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Abstract—The accuracy of wireless network packet simulation critically depends on the quality of wireless channel models. Path loss is
the stationary component of the channel model affected by the shadowing in the environment. Existing path loss models are inaccurate,
require excessive measurement or computational overhead, and/or often cannot be made to represent a given environment. The paper
contributes a flexible path loss model that uses a novel approach for spatially coherent interpolation from available nearby channels
to allow accurate and efficient modeling of path loss. We show that the proposed model, called Double Regression (DR), generates
a correlated space, allowing both the sender and the receiver to move without abrupt change in path loss. Combining DR with a
traditional temporal fading model, such as Rayleigh fading, provides an accurate and efficient channel model that we integrate with
the NS-2 simulator. We use measurements to validate the accuracy of the model for a number of scenarios. We also show that there
is substantial impact on simulation behavior when path loss is modeled accurately. Finally, we show that unlike statistical models, DR
can make a simulation representative of a given environment by using a small number of seeding measurements. Thus, DR provides
a cost-effective alternative to ray tracing or detailed site surveys.

Index Terms—Wireless Channel Model, Mobile Network Simulation, Path Loss, Spatial Correlation

✦

1 INTRODUCTION

Simulation is widely used for performance evaluation
in wireless and mobile network research. The major
advantages of simulation include flexibility in modeling
scenarios, controllability of changing parameters that
are difficult to change in practice, observability com-
pared to testbeds or emulation studies, and repeatability.
However, the validity of simulation models for wireless
networks has been criticized due primarily to the poor
accuracy of wireless channel models [1], [2], [3], [4],
[5], [6], [7]. There are other aspects of wireless network
simulation that have also come under criticism including
the use of unrealistic mobility models [8], [9].
In response to this criticism, more accurate and real-

istic temporally fading channel models accounting dy-
namic components for signal strength due to mobility
and multipath effect, e.g., Rayleigh-Ricean fading [10]
and Nakagami fading [11], have been implemented in
network simulators. However, these models account for
the fast fading component of the channel model, which
exhibits temporal correlation but little spatial correla-
tion [12]. On the other hand, the stable component of
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a signal is determined by shadows from large objects
in an environment; this path loss component, is still
commonly modeled assuming idealized distributions.
However, path loss has been shown to be spatially
correlated as RF shadows from large objects tend to have
similar effect on nearby channels [13], [14]. The path
loss component determines the mean signal strength and
therefore significantly affects link quality [15]. Spatial
correlation is extremely important for simulation accu-
racy especially in the presence of mobility: as a node
moves at small scales, spatial correlation implies that the
path loss correlates from one position to the next.
There are two major approaches to accurate path loss

estimation for a given environment: (1) site surveys use
extensive measurement to map the signal power from
every location to every other location in a site [16];
and (2) Ray tracing: instead of measurement, signal
propagation in a site is tracked in detail using geograph-
ical and material information specific to the site; the
direct, reflected, refracted, diffracted, and scattered rays
between a sender and a receiver are summed to estimate
the average received signal strength for a specific loca-
tion [17], [18], [19]. Both these approaches are accurate,
but require significant measurement or computational
overhead, which makes them unsuitable for use in a
packet simulator.
One of the difficulties in producing spatially correlated

path loss values in mobile-to-mobile network simulation
is that both the sender and receiver could be mobile. As
both the sender and the receiver move, it is not clear
how to maintain spatial coherence for the successively
generated channel models. In this paper, we propose
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a path-loss model for wireless network simulation ca-
pable of spatially coherent estimation of path loss in
the presence of both sender and receiver mobility. The
model maintains the spatial correlation of path loss
which has been empirically observed in both outdoor
and indoor scenarios [13], [14], [20]. Thus, the model
produces consistently plausible path loss values: those
that can possibly be observed in a real environment. To
obtain a plausible path loss value for a new link, we use
a new algorithm to estimate the channel from nearby
links.When generating a new link, we search known
nearby reference links. We then interpolate twice from
these nearby links, once to account for the difference in
receiver location and once for the sender; the algorithm
is therefore called Double Regression (DR). For efficient
identification of related reference links, we use a spatial
data structure to index the nearby links. Although re-
gression has been used to compute path loss in wireless
simulation, existing techniques only allow one end of the
channel to be mobile [21].
If there are insufficient reference data (known links

that are sufficiently close) for regression, we generate the
path loss value from a log-normal distribution. Finally,
the newly generated link is stored as a known link for
future estimation of nearby channels. As a result, unlike
existing models, the path loss remains spatially coherent
as well as temporally consistent: path loss values are
preserved over time, mirroring the long-term nature of
shadowing which determines the path loss.
We envision the model to be used in a way where

a set of known channels are built over time initially
starting from stochastic values, and then using inter-
polation as more channels are known. However, it is
also possible to seed the model with measurement or
ray-tracing channels creating simulations that are site
specific. When seeded with known channel values, the
model can “fill-the-gaps” with realistic values between
the known measured ones, allowing faster site surveys
or ray-tracing analysis where only a few channels are
measured or ray-traced.
The model is validated against measured data us-

ing both new experiments, as well as large scale trace
data. We integrate the path-loss with a temporal fading
channel model (Rayleigh fading) to provide a complete
channel model, and show that different path loss esti-
mates cause substantially different link quality estimates.
Even in a simple two-hop scenario, the use of spatially
coherent models can result in significant difference in
estimated throughput over existing models when there is
only 10dBm difference in path loss. Finally, we show that
seeding the simulation with some measurement data
can substantially increase the accuracy of a site-specific
simulation without the high cost of site surveys or ray
tracing.
The remainder of the paper is organized as follows.

Section 2 is an overview of some background and related
work. In Section 3, we present the proposed double
regression algorithm for spatially correlated path-loss

estimation. We present our experimental evaluation of
the channel model and the assessment of its impact on
the accuracy of simulation studies in Section 4. Finally,
Section 5 presents some concluding remarks.

2 BACKGROUND AND RELATED WORK

Wireless channel models typically consist of two com-
ponents that are summed to estimate the overall received
signal strength. The first component is the long-term
average signal strength called the path loss; DR is a path
loss model that estimates this component of the channel.
The second component represents the small-scale multi-
path fading to model the signal strength variation from
multi-path effects as the signal propagates and inter-
acts with the environment. This section overviews two
commonly used combinations of these two components
and discusses their limitations. We also review three
advanced path loss models that are known to have high
accuracy and compare them to DR.

2.1 Commonly used Wireless Channel Models

In network simulators, the following two model com-
binations are widely used: (1) Ideal path loss model
with Rayleigh fading model (IPL-Rayleigh); and the
(2) log-normal shadowing model with Rayleigh fading
model (LNSM-Rayleigh). The ideal path loss model
in the IPL-Rayleigh can be the free space model, the
two-ray ground model, or any other isotropic distance-
dependent path loss model. IPL-Rayleigh is widely used
because of its simplicity [10], [11]. However, a parameter
of the fading channel model, the mean power, is obtained
from ideal path loss models; thus, the mean power and
therefore the average link quality of a link do not reflect
a real site with characteristic shadowing effects.
The LNSM-Rayleigh is more realistic because the path

loss is obtained by the log-normal shadowing model,
which is widely accepted as a site-specific stochastic
model [22]. However, the LNSM model assumes inde-
pendent and identically distributed path loss for points
at the same distance from a sender; it does not consider
the spatial correlation between nearby points [13], [14].
Moreover, there is no effort to maintain temporal consis-
tency for a channel (i.e., to make sure that if the channel
is used later, it has the same parameters). Moreover,
in some simulators LNSM is implemented by recom-
puting the log normal component with every packet
transmission. Thus, even if no mobility occurs, the path
loss component of the model changes substantially with
every transmission.
In summary, the models used in current network

simulators are highly inaccurate with respect to the
path loss component of the model. In IPL, an idealized
model is used for estimating path loss, essentially not
capturing the effect of shadows in the environment.
In contrast, LNSM uses a log normal component to
estimate path loss, but does so in a way that is neither
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spatially nor temporally coherent. We show later that
using these models can lead to simulation results that
diverge significantly from both measurements and more
accurate models.

2.2 Advanced Path Loss Models

In this section, we compare DR to other advanced path
loss models. To set up the metrics for the comparison,
we summarize the primary advantages of DR: (1) Spa-
tial and temporal consistency: DR estimates path loss
in a manner that is spatially coherent and temporally
consistent; (2) Efficiency: DR is efficient both in terms
of computation time, as well as the overhead needed
to build the model; and (3) Flexibility: DR allows the
integration of measurement results to model specific
environments, or alternatively it allows populating the
model statistically for channels where no nearby chan-
nels have been estimated before.

2.2.1 Site Surveys
One approach to providing a highly accurate path loss
exponent is to use a site survey. A site survey is a pro-
cess where signal power measurements are performed
throughout an area which will be used as the basis for
simulation. However, this process is extremely time con-
suming and expensive; often it is only feasible to perform
measurements in a limited number of locations, and
the quality of measurement depends on equipment and
skill [16]. Due to these reasons, several methods to re-
duce the number of required measurements in planning
of access points have been proposed [23], [24]. Stepanov
et al use a commercial site survey tool (WinPROP) and
present the significance of using an accurate propagation
model in MANET study [25]. Compared to DR, SS can
model specific environments, but does not have the flex-
ibility to stochastically model new environments while
maintaining consistency. It also has substantially higher
set up overhead to carry out the detailed measurements.

2.2.2 Ray Tracing (RT)
In Ray Tracing, detailed geographical information about
a site is collected and used as the basis of computing
path loss. In particular, the direct, reflected, refracted,
diffracted, and scattered rays between a sender and a
receiver are summed to estimate the average received
signal strength for a specific location [17], [18], [19].
RT is highly accurate if the precise geographic infor-
mation (GIS) (e.g., materials, facets, and edges) about
the environment, as well as the sender and receiver is
available. However, when the typical number of facets
and edges are used, the computational complexity easily
gets into the trillions of rays [26]. This computational
cost is prohibitive for packet simulation especially in the
presence of mobility (since the path loss would have to
be continuously re-estimated).
Dricot and Doncker implement the ray-tracing model

in a slowly moving environment in a network simula-
tor [27]. Because of the change of the environment, they

re-calculated the ray-tracing result every 0.05sec, which
was assumed to be coherent time in the 2.4GHz channel.
As a result, they noticed that the simulation runtime is
increased 100 fold. Despite the efforts for increasing the
efficiency of the ray-tracing, the computational complex-
ity remains prohibitively high [28]. For example, one
solution for this problem is to store the precomputed
ray-tracing result for a whole city, if the location of the
sender is fixed [28] (e.g., base station). However, this is
not applicable to ad-hoc networks where both senders
and receivers move. Due to computational inefficiency
and the expensive cost of detailed GIS data, RT is not
used as a path-loss model for packet simulators. Lu et al.
propose a simplified ray-tracing model to calculate path
loss [29]. They simplify the equation for path loss using
an adjustable parameter S that describes the diffrac-
tion/scattering mechanism. Comparison with measure-
ments is used to estimate the S. Since the parameter
reflects the environment, the accuracy of their approach
depends on the spatial resolution of measurements, and
error bounds are not known.

2.2.3 Sum-of-Sinusoids model
The Sum-of-Sinusoids model was initially developed by
Rice [30] and advanced and extended by others [31], [32],
[33], [34]. For two arbitrary links, the autocorrelation is
determined by the distance between the senders and the
receivers as each link’s path-loss is a Gaussian random
variable. Autocorrelation is achieved by selecting the
frequency set defined in the SOS formula carefully. Like
DR, SOS can generate a spatially correlated log-normal
shadowing model and is computationally efficient. How-
ever, unlike DR, SOS is completely stochastic and cannot
be used to create site specific models due to lack of
location information of nodes.

2.2.4 Correlated Shadowing model
Correlated shadowing is a model proposed by
Szyszkowicz et al. [35]. In this model, a fast shadowing
field generation algorithm is proposed that takes the
angle and distance of arriving signal. The method
takes N points for receiver’s location and constructs a
pairwise covariant matrix. For an unknown location,
they round to the nearest quantization point. Thus,
path loss changes abruptly in the boundary of the
given data locations. Moreover, the work is limited to a
cellular system that consists of base stations and mobile
nodes; it does not apply to channels where both sender
and receiver move as encountered in mobile ad hoc
networks.
Also related to our work, Xu et al [21] use regression

to estimate link quality to add spatial coherence to
temporal correlation. They do not consider separate re-
gression from the source and destination side. Moreover,
they attempt to estimate the full link quality, rather
than just the stationary spatially coherent component
representing path loss. In particular, a sliding window of
recently perceived link qualities are maintained and as
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time passes, the quality of the link can drift by arbitrary
amounts.

2.2.5 Empirical Path Loss Models

In addition to the free space model and the two-ray
ground model, several empirical channel models, such as
the Okumura model, the Hata model, and the Walfish-
Ikegami model, have been developed for outdoor scenar-
ios [36]. In particular, the Hata model and the Walfish-
Ikegami model are used with a standard set of coefficient
values such as building height, street width, building
separation, and base station antenna height [37]. These
outdoor scenario channel models are not applicable to
indoor scenarios or local area networks because they
usually assume the height of the antennas to be tens of
meters and the transmission power to be strong enough
to have a much larger transmission range.
When the height of antenna is low, the path loss

is dominated by various near surface structures and
vegetation. Azevedo and Joaquim compare several near-
ground path loss models designed for locations with
vegetation such as COST 235 and FITU-R with log-
normal shadowing model [38]. Those vegetation path
loss models require the depth of vegetation area to
estimate the path loss. They are not suitable for urban
areas or indoors.

3 DOUBLE REGRESSION: SPATIALLY COHER-
ENT ESTIMATION OF PATH LOSS

Our goal in this paper is to develop a plausible model
for path loss: the long term stable component of a
wireless channel model. Plausibility for path loss entails
maintaining spatial and temporal consistency across the
simulation lifetime. Spatial consistency implies that spa-
tial correlation is maintained such that nearby channels
have correlated path loss at correlation levels consistent
with those measured empirically. If there are no neigh-
boring links, neighbor relationship being defined using
empirically observed correlation distance thresholds, the
estimated path loss can be independent; for example, it
can be generated by the log-normal distribution. How-
ever, as links are generated they populate the model,
and eventually there are bases for estimation available
for all new channels. Since these links are stored, they
also provide the basis for temporal consistency such that
similar channels used at different simulation times are
also correlated.
This section overviews DR. We follow the notation

used in log-normal shadowing description by Rappa-
port [12]: i.e., Xσ(tx, ty, rx, ry) is a normally distributed
random variable N(0, σ2) that models the path-loss com-
ponent of a link t(x, y) → r(x, y). The path loss compo-
nent represents the long term average signal power on a
channel (i.e., not considering the zero mean multi-path
fading component).

3.1 Path Loss Estimation using Double Regression

Regression is a process of least square fitting used to
estimate a dependent variable from one or more inde-
pendent variables [39]. Without loss of generality, we use
linear regression (Eq. 1) due to its low computational
complexity.

p = β0 + β1x+ β2y, (1)

where x and y are the independent input variables
and p is the computed dependent value. Given a set
of m observations O={(xj , yj , pj)|j = 1, 2, ..,m}, the
regression coefficient can be obtained by a weighted
average of the different channels with weights inversely
proportional to their distance. More specifically,

β = (ΦTΦ)−1ΦTp (2)

where p=(p1, p2, .., pm)T and Φ is a m × k matrix of
[Φi(xj , yj)], i = 0, 1, .., k and j = 1, 2, ..,m.

The primary difficulty in using regression is that the
notion of distance in regression is a scalar value re-
flecting Euclidean distance between the reference and
projected points. In contrast, channels are line segments
in space with no clear definition for distance between
them. Our approach, Double Regression (DR), solves
this problem by applying regression in two steps. First,
we apply regression based on the distance from the
destination of the nearby links to the destination of the
estimated link producing an intermediate estimate. In
the second step, we apply regression based on the sender
distances to the intermediate estimate to find the final
path loss. The remainder of this subsection formalizes
this process.
For ease of explanation, we describe DR in a two-

dimensional plane, but it readily generalizes to three di-
mensional space. Consider a path loss offset X(x, y, u, v)
of a link (x, y) → (u, v) where (x, y) and (u, v) represent
the location of a sender and a receiver respectively.
Let the location coordinates x, y, u, v be the independent
variables of the regression and the X be the dependent
variable. When a set of neighboring links are given (from
previous estimates, measurement, or pre-calculated ray
tracing), the path loss offset (X(x, y, u, v)) for a new
link needs to be estimated. To distinguish neighboring
links from those not sufficiently close to be correlated,
we define a correlation distance threshold, Dn, beyond
which we do not consider links to be related. If (x, y)
is static, and m observations for (u1, v1), .., (um, vm) are
given within Dn, regression esimates an offset for a
new link (x, y) → (u′, v′). The underlying assumption
of the regression is that the relationship between the in-
dependent variables (i.e., locations) and their dependent
variables (i.e., the path-loss) among the observations
continues to hold between the new independent variable
(u′, v′) and its dependent variable X(x, y, u′, v′). The
assumption relies on the dependent variables having
spatial correlation, consistent with empirical data [13],
[14], [20].
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3.2 DR Algorithm

To lower the overhead of finding the reference links for
regression, we use an R-tree, a data structure that sup-
ports efficient spatial indexing [40]. A leaf node of the R-
tree contains the location of the sender, the receiver and
the observed path loss. Figure 1 and 2 show a geograph-
ical illustration of an R-tree that covers 7 links (14 links
considering the reverse links), and the corresponding R-
tree data structure. A branch node represents a region
and a leaf-node represents the sender’s location of a link.
A new leaf node is created such that that the sender’s
location is within the region of the parent branch node.
Since a path loss is symmetric [12], a link with opposite
direction and the same path-loss value is also stored in
the R-tree. R1 covers all links while R4 covers only link
b1↔b2, a1→a2, and c1→c2. Each directed link between
two nodes is stored in a separate R-tree node and
the R-tree node is assigned depending on the sender’s
location. When a new estimation is requested, reference
links within a correlation distance threshold (Dn), up
to a limited number (L) can be obtained quickly by
traversing the R-tree. If the number of reference neighbor
links is not limited, the computation time can increase
as the number of measurements increases. The distance
between two links (x, y) → (u, v) and (x′, y′) → (u′, v′)
is calculated as follows.

dt =
√

(x− x′)2 + (y − y′)2

dr =
√

(u− u′)2 + (v − v′)2

dist =
√

dt2 + dr2 (3)

where dt represents the distance between transmitters
and dr represents the distance between receivers.
The estimation algorithm operates as follows. Let us

consider a set of reference links RL and a link τ that has
a sender A and a receiver B. We denote each coordinate
of a node by id(e), where e = x, y, u, or v. Given a set of
reference links, DR finds a set of regression coefficients
that fits the path loss offset X at receiver locations of
reference links, assuming for now the same transmitter
location (line 1∼9 in the DR algorithm in the right
column). The offset X at the receiver location of interest
is estimated with the obtained regression coefficient sets,
resulting in a set of pre-estimates (line 10). The above
steps are repeated for each reference transmitter location
(line 11). A set of regression coefficients is next fitted
to these pre-estimates across the reference transmitter
locations (line 12∼13). In the final step, the path loss
offset of the link of interest is obtained by evaluating the
regression function fit at the desired transmitter location
(line 14).
The detailed description of the algorithm with the

aforementioned notation is presented below. The algo-
rithm applies regression twice, one for receivers and
one for senders. This method enables estimating any
link, including those whose sender and receiver are
different from end nodes of reference links. If there are
no available reference links, we use a stochastic estimate

Fig. 1: R-tree coverage

Fig. 2: R-tree

(log-normal distribution) to compute the path loss.

Double regression algorithm
1 I = the number of reference links in RL
2 for i = 1 to I do
3 si = the sender of ith reference link
4 J = the number of receivers for si
5 rij = jth receiver of node si
// observation set for a sender si
6 Osi = {(rij(u), rij(v), X(si, rij))|j = 1, 2, .., J}
7 for j = 1 to J do
8 Apply Eq( 2) to Osi to get βs.
9 end for
// get the estimated value for the target receiver location B

10 Apply Eq( 1) to B and get the estimation X̂s(si, B).
11 end for
// observation set consisting of estimation for links to B
12 Os = {(si(x), si(y), X̂(si, B))|i = 1, 2, , , .I}
13 Apply Eq( 2) to Os to get β
14 Apply Eq( 1) to A and get the estimated value X̂(A,B)

3.3 Tuning the R-tree to balance accuracy and over-
head

A major challenge in using R-tree in path loss model
is that the data in the original R-tree represent 2-
dimensional points while ours represent links consisting
of two end positions. Simply increasing the dimension
is not appropriate, because a branch node covering the
long links will be very large. An R-tree consisting of
branch nodes covering a large area is usually compu-
tationally inefficient, because the branch will have a
lot of leaf nodes or the coverage of neighbor branch
nodes will be mostly overlapped if the number of leaf
nodes is limited. To avoid this problem, the R-tree branch
nodes in our model are constructed based on the sender
position. Thus, the receiver position is used to check
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whether the link could be a reference once the candidate
links are found. Since we inserted each link twice to
reflect the reverse channel, considering only senders in
practice indexes both senders and receivers. Note that
the other end of the link in a branch node can be outside
of the coverage of the node making them inappropriate
for use as reference links. Thus, the candidate links
found in an area must be checked to see if both ends
fall within the spatial coherence distance Dn.
We use two parameters to control the use and con-

struction of the R-tree to tradeoff accuracy to compu-
tational and storage overhead: ThCover and ThSave. To
select a set of reference links for a link a1→a2, R3 does
not need to be searched, which leads to faster search
time. Since a link is covered by multiple layers of regions
(e.g., link b1→b2 is covered by R1, R2, and R4), we have
to determine which region is appropriate, i.e., including
all related links and excluding unrelated links. ThCover

controls the search region for related links within the
tree measured in meters. A small ThCover means that
the search progresses to deep levels of the tree until a
region is found that covers the target area tightly due to
the small ThCover. In this case, a small number of neigh-
boring links are considered as candidate references for
estimating the new link. A shortcoming of this approach
is that a close neighboring link may be excluded because
its end points are out of the covered area. For example,
the closest link to link a1→a2 is b1→b2, however, if R5 is
selected, the closest link will not be found as a reference.
If a large ThCover is used, the search stops higher in the
tree at a larger region, which leads to more links being
considered for reference links. Thus, the probability that
a close neighbor link is excluded from a reference set
of a link is low, but a higher number of links will be
considered.
The DR model stores an estimated path loss in the R-

tree to reuse. The interval between two adjacent stored
links can be adjusted using ThSave. If a small ThSave

is used, we allow a dense R-tree to be constructed
where many nearby links are saved. This choice requires
more storage space, and adds to the overhead of a new
channel estimate, but allows more accurate estimates.
Conversely, if a large ThSave is used, less reference
links are used, saving storage and computation time, but
increasing the stochastic component of the estimate. If a
link is estimated without any reference link, the model
stores the estimated value.

3.4 Discussion

DR applies regression when nearby known channels
are available. These channels could be obtained from
measurement data to produce a site specific simulation.
In such scenarios, the accuracy of the DR estimate rel-
ative to the site from which the measurement data is
obtained depends on the presence of nearby measured
(or ray-traced) links; absent such links, there is no spatial
correlation from measured links and the estimated path

loss is independent in the initial phase of the simulation
where the R-tree is sparsely populated.
DR always generates plausible path loss models even

when the provided measurement or ray-trace data is
sparse or even non-existent; the generated path loss
values will be consistent with path loss distribution
in real environments and are thus representative of a
hypothetical real environment. However, if the measure-
ment (or ray-trace) data is sufficiently dense, DR will
generate site-specific path loss representative of the ac-
tual environment from which the measurement data are
obtained. The measurement or ray-tracing data simply
causes the generated path loss values to correlate to this
data making the simulated area similar to the measured
area.

4 VALIDATION AND PERFORMANCE EVALUA-
TION

In this section, we present a number of experiments to
validate DR and to evaluate its properties. We also show
study the impact of having plausible path loss models
on network performance and stability.

4.1 Measurement-based Validation of DR

In this study, we measure the path loss in a lecture hall
that has dimensions of 10m by 10m by 3m. We carry
out measurements from six sender locations. For this
experiment, the room structure such as walls, furniture
and ceiling affects the path loss. The sender broad-
casts packets every 10msec with transmission power of
16dBm, 802.11g in 2.471GHz frequency, and 6Mbps data
rate. To eliminate multi-path effect (the temporal fading
component of the signal) and orientation effect [41], [42],
the signal powers are averaged in a small area of 1.8m
rotating the receiver antenna in all directions; in total,
147 channels are measured. Both the sender and the
receiver use Atheros chipset AR5112 and the MadWifi
driver set for linux 2.6.
Given the measurement data, we seek to do parameter

estimation for the log-normal model. Since the log-
normal model is used as the stochastic component of DR,
this step is important not just for comparison against log-
normal shadowing. Given a measured channel S(ti, ri),
we first seek to separate the log-normal component of
the path loss from the stable component which is the
average path loss. This process requires us to estimate
the P0 parameter of the log normal model which rep-
resents the power at the cross over distance d0 and the
path loss exponent, β, to get the average path loss [12].
Note that β can be fixed for a site because the variable
path loss is represented by the variable component of
the log-normal model.
We also need to estimate σ which is the parameter of

the log-normal distribution component of the shadowing
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model. First, the power Pdb is obtained using S− 95 per
the specifications of our hardware [43]. To obtain P0 from
the measurement, we set d0 to be 1. To obtain σ, we need
to determine β first: β is computed such that it results
in a zero mean for the log-normal distribution which
minimizes σ. In our testbed, the values P0 = −33dB, β =
2.87, σ = 4.06 result from this exercise.

The simulated path loss values are compared with
the measurement of the corresponding physical location
as well as path loss values generated by the two ray
ground model and log-normal shadowing model with
the derived parameters described above. To make the
average of the path loss generated by those models the
same with the measured value, the Gt*Gr parameter is
adjusted, which models the antenna gains of the sender
and the receiver, of the two ray ground model (1.062
for this site) and used the derived P0, β and σ in the
testbed for log normal shadowing model. For the DR
experiment, we use DR to interpolate each link from a
preset number of neighboring measurements.

To assess the similarity, we calculate the root mean
square (RMS) of the estimation error defined as xRMS =
√

1
n

∑n
i=1(xi −mi)2, where n is the number of measured

links, xi is the estimated pathloss in dB from the model
for the ith link, and mi is the measured pathloss in
dB for the same link. RMS was computed across all
measured links in the experiment, simulation: RMS was
9.96 for the two ray ground model while log-normal
shadowing had an RMS of 12.843. DR achieves an RMS
of 5.03. The reason is that the model estimates signal
strength at each location from a few reference links
that are obtained through measurement, while the two
ray ground model estimates them with distance and
log-normal shadowing model estimates them with only
overall statistics and is not able to incorporate measure-
ment values.

Site Surveys require a large number of measurements.
Similarly Ray Tracing requires many computationally
intensive computations. In contrast, DR can successfully
fit an environment with only a few number of mea-
surements, providing a geographically consistent model
at a significantly lower cost than site surveys and Ray
Tracing. Table 1 shows the RMS of estimation errors for
various number of reference links used. We use R/M to
indicate the ratio of samples used in seeding DR to the
total number of measurements available (which is 147
in this experiment). When zero R/M is used, the RMS
value of DR is no larger than the log normal shadowing
model because the same site specific statistics are used.
As the R/M increases, DR generates more accurate path
loss. Thus, the site fidelity can be adjusted by varying
R/M.

In this next experiment, we use a measurement data
set from the CRAWDAD repository measuring path loss
in part of the University of Colorado campus [44] for
outdoor scenarios. The data contains received signal
strength (RSS) measurements collected using the CU

two ray ground 9.961
log-normal 12.843
DR R/M 0% 10% 30% 50% 70%

xRMS 10.67 9.40 6.78 5.03 4.52

TABLE 1: RMS of Estimation Errors

Wide Area Radio Testbed (CU-WART). Figure 3a shows
a heat-map of the measured RSS. The total number of
used links is approximately 900. The areas where no
measurements were taken are shown as white. To show
that DR can regenerate an accurate RSS map from a small
number of measurement data, we reproduce a heat-map
of RSS with 1/10 sample measurement (i.e., 90 samples)
that are randomly selected.
As shown in Figure 3b, the log-normal shadowing

model does not generate a realistic path loss model,
because it uses statistics that do not reflect geographic
characteristics such as low path loss in corridors. In
the case of DR, since it is seeded by the reference
measurement data the obtained path loss is similar to the
measurement data as shown in Figure 3c. The computed
RMS was 13.35 and 6.03 for the log-normal shadowing
model and DR respectively.

4.2 DR without Measurement: Correlated Gaussian
Process

DR can also generate a plausible path loss when no
measurement data is available to seed the model. In this
respect, the generated model is plausible, but not specific
to any given area since it is not seeded with initial
measurement data. In this way, the model can be used
to evaluate network protocols given realistic path loss
properties, without the overhead of any measurements
or ray-tracing.
First, a distance threshold (Dn) can be set to a decor-

relation distance [33] because points at this distance
away from each other experience weak correlation in
path loss. In this case, the R-tree is originally empty.
We can generate some initial reference links (e.g., on a
grid Dn meters apart) to seed the R-tree, or seed it on
demand whenever a new link is needed and no nearby
reference links exist. When no nearby links exist for a
new channel, a Gaussian random variable from N(0, σ2)
is used to assign the path loss at that point. The new
estimate is added to the R-tree such that future nearby
channels can use it in generating their estimate.
Figure 4 depicts the virtual signal-strength space ob-

tained from double regression, where the sender is fixed
at the middle of the topology and the (rx, ry) coordinate
represents the location of a receiver. The number of
reference neighbors is set to 3, and the distance threshold
Dn is set to 6 meters that is typical in an urban area [33].
We first generate channels at grid points Dn apart; those
points are generated independently because of the lack
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Fig. 3: Estimated RSS using DR for the CU Wireless Trace

of nearby reference links. It is not necessary to seed the
model with these points, as channels could be gener-
ated strictly on demand. The spatial correlation among
the receivers, i.e., the similarity among the neighbor
receivers, is plotted. We obtained similar results when
a receiver is fixed and the (x, y) coordinate represents
the location of a sender. As a result, a small location
change for either senders or receivers does not cause
abrupt change of path loss, and the new link has a
plausible path loss consistent with empirical results that
show spatial correlation of path loss. While the spatial
variation changes smoothly in most areas, it changes
abruptly at the grid points which are generated without
correlation (using a log-normal distribution).
Figure 5 compares the cumulative distribution func-

tion (CDF) of the offset X(x, y, u, v) of the overall space
to that at the grid points and CDF of log-normal distri-
bution with variance of 1 and 1

3 respectively.
The distribution of grid points shows 3 times larger

variance than the distribution of overall space since
they were generated independently. Averaging n ran-
dom variables for the target receiver and sender results
in a reduced variance by

√
n × √

n by the central limit
theorem. Since we use an average of 3 reference links, the
reduction in variance relative to the grid points follows
the expected distribution.
Finally, Figure 6a to 6c show the joint autocorrelation
with respect to dt and dr. The DR generated path loss
shows a good agreement with theory as does the SOS
model [33]. The simulation result indicates that the DR
model is well fit to the spatial correlation and smoothly
changing path loss for mobile senders and receivers.

4.3 Spatial Coherence Analysis

In this section, we analyze DR with respect to the
spatial correlation among the generated path loss esti-
mates. Primarily, when no nearby links are available for
regression, DR uses an uncorrelated Gaussian estimate
for path loss. The density of the observations is varied by
changing the correlation distance threshold (Dn), which
defines the distance beyond which links are no longer
considered neighbors. When Dn is large, simulating

dense measurements, more neighbors will be included
in the DR estimate. When it is small, simulating sparse
measurements, many points will have no measured
neighbors and would have to be generated using the
Gaussian distribution, increasing randomness.
Figure 7 and 8 show autocorrelation when the receiver

distance (dr) and transmitter distance (dt) between the
reference and estimated link increases. When the dis-
tance between links is small (e.g., 1), the autocorrelation
should be high (closer to 1). A lower autocorrelation
indicates that the estimated path loss is not correlated in
space. The topology size is 400x400, and 2000 reference
observations are generated from N(0, σ2). When Dn=30
is used, explicit exponential autocorrelation is shown,
which means if there are sufficient neighbor links, DR
generates spatially correlated path loss. However, due to
the random variables involved in the regression process
when distance from reference links is large or insufficient
nearby reference links exist, the autocorrelation does not
look smooth. Each point represents an average of 720
simulation runs.
We vary the number of reference links in the same

size of topology. If fewer references are used, more links
are generated independently because they do not have
sufficient neighbors for interpolation. Figure 9 shows
that the autocorrelation is not seriously affected when
the number of initial channels is reduced to 300.
Figure 10 shows the autocorrelation between two links

that are 1 and 5 meters apart as the number of reference
links in the simulation increases. At first, there is no
reference link (x=0). As a new link appears and an
estimation for the link is stored in the R-tree, there will
be more data that can be referred by a new link. When
the number of links is small, the autocorrelation is low.
Figure 10 shows that when the number of links reaches
2000 (x=2000), the autocorrelation converges to match
the empirical values. This simulation result can be also
used to determine the number of initial links to generate
a realistic path loss model. Each point represents the
average of 30 simulation runs.

4.4 Impact on Network Stability
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The path loss models the long time average of the
signal power; it has substantial impact on the simulation
results, affecting the signal and interference components
of SINR and how they change as the nodes move. This
impact percolates up the protocol stack to the routing
and application layers; the use of inaccurate path loss
models can lead to substantial inaccuracy in the sim-
ulation. To demonstrate this effect, in this section, we
evaluate the impact of path loss models on the behavior
of two representative simulation studies.

One of the most notable impacts of the spatial corre-

lation is on network stability. A representative reactive
routing protocol for a mobile ad-hoc network, Dynamic
Source Routing (DSR), detects a route failure after con-
secutive transmission failures, then re-issues the DSR
route discovery process [45]. As mobile nodes move,
the path loss and the link qualities between nodes keep
changing, which causes route failure and rediscovery
process.

We investigate how many times the re-discovery pro-
cess occurs in the independent and identically dis-
tributed (i.i.d.) log-normal shadowing path loss model
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(commonly used in network simulators) and the DR
path loss model in a general mobile ad-hoc network
scenario. The scenario includes 20 nodes in a 30x30m
topology in which each node moves at maximum speed
of 1m/sec. To make sure that the network includes
connection and disconnection through multi-hops, the
path loss exponent is set to 5. Since the nodes move, a
Rayleigh fading channel is used in addition to the path
loss model to account for multi-path fading.
Fig. 11 shows the number of route discovery DSR

packets normalized by the number of data packets.
When the DR path loss model is used, the link quality of
a pair of mobile nodes will change slowly, because the
path loss is highly correlated with the distance. Thus,
a small change of location probably does not cause a
route failure. However, i.i.d shadowing path loss model
does not guarantee the consistent link quality as nodes
move even slowly, because the path loss for different lo-
cation is determined independently. As a result, the i.i.d
shadowing path loss model overestimates route failures
and re-discovery processes as the standard deviation
increases, while the DR model shows comparatively
stable behavior.
A less stable routing layer will reduce the throughput

and increase latency and jitter, because the time and
channel capacity are wasted by the routing overhead.
Our investigation of the impact on the throughput
showed that using i.i.d shadowing channel model will
underestimate the throughput by up to 42%. This result
highlights the significance of using a correct channel
model in a simulation-based research.

4.5 Impact on Throughput

The next study shows the impact of the realistic path-
loss model on throughput when we combine the model
with a temporally fading model (Rayleigh fading). The
symbol loss rate in a Rayleigh fading channel is:

1− e−ρ2

, (4)

where ρ = Rthreshold

RRMS
[15]. The symbol loss rate is

an indicator of a link quality used in Rayleigh fading
model that multiplies the duration the signal spends
below the threshold and the rate of change of the
fading. The symbol loss rate (which affects the packet
loss rate) is determined by path loss, mobility speed,
carrier frequency and Rthreshold. Figure 13 depicts the
delivery ratio of packet size of 30, 512, and 1024 bytes.
The x-axis represents the attenuated signal strength due

to path loss, RRMS =
√
10(A(d)−30)/10, and the thresh-

old Rthreshold =
√
10(−90dBm−30)/10. Since the signal

strength under the Rayleigh fading channel fluctuates
over time, the packet delivery ratio (PDR) increases
gradually around the threshold as the attenuated signal
strength due to path loss increases. Note that small
differences in path-loss can result in large differences
in PDR. For example, for packet size 1024, when the
attenuated signal is incorrectly estimated by 10dBm (e.g.,
let’s assume -50dBm, -40dBm,or -30dBm are used instead
of -60dBm, -50dBm,or -40dBm),the PDR changes from 0,
0.4, or 0.8 to 0.4, 0.8, or 1.0, respectively.

The different PDRs cause significant difference in
throughput especially over a multi-hop connection. We
consider a two-hop connection A-B-C. We keep the PDR
of A-B at a relatively high (0.83) and investigate the
throughput as the PDR of B-C varies. Figure 14 depicts
the impact of the various PDR on the throughput when
various fading levels (fm) of the Rayleigh fading channel
are used for each hop. If the aformentioned PDRs that
are estimated with incorrect attenuation estimations (i.e.,
0.4, 0.8, and 1.0 instead of 0, 0.4, and 0.8) are used for
the second hop, the throughput are 25kbps, 150kbps, and
350kbps instead of 0kbps, 25kbps and 150kbps when the
second hop’s fm = 12Hz. The throughput difference are
25kbps, 125kbps, and 200kbps. This result supports the
importance of estimating path-loss accurately in a multi-
hop connection.
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4.6 Impact on Model Performance and Accuracy

Since a larger ThCover allows more neighboring links for
estimation, the accuracy of the model increases and the
RMS decreases as ThCover increases (Figure 15). How-
ever, if R/M is small, the R-tree is scarcely populated
which results in a limited number of neighboring links
even as ThCover increases. In Figure 15, when R/M=0.1,
ThCover = 20 shows the best RMS. This means an
optimal ThCover can be determined by the R/M.

A high ThCover increases computational delay because
a larger number of candidate neighboring links are
considered. Figure 16 shows the computational delay
for estimating the 984 links of CU-WART with varying
ThCover. As ThCover increases, the delay also increases.
Thus, there is a tradeoff between the accuracy and
latency in determining ThCover. From Figure 16, we can
estimate how densely the R-tree can be populated and
what is the appropriate ThCover. If R/M = 10% is used,
20m can be selected for ThCover. The average distance
between links in the R-tree is about 10 meter if R/M =
10% because the total length covered by the CU-WART
is about 1 km.

Figure 17 depicts the impact of ThSave on the auto-

correlation between two points that are 1 and 5 meter
apart when the decorrelation distance is set to 10. If a
small ThSave is used, more reference links are used to
estimate a new link, which results in autocorrelation that
is closer to the empirical values. If a large ThSave is used,
less reference links are used and the autocorrelation does
not match empirical values. Since the model stores all
estimated values that do not have any reference links, a
ThSave value larger than the decorrelation distance does
not benefit accuracy.
The average number of the reference links changes as

more estimated values are stored in the R-tree. In Figure
18, the average number of reference links increases as
the number of simulation runs increases. With a small
ThSave, estimated results are stored more frequently than
when a large ThSave is used and the number of available
reference links increases quickly.

4.7 Impact on Mobile Links

To investigate the impact of the model on the throughput
of a mobile link, we combine the path loss models
being investigated with the Rayleigh model to serve
as the multi-path component. In this experiment, we
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use the the CU Wide Area Radio Testbed (CU-WART)
map (Figure 3a) and initially place a sender at (303,
98) and a receiver at (250,74) in a street. We move the
receiver along the street at a speed of 0.1 m/s so that
there is a line of sight (LOS) between the sender and
the receiver, which results in no significant decrease in
path loss over distance. The data rate is 11Mbps and the
packet size is 1000 bytes. We use CBR traffic with an
interval of 0.2 msec and ftp traffic so that the channel
is saturated. Transmission power is 20dBm and DSR is
used for routing.
Figures 19 to 24 show the throughput of CBR and

TCP over time when different path loss models are used.
When Rayleigh fading with two ray ground model is
used, the throughput decreases as the distance between
the receiver and the sender increases because the path
loss increases. As the path loss increases, periods of no
throughput are observed more frequently because the
average fade duration (AFD) increases due to fading.
Similar throughput decrease is observed in the log nor-
mal shadowing model because the average path loss
also increases with distance. Because the path loss in the
two-ray ground model is a strict function of distance, as
the distance increases it experiences increasingly worse

channels. While the same is true for log-normal shadow-
ing on average, it benefits sometimes from good quality
channels due to the stochastic nature of the log-normal
component.
When Rayleigh with DR is used, the throughput is

stable because the path loss does not change much when
the receiver moves along a road or corridor due to LOS.
That means the two ray ground model and the log nor-
mal shadowing model do not consider the geographical
characteristic and can cause unrealistic throughput loss
due to Rayleigh fading even though there are good links
due to LOS. The run time overhead of the proposed
model is between 2.5 to 3 folds of the two-ray ground
model, which is acceptable compared to 100x slowdowns
and the detailed GIS models required with ray trac-
ing [27].

5 CONCLUSION

Accurate and efficient channel models are critical for
improving the fidelity of wireless network simulation.
In this paper, we considered the problem of path loss
channel models. Path loss is affected by the RF shadows
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Fig. 19: CBR throughput with DR-Rayleigh model
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in the environment. Models used in most popular packet
simulators are inaccurate because they do not consider
the impact of RF shadows on a link such as corridors or
building shadows. On the other hand, accurate models
can be built using either detailed site-surveys (requiring
a prohibitive number of measurement experiments) or
ray tracing (which is computationally very difficult and
requires precise GIS). Thus, there is a need for accurate
and efficient path loss models.
In response to this need, we proposed a new path

loss for a geographically accurate, efficient, and flexible
path loss model. The key idea of the proposed model
is to estimate a plausible value for new channels when
both sender and receiver move. It can also be used to
substantially reduce the cost of ray tracing and still
obtain plausible models of the environment. Both of
these applications represent a considerable benefit over
the state of the art in this area. DR provides for the first
time a spatially-coherent, low-overhead, and site-faithful
path loss simulation model.
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