlenecks because of
their different architectures. We identify these bottlenecks and propose mechanisms to overcome them. Our results show that multi-
threaded implementation improves the performance over an MPI-based version by up to a factor of 3 on the Core i7, 1.4 on the AMD
Magny-Cours, and 2.8 on the Tilera Tile64.
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1 INTRODUCTION

D ISCRETE Event Simulation (DES) is a type of simu-
lation used to study systems where the changes of

state are discrete. It is widely used in system evaluation
and analysis in many areas including computer and
telecommunication systems, biological networks, mili-
tary war gaming, online games, and operational man-
agement. The increasing demands of simulation models
challenge the capabilities of sequential simulators. Paral-
lel Discrete Event Simulation (PDES) exploits the natural
parallelism present in simulation models to substantially
improve the performance and capacity of DES simula-
tors.

The high communication overhead and latency limit
the performance of PDES, especially when running on
a cluster environment [1]. Several approaches have been
proposed to reduce communication overheads [2], [3],
[4]. However, PDES remains highly constrained by the
high cost of communication.

The emergence of multi-core architectures and their
expected evolution into many-cores present an oppor-
tunity for PDES and similar fine-grained applications.
The low communication latency and tight memory in-
tegration among the cores on a multi-core chip sub-
stantially reduce the communication cost improving the
performance and scalability of communication bound
applications. However, most existing PDES simulation
kernels such as WarpIV [5], GTW [6], and ROSS [7], have
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been created for cluster environments and have not been
optimized to work in multi-core settings.

In this paper, we report on our experiences in op-
timizing a PDES simulation kernel, the Rensselaer’s
Optimistic Simulation System (ROSS) [7], for multi-core
platforms. Specifically, we re-implement the process-
based simulator as a multi-threaded model, which we
call ROSS-MT, to take advantage of the tight integra-
tion among cores on the same chip. This allows us to
substantially reduce communication latency by passing
events directly from one thread to another. We evaluate
the performance of the multi-threaded ROSS on two
primary multi-core platforms: an Intel Core i7, and an
AMD Magny-Cours 48-core machine. In addition, we use
a 64-tile Tilera platform as an alternative architecture.

We discover a number of performance bottlenecks,
especially on the 48-core machine, and propose opti-
mizations to reduce their effect. First, we show that the
MPI barrier synchronization does not scale due to lock
contention. Instead, the optimized pthread_barrier
implementation should be used. Second, we show that
the standard implementation of memory allocation is not
aware of the non-uniform memory latency present on
some multi-core architectures. We propose and evaluate
several policies that are aware of these effects. Finally,
we show that there is substantial contention for the
incoming event queues, and present a distributed im-
plementation that significantly reduces this contention.
Together, with these optimizations, the multi-threaded
ROSS outperforms the baseline distribution of ROSS by
up to a factor of 3 on the Intel Core i7, and a factor of 1.4
on the 48-core AMD Magny-Cours system, and a factor
of 2.8 on the Tilera platform.
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This paper significantly expands a previously pub-
lished article in the International Parallel and Distributed
Processing Symposium (IPDPS 2012) [8]. First, we ex-
plore the design space of the locking mechanism around
the critical event queue, implementing several new or-
ganizations that differ in the locking primitives and lock
distribution. In addition, we identify a significant mem-
ory leak problem that occurs due to the interaction of the
NUMA optimization present in [8] with the operating
system NUMA allocation policy. We develop and explore
several solutions to this problem. We also present alter-
native NUMA optimization based on allocating space
on intermediate cores. Moreover, we analyze the perfor-
mance of the simulator and the proposed optimizations
on a real model of a Personal Communication System.
Finally, we evaluate the performance of ROSS-MT on a
64-tile Tilera platform.

The remainder of this paper is organized as follows.
Section 2 provides background information on PDES
in general, and the multi-core platforms used in our
experiments. Section 3 provides details of the solutions
proposed in this paper. Performance bottlenecks and
our solutions to them are described in Section 4. Sec-
tion 5 overviews the experimental setup, while Section 6
presents the performance evaluation of the ROSS-MT
simulator and the proposed optimizations. In section 7
we review the related work. Finally, Section 8 offers our
concluding remarks. Associated with the paper is a sup-
plementary document that includes more background
information, details regarding the experimental set up,
and expanded experiments and analysis.

2 BACKGROUND

In this section, we first briefly describe parallel dis-
crete event simulation and the ROSS simulator [7], and
overview two multi-core platforms used in our experi-
ments.

2.1 Parallel Discrete Event Simulation
In parallel discrete-event simulation (PDES), a model
is partitioned across a group of Processing Elements
(PEs) that communicate by exchanging time-stamped
event messages [9], [10]. Each event carries a time-
stamp which determines the simulation time at which
it is scheduled to occur. Each PE processes its events in
time-stamp order to ensure causality. However, without
synchronization, it is possible for an event generated
from one PE to arrive at another PE after its scheduled
processing time has passed; such a straggler event in-
dicates a causality error. Two primary synchronization
algorithms are widely used in PDES to enforce correct
causality: conservative and optimistic synchronization.
Conservative simulation requires PEs to coordinate to
guarantee that no causality errors can occur. In contrast,
in optimistic simulation no explicit synchronization is
enforced during simulation. However, if a causality error
is detected, the simulation is rolled back to a time

before the straggler event, and messages are sent to
cancel any erroneously sent events after that time. More
details about conservative and optimistic simulation are
in Section 1 of the supplementary material.

In this paper, we use the ROSS [7] PDES simulator.
In the optimistic mode, ROSS leverages efficient reverse
computation where, instead of check-pointing, reverse
computation code is associated with every event to
reverse its effect to restore the state during rollbacks.

2.2 Multi-core Architectures
We study three multi-core platforms, with significantly
different architecture and memory organizations. The
first is a 4-core Intel Core i7 processor. Each core supports
two Simultaneous Multi-threaded (SMT) thread contexts.
The cores have private 32 KB L1 and 256 KB L2 caches
but share an 8 MB L3 cache. The second platform we
use is a 48-core AMD Magny-Cours machine. There are
four CPU chips on the memory bus, each holding 12
cores. The chips are connected using AMD proprietary
Hyper-transport 3.0 links. On each chip, the cores are
located on two separate dies, with each die holding 6
cores. Each core has a private 64 KB L1 and 512 KB
L2 caches, and shares 6 MB L3 cache with other cores
on the same die. A specialized interconnect is used to
connect the caches across dies. The cores have non-
uniform memory access (NUMA) to different regions in
memory and experience non-uniform latencies on cache
hits to the L3 cache depending on whether the cache
line is in the L3 cache of the same die or a remote die.
The third platform is the Tilera TilePro64, an many-core
architecture with 64 identical tiled cores. Tilera features
low latency and high bandwidth communication fabric
interconnecting the cores. More details about the Tilera
machine are presented in Section 2 of the supplementary
document.

3 MULTI-THREADED ROSS: DESIGN
OVERVIEW

In ROSS, communication occurs for three primary pur-
poses: (1) Exchange of event messages; (2) Exchange
of anti-messages, cancelling earlier messages sent erro-
neously; and (3) for Global Virtual Time (GVT) com-
putation which is used to commit events, and garbage
collect unneeded event checkpoint information. It is
essential for communication latency to be low for all
three of those functions. Otherwise, rollbacks occur more
frequently, are more expensive and more difficult to
contain, and GVT computation overhead becomes high,
delaying event commitment and increasing the simulator
memory usage.

3.1 Communication Mechanism in the MPI-based
ROSS
MPI is used for communication in the baseline ROSS
simulator (ROSS-MPI). Figure 1 shows event message
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communication mechanism in ROSS-MPI. Each PE main-
tains a queue of outgoing remote events. When a PE
sends a message to another remote PE, an event message
is first queued into the Output Queue (Outq). Events are
later dequeued from the Outq and sent to the appropri-
ate destination process asynchronously based on receiver
buffer availability. Posted sends and Posted receives buffers
are used for asynchronous message passing. Once the
event message is successfully received at the destina-
tion process, it is enqueued into the event queue at
the receiver side. The event queue is a priority queue
maintained by the scheduler to keep the events in time-
order. The scheduler dequeues events from the event
queue for processing.
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Fig. 1. MPI-based ROSS Communication Mechanism

3.2 The Design of ROSS-MT
In ROSS-MT, we use threads instead of processes as
seen in Figure 2. Because the threads share the same
address space, we use an input queue for each thread
containing all remote events from other threads (PEs).
No buffering is needed and thus the Posted sends and
Posted receives buffers are eliminated. During communi-
cation the sender keeps each message, so that in case
of rollbacks, cancellation messages can be generated. A
copy of each message is then created, and a pointer to
this message copy is inserted in the input event queue
of the destination thread. The receiver thread dequeues
events from the input queue and inserts them into the
primary event queue for processing.
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Fig. 2. Multi-threaded ROSS Communication Mechanism

3.3 Performance of Communication Primitives
Since PDES is a communication-bound application, the
performance is substantially impacted by the perfor-
mance of the communication primitives. Thus, to set the
context for later results, we study the performance of the
communication primitives under both message passing
and multi-threaded communication for both the Intel
Core i7 and the AMD 48-core platforms.

First, we perform ping-pong message exchange la-
tency tests for both message passing and multi-threaded
communication on both platforms. More precisely, the
experiment consists of two MPI processes for mes-
sage passing communication, or two threads for multi-
threaded communication, with each pinned to a different
core. For the Magny-Cours platform, we selected two
cores on the same die (intra-die), two cores on different
dies but on the same chip (inter-die), and two cores on
different chips (inter-chip) respectively. We evaluate the
performance of communication primitives by measuring
the message sending rate (count of exchanged messages
per second). In addition, we fixed the message size at 128
bytes, which is the event message size used by ROSS.

Table 1 and Table 2 show the performance of cor-
responding experiments on the Intel Core i7 machine,
and AMD 48-core platform respectively. We discover
that the multi-threaded implementation outperforms the
MPI-based version: the message rate of multi-threaded
version exceeds that of MPI-based version by a factor
of 3.4 on the Core i7, and 1.8 on the Magny-Cours
machine. This performance improvement occurs because
two memory copying operations are performed through
shared memory for each message in the MPI-based
communication, incurring significant overhead. On the
other hand, these operations are eliminated in the multi-
threaded implementation.

Communication MPI Multi-threaded
inter-core 3703704 12500000

TABLE 1
Number of Exchanged Messages per Second on Intel

Core i7 machine

Communication MPI Multi-threaded
intra-die 980392 1785714
inter-die 833333 1492537

inter-chip 806452 1470588

TABLE 2
Number of Exchanged Messages per Second on AMD

48-core machine

4 PERFORMANCE BOTTLENECKS AND OPTI-
MIZATIONS

In the next set of experiments, we use the Phold bench-
mark [11] to compare the performance of the baseline
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Fig. 3. Performance of Baseline ROSS-MT vs. ROSS
using MPI

multi-threaded implementation to the MPI implemen-
tation, as shown in Figure 3. Phold is the most widely
used benchmark for performance evaluation of PDES
systems [12], [13]. The model starts with a number
of objects that have events. Event execution sends a
message to another object (picked uniformly among
all the objects in the simulation). The message causes
this object in turn to later send another event message
to a third object. Thus, the number of events in the
simulation remains constant. Phold can be configured to
control the percentage of event messages that are remote.
More details about Phold and the experimental setup
are presented in Section 5. While the Core i7 results
show substantial performance improvements with multi-
threading, surprisingly, the Magny-Cours results show
considerable slowdown. Thus, the section identifies the
performance bottlenecks in the multi-threaded imple-
mentation, and provides optimizations to address them.

4.1 Efficient Barrier Synchronization

Barrier synchronization and all-reduce communication
primitives are key components of the GVT computation.
ROSS-MT uses its own library for barrier synchroniza-
tion and all-reduce operation. In the baseline version of
the multi-threaded implementation, we used condition
variables and pthread mutex for implementing these op-
erations. We found that the use of condition variables can
result in high overheads. We addressed this problem by

using the pthread_barrier implementation instead of
condition variables.

4.2 NUMA-aware Free Memory Management
ROSS implements application-level free memory man-
agement to avoid unnecessary use of the memory al-
location library. The ROSS implementation places the
memory of an event message after it is consumed in a
free memory pool. This memory is then used for future
message events. Suppose that a message is generated
from PE 1 to PE 2. The message is allocated by PE 1 from
its closest memory region (the Operating System NUMA
option enforces that). Once the message is consumed by
PE 2, it is returned to the memory pool for PE 2. In the
future, if PE 2 needs to send an event to another PE, say
PE 3, it picks the memory region that was allocated by
PE 1, which is remote for both PE 2 and PE 3, leading
to high access latencies.

To address this problem, we propose splitting the free
memory pool to keep track of the allocation source.
When PE 2 needs memory space for an event, it uses
the free memory pool for the destination PE to en-
sure NUMA friendly behavior. If there is no available
memory for the destination PE, the memory region is
picked from the free queue of the sender PE itself. As a
result, every event message is local to either the source
or the destination. In addition, we implemented a Last
In First Out (LIFO) approach to message allocation to
improve cache reuse. We call this allocator the Base
NUMA allocator (BNA).

While BNA is effective, it suffers from the following
problem. If the communication activity is not balanced
between any given pair of PEs, a subtle memory leak
occurs. Consider a chain topology with 3 PEs such that
PE 1 communicates to PE 2, PE 2 communicates to PE
3, and PE 3 communicates back to PE 1. PE 1 receives
messages from PE 3, and queues these messages in
the free memory queue for PE 3. However, it never
communicate to PE 3, so these messages just accumulate
in this queue. PE 1 never receives messages from PE
2, so it has no free message in the memory pool for
PE 2 to use, and is forced to allocate memory from its
own free-memory pool. Eventually, this memory-pool is
consumed, and no memory is available to communicate
to PE 2. The same pattern repeats at PE 2 and PE 3. The
simulation eventually enters livelock as it computes GVT
and reclaims checkpoint memory, discovering that none
is available. Thus, the NUMA optimization combined
with the OS allocation policy leads to catastrophic failure
of the simulation.

To address this problem, we monitor the size of each
memory pool during simulation. If the memory pool
grows beyond a threshold, we return this memory to the
originating PE’s free-memory pool (free queue). This op-
eration requires simple pointer manipulation to connect
the free-memory linked-list to the originating PE’s free-
memory list. We call this BNA policy Free Queue (BNA-
FQ). If the value of the threshold used for memory return
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is too small, we return memory frequently, incurring
overheads. On the other hand, if the threshold is large,
the memory leak may still occur. Empirically, we find
that there is a relatively wide range of this threshold that
performs well on both platforms. In our experiments, we
used a threshold of 50000 events in the memory pool.

BNA-FQ has the following disadvantage: each PE
must acquire a lock when it accesses its own free mem-
ory pool, introducing significant overhead. To reduce the
lock overhead, we use an intermediate staging buffer
where the events are moved to first. When a local PE
memory pool is exhausted, the PE picks up the events
placed for it in this buffer. Thus, contention (and locking)
occurs only when accessing the staging buffer, which is
an infrequently occurring operation. At the same time,
the frequently accessed local free-memory pool remains
private, and requires no locking. We call this BNA
allocator Staging Buffer (BNA-SB).

Finally, we implemented another NUMA-aware pol-
icy that allocates event memory from a memory bank
between the sender and the receiver to reduce and
balance the NUMA overhead; we call this allocator Delay
Sensitive NUMA (DSN). We implemented DSN on the
48-core platform which has 8 memory banks. Each PE
has a preference list for each destination NUMA node.
The list keeps the selection preference for the memory
bank to allocate events. The list is created based on the
NUMA node distance matrix on the 48-core machine.
The first memory bank in the list has the minimum total
distance between itself and, both sender and receiver
nodes. The other banks in the list are sorted accordingly.
The lookup of the memory bank starts from the front
of the list. If the selected memory bank is completely
in use, the next memory bank in the list is selected. In
order to prevent memory leaks, the memory bank for
the sender node is selected only if the memory banks
for other nodes are empty.

4.3 Distributed Locking for the Input Queue
By allowing the sender threads to directly access the
input queue of the receiving threads, we eliminate the
need for a buffer copy to an intermediate message queue.
However, each input queue may now be accessed by any
of the sender threads, as well as the receiving thread
(i.e., all threads in the simulation). This gives rise to
high contention on the lock to access the input queue.
To reduce this contention, we split the input queue
into private queues, one for each possible sender. The
contention for the queue is reduced from all threads, to
only two threads, the sender and the receiver. To reduce
the locking overhead, we used the pthread spin lock.

4.4 Lock Implementation Tradeoffs
To reduce the locking overhead, we attempted to use
reader-writer locks in the fully distributed case. The
sender threads are readers (they can all access the dis-
tributed queue at the same time since none of them

accesses the same queue) and the receiver thread is
a writer (it gets exclusive access to the queues). In
this way, only one lock needs to be acquired by the
receiver. In this design, there is no contention between
the different sender threads since each goes to a dif-
ferent queue. However, there is a contention between
the sender threads and the receiver thread since they
may be accessing the same queue at the same time.
To combine the advantages of both pure distributed
locking and reader-writer locking, we also developed
a hybrid locking approach which requires a few locks,
and introduces small lock contention. In this design, the
receiver has 8 reader-writer locks, each competed by 6
sender threads on the 48-core platform.

5 EXPERIMENTAL SETUP AND BENCHMARK
We use the Phold benchmark [11], for most of the exper-
iments. Before the execution of the simulation, the free-
memory pool is set to be of size 150000 events at each
PE; this pool is reused during the simulation. In addition
to remote percentage, the number of initial events per
object (we selected 1 for this parameter) can also impact
the performance as it increases the number of events in
the simulation.

Some of our experiments also use a Personal Com-
munication System (PCS) model [14] in order to demon-
strate that the trends hold when considering real simu-
lation models. The PCS model simulates realistic hand-
off patterns in PCS networks. In this model, an event
simulates a mobile phone call being generated at a
cell phone tower, and later sent to another tower. A
new phone call may be generated at the end of the
previous one. At the end of the simulation, the model
collects performance statistics such as how often calls
were blocked because of limited tower capacity.

We used both Intel Core i7 and 48-core AMD Magny-
Cours as our primary platforms, to evaluate performance
of multi-threaded ROSS against MPI based ROSS (ROSS-
MPI). In addition, some experiments were performed
on a 64-tile Tilera TilePro64 platform (see Section 4 of
the supplementary document). More details about the
configurations on each multi-core are in Section 2 of
the supplementary document. In the next section, we
evaluate the Phold performance on these three different
architectures.

6 PERFORMANCE EVALUATION
In this section, we present an experimental evaluation of
ROSS-MT and the different optimizations we proposed.
Before we present these results, we first evaluate the
performance of ROSS-MT with different lock strategies
and different NUMA memory management policies, to
identify the most efficient implementations. Once we
identify these implementations, we use them in the
remainder of the experiments. For all results, each point
represents an average of 10 separate runs, which we
verified was sufficient to bound the 95% confidence
interval to be within 2% of the average.
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6.1 Lock overhead of ROSS-MT

Figure 4(a) shows the execution time of ROSS-MT when
using the distributed locking on the Magny-Cours plat-
form. Figure 4(b) shows the corresponding simulation
efficiency. Efficiency is calculated as the ratio of com-
mitted events to the total events executed. With a single
queue, high lock contention occurs, leading to starvation
and low efficiency of the simulation. We observed that
a thread fails to acquire a lock for a long period of time,
causing substantial delays until it manages to send its
event, causing a long rollback once this late event is
received. As we increase the number of queues, the lock
contention is reduced and the efficiency increases. In-
creasing the queues further eventually results in slightly
lower performance, as no significant contention is en-
countered, while the receiver is burdened with having
to acquire a higher number of locks to check all the
different queues.
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Fig. 4. Impact of Distributed Locking: Magny-Cours

Figure 5 shows the performance of ROSS-MT with
different locking strategies under different remote com-
munication percentages. It is clear that ROSS-MT with
spin-lock performs better than both the mutex and the
reader-writer lock. As the remote percentage increases,
the version with reader-writer lock performs worse than
the other two variations, because the writers experience
starvation.
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6.2 Evaluation of NUMA Policies
The default memory policy on the 48-core NUMA ma-
chine is first-touch, where a page of data is allocated in
the memory of the core that first accesses it [15]. This
policy may cause a page to be returned to the free pool
used by a different node than the node it is pinned to.
A better solution for memory allocation is to ensure that
the pages are allocated on a specific NUMA node by
using the NUMA library APIs. Figure 6 shows the per-
formance of ROSS-MT with different memory allocation
policies. The specific NUMA node policy achieves up to
10% performance improvement compared to first-touch
policy. We use this NUMA-aware memory allocation
policy in our later experiments.
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Figure 7 shows the performance of 48-way simulation
under different NUMA policies on the Magny-Cours
machine. In this experiment, we compare four differ-
ent implementations of ROSS-MT: the version without
NUMA optimization, BNA-FQ, BNA-SB, and DSN. Re-
call that both BNA-FQ and BNA-SB employ the same
BNA allocation described in Section 4, but use different
approaches to return memory in the case of asymmet-
ric communication (solving the memory leak problem
we identified in Section 4). In particular, when a PE’s
memory pool grows beyond a threshold, BNA-FQ allows
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the PE to return the memory to the originating PE’s
free memory pool. On the other hand, BNA-SB returns
the memory of freed events to an intermediate staging
buffer. A PE later picks up the events placed for it in the
buffer when its memory pool is exhausted. Finally, DSN
uses a different NUMA allocation policy where each PE
maintains a preference list for each destination NUMA
node.

Figure 7 shows that BNA-FQ performs poorly in
comparison to both BNA-SB and DSN, and even worse
than the implementation with no NUMA optimization.
After analysis, we discovered that BNA-FQ suffers high
overheads because of lock contention during the access
to the free-memory pools. This contention is dramatically
reduced by the staging buffer used in BNA-SB. BNA-SB
performs marginally better than DSN (which allocates
memory halfway between the sender and receiver); the
NUMA latency between caches in our 48-core platform
is not that different, providing little opportunity for
DSN to improve performance. We believe DSN may
become more beneficial on other architectures with more
heterogeneous latencies at the cache level. We use BNA-
SB for ROSS-MT in the remaining experiments.
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6.3 Impact of the Optimizations
We implemented the optimizations discussed in the pre-
vious section (Efficient barrier synchronization, NUMA
aware memory pool management, distributed input
queue, and lock optimization). Figure 8(a), Figure 8(b)
and Figure 8(c) show the performance improvement
obtained from each of the optimizations in isolation and
combined on the Core i7. We consider a 2-way, 4-way
and 8-way simulation, while keeping the number of
objects per thread the same. A number of interesting
observations can be made. For two nodes, as the number
of remote messages increases, the optimizations harm
performance. Distributing the locking on the queue is
not beneficial since the degree of contention is not sig-
nificant, but the overhead is increased. Moreover, NUMA
issues are not important either since each memory ele-
ment is local to either of the two threads. Finally, lock
contention issues are minor in the barrier implementa-
tion. It is interesting to see some gain initially, but that

is likely due to the LIFO strategy introduced as part of
the NUMA optimization; other optimizations introduce
overhead without benefit for a two-thread simulation.
As the number of threads is increased, the optimizations
start to become useful. The optimized ROSS-MT achieves
up to 50% improvement relative to the baseline ROSS-
MT.

Figure 9(a), Figure 9(b) and Figure 9(c) show the
impact of the optimizations for 4, 16 and 48 thread
scenarios respectively on the Magny-Cours. Since the
bottlenecks were most severe for this machine, the opti-
mizations yield substantial improvement in performance
(over 150% for 48 threads). The impact of the barrier
optimization increases with the degree of parallelism,
and reduces slightly with the increase in event com-
munication (recall that the barrier optimization affects
GVT computation but not event communication). We
also study the impact of the optimizations on the Magny-
Cours when the percentage of remote communication
is fixed. Because of space limitations, we present these
results in Section 3 of the supplementary material.

In the next experiment, we evaluate the performance
of ROSS-MPI and the optimized ROSS-MT on three
platforms, using the classical Phold model, as shown
in Figure 10. In Figure 10(a), we show results on the
Core i7 machine. In particular, the experiments were
executed on 8 hardware threads. It is clear that the multi-
threaded implementation is substantially faster than the
MPI version on this platform. Figure 10(b) shows the
same comparison for the Magny-Cours platform with
48 cores. ROSS-MT also outperforms the MPI version,
although the gap is substantially smaller. Figure 10(c)
shows the performance of ROSS-MPI and ROSS-MT
on the Tilera machine. The simulation model consists
of 56000 objects equally distributed across 56 PEs. In
addition, the simulation time was set to 1000 for Tilera.
Clearly, the performance of ROSS-MT exceeds that of
ROSS-MPI by a factor of up to 2.8 on the Tilera platform.
More detailed evaluation of the simulator on the Tilera
machine is presented in Section 4 of the supplementary
material.

6.4 Other Benchmarks
In our previous experiments, we used the Phold bench-
mark to evaluate the performance of both ROSS-MPI
and ROSS-MT. In this study, we consider another two
benchmarks: Personal Communication Services (PCS)
simulation model [14], and hierarchical Phold model [16].
Both of these benchmarks mimic the behaviors of real-
world systems.

In the PCS model, the total number of cell phone
towers (LPs) is fixed at 57600. Figure 11(a) and Fig-
ure 11(b) show the PCS model performance on the Core
i7 and Magny-Cours machines respectively. The sequen-
tial simulation run-time was 1106 seconds on the Core
i7 machine , and was 247 seconds on the Magny-Cours
machine. We discover that the performance improve-
ment of ROSS-MT over ROSS-MPI in the PCS model is
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Fig. 8. ROSS-MT on the Intel Core i7
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Fig. 9. Magny-Cours performance with increased parallelism
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Fig. 10. Optimized ROSS-MT vs. ROSS-MPI

smaller than that in the Phold model. This is because
that PCS model has more computation and less remote
communication (< 10%) than Phold.

Hierarchical Phold model groups objects in a hierarchi-
cal communication structure, compared to the random
selection of communication targets in the classical Phold.
The communication frequencies among groups of objects
are determined by a Pareto distribution [16]. This model
exhibits similar object communication graphs to those
present in some real-world systems such as 3M-ncs,
an Internet-scale network simulation model [17]. In our
experiment, the hierarchical Phold model consists of 8160

LPs distributed equally among PEs. Figure 12 shows the
performance of hierarchical Phold model for both ROSS-
MPI and ROSS-MT on the 48-core platform. Clearly,
ROSS-MT achieves a better performance than ROSS-MPI.
For example, at the case of 48 nodes, the performance of
ROSS-MT exceeds that of ROSS-MPI by a factor of 1.4.

7 RELATED WORK

PDES is difficult to parallelize because of its fine-grained
nature, and dynamic dependency patterns which vary
with the model being simulated [9], making it substan-
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Fig. 11. The Performance of PCS Model
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Fig. 12. Hierarchical Phold Model Performance on the
AMD Magny-Cours

tially different from typical parallel applications. In this
study, we focus on optimizations specific to PDES.

7.1 Optimizing the Communication Cost for PDES
Bahulkar et al. [16] proposed a static partitioning ap-
proach to reduce the communication overhead of PDES,
by placing the most heavily communicating objects
on the same processor before the simulation starts.
Similarly, dynamic partitioning have been proposed to
repartition the simulation to recover dynamic behavior
changes of the simulation model for both conservative
(e.g., [18]) and optimistic (e.g., [3]) synchronization pro-
tocols. Chetlur et al. [4] proposed the use of message ag-
gregation, where multiple event messages are combined

in a single communication message, to amortize the
overheads associated with communication across multi-
ple messages. Mattern developed a non-blocking GVT
algorithm which allows event processing to proceed
concurrently with GVT computation, allowing the cost
of that expensive operation, which includes global com-
munication among the PEs, to be hidden [19]. Noronha
et al. used a programmable network card to optimize
event communication and GVT computation [20].

7.2 MPI on Shared Memory Architectures
This work replaces MPI communication with efficient
shared memory primitives. Thus, it is important to un-
derstand the advantages of this model over optimizing
MPI operation for shared memory. Typically, MPI im-
plementations require two memory copy operations to
copy the message from the sender to the shared memory
segment and then back to the receiver. Flow control is
supported using pipes to ensure that the message is
received correctly. In addition, implementing the seman-
tics of message passing requires MPI to use multiple
system calls for each send and receive. The message is
piped (using a system call) through the shared memory
segment to avoid a case where the message size exceeds
the available space.

Some researchers have proposed different approaches
to improve the performance of MPI for shared memory
architectures. Graham et al. [21] optimized collective op-
erations of MPI, where each process can directly access
other processes data out of their shared memory buffers.
Hoefler et al. [22] leveraged remote memory access
interface of MPI-3.0 to support the direct memory access
for one-sided communication. However, double copies
are required for point-to-point communication. Goglin et
al. [23] support efficient intra-node MPI communication
for large messages, by using kernel-assisted direct copies
between processes. However, for small messages (such
as those used in PDES), they observe that the standard
two-copy implementation performs better.

7.3 Multi-threaded PDES
To improve PDES performance on multi-cores, some
researchers have designed multi-threaded PDES engines.
Chen et al. [24] proposed a multi-threaded PDES imple-
mentation that uses a global event scheduling mecha-
nism. Although such an organization is helpful for load
balancing, it sacrifices locality and introduces overheads
for scheduling through a centralized queue. Vitali et
al. [25] proposed a different multi-threaded PDES simu-
lator that employed a load-sharing scheme. This simula-
tor differs from ROSS-MT because multiple threads may
be assigned to the same PE. An interesting direction of
future work is to comparatively evaluate these different
organizations of the multi-threaded simulation engine.
Wang et al study the performance of PDES on clusters
of multi-cores, discovering that inter-machine latency
dominates, but that solutions can be developed to hide
its very high cost [26].
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8 CONCLUSIONS AND FUTURE WORK
This paper presented experiences in building a multi-
threaded PDES simulator optimized for representative
state-of-the-art multi-core machines. We used the ROSS
PDES simulator, and modified it from a process-based
model to a thread-based model. Although the imple-
mentation showed significant performance benefits on
the Core i7 platform, it showed surprisingly poor per-
formance on the AMD Magny-Cours.

We studied the reasons for this poor performance, and
identified three bottlenecks. First, the barrier and all-
reduce primitives used in GVT computation were imple-
mented in an inefficient way using condition variables
and broadcasts. We replaced this implementation with
one that uses the pthread_barrier mechanism, which
uses atomic instructions for efficiency. The second per-
formance problem occurred due to the NUMA nature of
the Magny-Cours platform. We proposed and evaluated
a number of policies that are sensitive to the NUMA
nature of the platform. The best solution results in guar-
anteed liveness, and incurs no performance overhead
when it is not needed. The third bottleneck was due
to the lock contention on the input queue. We resolved
this issue by splitting the queues to reduce contention.
We also studied the tradeoff between different lock
implementations, exploring the use of mutex locks, spin-
locks and reader-writer locks. The optimizations resulted
in substantial improvement in performance; optimized
ROSS-MT outperforms the MPI-based version by a factor
of up to 3 on the Core i7 platform, and up to 1.4 on the
Magny-Cours, and up to 2.8 on the Tilera.

In our future work, we plan to explore some lock-free
alternatives to reduce coordination overheads. Moreover,
we plan to explore some adaptive mechanisms to auto-
matically enable and configure the different optimiza-
tions to match the architecture and model behavior.
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