
1

Efficiently Securing Systems from Code Reuse
Attacks

Mehmet Kayaalp∗, Student Member, IEEE, Meltem Ozsoy∗, Student Member, IEEE,
Nael Abu Ghazaleh∗, Member, IEEE, Dmitry Ponomarev∗, Member, IEEE

Abstract—Code reuse attacks (CRAs) are recent security exploits that allow attackers to execute arbitrary code on a compromised
machine. CRAs, exemplified by return-oriented and jump-oriented programming approaches, reuse fragments of the library code,
thus avoiding the need for explicit injection of attack code on the stack. Since the executed code is reused existing code, CRAs
bypass current hardware and software security measures that prevent execution from data or stack regions of memory. While software-
based full control flow integrity (CFI) checking can protect against CRAs, it includes significant overhead, involves non-trivial effort
of constructing a control flow graph, relies on proprietary tools and has potential vulnerabilities due to the presence of unintended
branch instructions in architectures such as x86—those branches are not checked by the software CFI. We propose branch regulation
(BR), a lightweight hardware-supported protection mechanism against the CRAs that addresses all limitations of software CFI. BR
enforces simple control flow rules in hardware at the function granularity to disallow arbitrary control flow transfers from one function
into the middle of another function. This prevents common classes of CRAs without the complexity and run-time overhead of full CFI
enforcement. BR incurs a slowdown of about 2% and increases the code footprint by less than 1% on the average for the SPEC 2006
benchmarks.

Index Terms—Security, Microarchitecture, Code Reuse Attacks.

F

1 INTRODUCTION

SOFTWARE security exploits have been steadily in-
creasing in frequency and impact. In the past, one

of the most prevalent attack vectors was code injection:
a buffer overflow vulnerability is used to inject attack
code on the stack, while simultaneously overwriting the
function return address or a function pointer to point
to the entry of the injected code [1], [2]. A number of
approaches to protect against such attacks were devised,
including software and hardware approaches [3], [4], [5],
[6], [7]. These efforts have culminated in the recent de-
ployment of hardware memory protection mechanisms
that do not allow a memory page to be both writable
and executable at the same time (the so called W ⊕ X
protection). As a result, classical code injection attacks
no longer represent feasible threats in modern systems.

In response to the mechanisms to prevent code in-
jection attacks, new attacks have been developed that
rely on reusing existing code, without the need for code
injection. An early example of code reuse attacks (CRA)
is the return-into-libc attack [8] which allows a libc
function to be called. While powerful, return-into-libc
attacks do not allow the attacker to perform arbitrary
computation. A recently proposed CRA, called Return-
oriented programming (ROP) [9], allows attackers to ex-
ecute arbitrary code on victim machines by overflowing
the stack with a sequence of return addresses that point
to specific code snippets (called gadgets) in the program
under attack.

∗Computer Science Department, Binghamton University, Binghamton, NY
13902–6000. Email: {mkayaalp,mozsoy,nael,dima}@cs.binghamton.edu

Since the introduction of ROP, several defense mecha-
nisms have been proposed [10], [11], [12]. In response to
these defenses, a new class of attacks that does not rely
on return instructions has been proposed [13], [14], [15].
In these jump-oriented programming (JOP) attacks, the
attacker chains the gadgets by using a sequence of indi-
rect jump instructions, rather than return instructions,
thus bypassing the defense mechanisms designed for
ROP. These attacks represent critical exploit strategies
that can compromise any machine running software
with a buffer overflow vulnerability. Both ROP and
JOP attacks can be mitigated by enforcing full Control
Flow Integrity (CFI) [16]. However, the CFI approach
is a heavy-weight solution that has several important
drawbacks, as we discuss in more detail in Section 2.

In this paper, we propose Branch Regulation (BR)
- a new low-overhead solution for defending against
the ROP and JOP attacks. BR checks the legitimacy of
program control flow in a light-weight fashion, avoiding
both the analysis complexity and the run time overhead
of full CFI. Specifically, instead of constructing and
checking the complete Control Flow Graph (CFG), we
check only if a branch instruction targets an address
within the same function, or targets the starting address
of another function. Thus, arbitrary branches that cross
function boundaries are prevented, severely limiting JOP
and ROP attacks.

We demonstrate that BR makes the great majority of
functions immune to code reuse attacks because they
lack a critical dispatcher gadget (discussed in Section
6.1). We also demonstrate that the remaining functions
by themselves are not sufficient for carrying out a suc-

2

cessful attack; even though they contain some functional
gadgets, they lack one or more of the ingredients needed
for the attack. In addition to performance advantages,
the hardware-assisted checks used in BR supports the
checking of unintended branches–branches that occur in
the middle of an instruction in variable-length ISA such
as the x86. Software approaches such as the CFI imple-
mentation by Abadi et al [16] cannot perform checks for
such unintended branches.

BR has the following key properties.
• It eliminates all vulnerable code in the examined

libraries if the attacker relies on the execution of
a system call instruction. Even if the attacker does
not rely on a system call, BR reduces the number
of available gadgets to 1% of what is available in
the entire code base, with significant restrictions on
how these remaining gadgets can be used.

• It comes at a performance cost of slightly over 2%
and increases the code size by less than 1% for SPEC
2006 benchmarks.

• It does not require complex binary rewriting or con-
struction of a full control flow graph of a program.
Instead, BR requires only simple binary annotations
that can be readily derived from the symbol tables
in the ELF binaries.

• With simple hardware support, BR also per-
forms checks for unintended branches (in variable
instruction-length architectures, like x86) thus clos-
ing the potential security vulnerability of purely
software-based solutions.

Summary of New Material

The idea of Branch Regulation was originally presented
in our paper that appeared in the 2012 International
Symposium on Computer Architecture (ISCA) [17]. The
current submission extends the original ISCA paper in
the following ways:
• In order to demonstrate the effectiveness of BR on a

larger code base, we extended our security analysis
to a much higher number of libraries. While the
analysis presented in ISCA 2012 version of the paper
are limited to only 5 libraries, in this submission
we present the results for 31 additional libraries,
as shown in Table 2. These results show that no
practical CRA attack is possible using the code-
base of these 31 libraries with BR mechanism in
place. Analysis across larger number of libraries are
very important for demonstrating BR effectiveness,
because in theory there could exist libraries that
contain large functions with all necessary attack
ingredients inside. This paper shows that this is not
the case for all libraries considered.

• We provide examples of various dispatcher gadget
types and illustrate the gadget discovery algorithm
using these types of gadgets as examples (Section
6.1). Specifically, Table 1 depicts dispatcher gadget
examples and at the end of Section 6.1.2 we ex-
plained gadget discovery algorithm using the ex-

amples from Table 1.
• In additon to the performance evaluation of BR, we

now present the statistics about the hit rates to the
Function Bounds Stack (FBS) and correlate it with
the performance results. In Section 8, Figure 11-b
depicts FBS misses as a function of FBS size.

2 BACKGROUND AND RELATED WORK

In this section we provide background related to the
evolution of CRAs. We also review related work.

2.1 Buffer Overflow and Code Injection

Stack smashing is a buffer overflow attack on a stack-
allocated buffer [1], allowing the attacker to overwrite
the return address of the function with the address of the
malicious injected code. Several approaches were devel-
oped to defeat stack smashing attacks [3], [4], [5], [18],
[19], [20]. Despite these approaches, buffer overflow vul-
nerabilities remain prevalent. Hardware solutions have
been proposed to protect against stack smashing [6], [21],
[22], [23], [24]. Data execution prevention (DEP) prevents
code from executing from pages allocated for stack or
data [25], [26]. While software implementations of DEP
are possible, W ⊕ X page protection schemes are now
commonly supported by CPUs.

2.2 Return Oriented Programming

Protection mechanisms such as DEP are now available
in all major operating systems and make it impossible to
perform code injection attacks. Adversaries have reacted
by devising new attacks that bypass DEP by composing
the attack code out of the existing pieces of library code.

For example, return-oriented programming (ROP) [9]
attacks are mounted as follows. The attacker identifies
gadgets, which are sequences of instructions in the victim
program (including any linked in libraries) that end with
a return. Sufficient gadgets can be identified to allow the
composition of arbitrary attack code. The attacker uses
a buffer overflow vulnerability to inject a sequence of
return addresses corresponding to a sequence of gadgets.
When the function returns, it returns to the location
of the first gadget. As that gadget terminates with a
return, the return address is that of the next gadget,
and so on. ROP executes instructions only from the
code segment and therefore is not prevented by DEP. A
Turing-complete set of gadgets has been demonstrated
on a number of architectures and operating systems [27],
[28], [29], [30], [31]. Compilers have been built to ease the
development of ROP attacks, making them accessible to
unsophisticated attackers [32], [33], [34], [35].

Because of the seriousness of ROP attacks, a number of
mitigation techniques have already been proposed. Davi
et al. proposed the use of a reference monitor to detect
the repeated execution of a small number of instruction
sequences followed by a return [10]. Chen et al. monitor
return properties to detect possible ROP attacks [11].
Li et al propose rewriting binaries to eliminate the
use of returns, completely preventing return-oriented

3

attacks [12]. Bania proposed a number of compiler and
binary rewriting approaches to protect from ROP [36];
the proposed ideas are preliminary, and most of the
proposed techniques rely on validating the call-return
behavior.

An interesting and effective recent approach was de-
veloped by Onarlioglu et al. who rewrite away all un-
intended control flow paths [37]. They further protect
intended branches through a combination of pointer
encryption and stack cookies. Stack cookies are function-
specific markers pushed on the frame. Additional code
is inserted after every branch to check this cookie. Thus,
a branch to another function is possible, but subsequent
indirect branches would be detected (allowing return-to-
libc attacks, but preventing basic ROP and JOP attacks).
However, if gadgets are available in a function to replace
the cookie before leaving, this protection can be defeated.
The approach cannot protect legacy binaries; it also
increases the code footprint by over 25%.

In order to preserve the integrity of return addresses
written to the data stack by return instructions, several
previous efforts targeted separation of return addresses
from the data stack and enforced address matching
for call-return pairs [21], [6], [22], [23], [24]. When de-
ployed, these techniques are able to thwart ROP attacks,
but are not sufficient to protect against other types
of CRAs, particularly the ones described in the next
subsection.

2.3 Jump-Oriented Programming

Recently, a variation of the ROP attack was proposed
that instead uses branch instructions (jumps) to transfer
control between the gadgets. This attacking technique
is called jump-oriented programming (JOP) [13], [14], [15].
JOP requires a critical dispatcher gadget that orchestrates
the sequence in which other gadgets are called. The
authors demonstrated that dispatcher gadget is fairly
common in standard libraries, allowing Turing-complete
functionality to be composed using this approach. Since
no known defenses against ROP prevent JOP attacks,
there is a critical need for techniques that prevent JOP
attacks with low overhead.

2.4 Control Flow Integrity (CFI)

Our work is most related to recent work on using
a reference monitor to track and enforce control flow
integrity [16]. In particular, Abadi et al. observed that
most rootkits and other malware change the control
flow graph (CFG) of the original program [16]. Thus,
CFI attempts to prevent these attacks by ensuring that
any control flow change is consistent with the origi-
nal program CFG; this is the invariant it attempts to
preserve. If a branch that is not present in the CFG is
encountered, the system stops the process and signals a
CFI violation thwarting the attack. Enforcing full CFI at
the branch level should completely protect from ROP
and JOP attacks; this is a promising approach to ad-
dress the problem. With aggressive optimization, the CFI

performance overhead is non-negligible, but moderate:
an average of 16% performance penalty for SPEC 2000
benchmarks was reported in [16]. Our own behavioral
model of CFI shows 22% performance loss for a larger
set of benchmarks from SPEC 2006 suite.

Unfortunately, CFI requires expensive static analysis,
profiling, or deep binary analysis to build the CFG. No
practical tool that analyzes a binary to form a complete
CFG (including ”Vulcan”, reported to be used in [16])
is publicly available to the best of our knowledge. Fur-
thermore, the existing software implementation of CFI
also suffers a weakness on x86 and similar ISAs that
feature variable instruction lengths: CFI takes a binary,
identifies jumps and generates a new binary with checks
inserted for jump instructions. However, once this new
binary is loaded for execution, it is nothing but a byte
stream from the hardware’s point of view. Unintended
control flow instructions can occur in the middle of
multi-byte ISA instructions. It would still require the
attacker to somehow divert the control flow to an un-
intended decoding point, but once it is accomplished,
CFI offers no protection for these unintended branches.
These unintended instructions are not protected because
no inline code can be inserted to check them.

2.5 Other Defense Approaches

A number of other solutions have been proposed to pre-
vent or limit attacks on software vulnerabilities. Memory
bounds checking (MBC) techniques attempt to elimi-
nate buffer overflow vulnerabilities by checking every
memory access against the base and bound of the as-
sociated data structure [38], [39], [40]. MBC is a promis-
ing solution that addresses the root problem. However,
the hardware costs or performance overhead of MBC
schemes is significant. In addition, MBC affords limited
protection for legacy binaries and externally linked or
loaded components.

Data flow integrity [41] uses static, compile-time anal-
ysis to infer the data flow graph of a program and
instrument the program to enforce conformance with
this graph. Using similar analysis, WIT [42] associates in-
structions with their allowed target objects and enforces
integrity of each write operation.

Dynamic Information Flow Tracking (DIFT) taints the
information coming from insecure sources, and dynam-
ically tracks and propagates the taint through processor
registers and memory locations. The drawback is that
DIFT is a heavy-weight approach that entails a signif-
icant redesign of the processor datapath and memory
system if implemented in hardware [43], [44], [45], or in-
curs a substantial performance overhead if implemented
in software [46], [47]. In addition, DIFT solutions may
suffer from false positives, where the tainted state of the
system rapidly expands in a domino fashion.

A different approach to protection against code in-
jection attacks uses randomization. Address space lay-
out randomization (ASLR) [48] positions the program’s
memory at a random offset in memory. ASLR (and

4

other optimized heap allocation models [49], [50] make
it difficult for an attacker to guess the correct address of
the malicious code. However, successful attacks can be
mounted if the addresses are leaked (e.g., format string
attacks allow attackers to peek at the stack [51]), or by
creating many copies of the malicious code to increase
the chance of reaching it (heap/stack spraying) [52].

Related to our work, Champagne and Lee [53] in-
troduce the idea of valid function entries as part of
the Bastion framework for software security within a
virtualized environment. The function entries are setup
at startup time and used to ensure legal control flow
at runtime. Although the approach is similar, we believe
the context and application are quite different. Moreover,
it is interesting that a similar approach is useful for two
different security applications.

3 THREAT MODEL AND ASSUMPTIONS

We assume that the attacker has full control over data
and stack memory regions. This assumption is consistent
with published CRAs that make use of stack/heap buffer
overflows and/or string formatting bugs to overwrite a
return address, a function pointer or a non-local jump
buffer (that is placed in memory by a call to setjmp[54]).
In addition, we assume that the attacker is able to modify
the program counter as well as other registers upon
the initiation of the attack, as it can be achieved by
overwriting a non-local jump buffer. We also assume
execution prevention for writable memory that forces the
attacker to reuse existing code.

We assume that the vulnerability exploited to initiate
the attack does not lead to a privilege escalation. This
assumption is necessary because any defense mechanism
could be thwarted by an adversary with sufficient priv-
ileges. Rather, the attacker’s objective is to use the CRA
to achieve privilege escalation.

We do not consider protection for the setjmp and
longjmp C calls. These calls can be more naturally
supported in the operating system. Specifically, BR will
generate an exception for these instructions which can
be checked and allowed by the OS. Similarly, we did not
consider the possibility of functions with multiple entry
points (a small number of such functions occur in the
standard C library). It is possible with a small amount
of effort to support such functions either by chaining
annotations or handling the lookup for them in the OS
after BR raises the exception.

Instead of focusing on preventing attacks altogether,
our goal is to render any arbitrary code reuse attack that
the attacker manages to initiate useless. With a severely
reduced number of available gadgets, and reduced abil-
ity to exploit these gadgets, arbitrary computation can
be avoided. For example, unless the attacker can find
gadgets to execute system calls, the damage from any
attack is limited to the compromised process.

4 BRANCH REGULATION (BR)
In this paper, we propose and investigate Branch Regula-
tion, a technique that defends against CRAs by enforcing
simple control flow invariants present in function-based
programming languages. BR requires little analysis of
the program code, and can be derived directly from
the binary, allowing it to protect legacy code. Its sim-
plicity allows for practical implementations with small
overheads in storage and execution time. Moreover, by
providing simple hardware support, our scheme pro-
tects against attacks that exploit unintended instructions
(those starting in the middle of a legal instructions in
variable-length ISAs such as x86).

Figure 1-a shows a simple JOP attack scenario that
uses one dispatcher gadget, two additional gadgets and
a system call instruction (int 80h in x86) that are
spread across two functions. Suppose that the attacker
has taken full control over writable memory, initialized
some of the registers, diverted the execution to the start
of the dispatcher gadget and the goal of the attack
is to execute a system call. For this example, we can
assume that esi points to the dispatcher gadget, edx
points to the system call instruction and ecx points to
a memory location where addresses of gadgets 1 and 2
are stored contiguously. Furthermore, the parameters for
the system call are assumed to be written in appropriate
memory locations by the attacker.

As the dispatcher gadget is executed, the address of
the next gadget to execute is fetched into eax from the
array indexed by ecx and the control flow is diverted to
that address by the indirect jump instruction. According
to the attacker-initiated values, control flow follows the
numbered arrows on the left of the figure. After the first
hop, gadget 1 sets ebx as the system call parameter from
memory under the attacker’s control. Similarly, after the
third hop, gadget 2 sets eax as the system call ID and
jumps to the system call instruction.

Figure 1-b shows the impact of BR on this attack.
Under BR, the third hop causes an exception since the
destination of the indirect jump initiated in function f1
is in the middle of another function (f2), which is an
illegitimate control flow transfer in our scheme.

4.1 Enforcing BR Rules

BR relies on the observation that legal control flow
changes (for simplicity called branches henceforth) target
an address satisfying one of the following cases: (1) an
address within the same function, as would occur with
loops and conditional statements; (2) the entry point to a
new function, as would occur with a function call; or (3)
a return address generated by a legitimate prior call as
in number (2) above. Thus, BR works by enforcing the
following set of rules on branches (see Figure 2):
RET: A return instruction should point to the address
that is saved by a corresponding call instruction.
Indirect JMP: A branch instruction that uses a computed
target should point to either an entry point of a function,
or a location inside the same function.

5

a) JOP Attack without BR b) JOP Attack with BR

.global f1

 .type f1, @function

 …

 …

 …

.global f2

 .type f2, @function

 …

 …

 …

add ecx,04h

mov eax,[ecx]

jmp eax

mov eax,[ecx+25h]

jmp edx

add ebx,[ecx+ffh]

jmp esi

int 80h

2

3

4

1

gadget 1

gadget 2

dispatcher
gadget

system call

.global f1

 .type f1, @function

 <br-annotation>

 …

 …

 …

.global f2

 .type f2, @function

 <br-annotation>

 …

 …

 …

add ecx,04h

mov eax,[ecx]

jmp eax

mov eax,[ecx+25h]

jmp edx

add ebx,[ecx+ffh]

jmp esi

int 80h

Fig. 1. Impact of BR on CRAs

CALL: A call instruction should divert execution to the
entry point of a function.

To support the first rule, we propose maintaining
a call stack for the hardware context being executed,
that can only be modified by call and return instruc-
tions. This stack, called the Secure Call Stack (SCS),
can be used to match the computed return addresses
against the stored ones. This aspect of BR is similar
to some prior approaches to protect against ROP at-
tacks [23], [6], [22], [53], [21], [24]. In order to check for
the last two rules, we need to determine where a function
begins and ends. To support this capability, we augment
each stack entry with function bounds. Therefore, a
single structure can support all three rules. The entry
at the top of the stack is examined on every BR check.

Check if Function
Entry

Indirect
JMP

Yes

Check if Target
inside

Function Bounds

Outside

No

Inside

CALL

Check if Function
Entry

Yes

Store Return
Address

No

RET

Compare Computed
Target with Restored

Address

Restore
Return Address

Not EqualEqual

- BR Check Passed
- BR Check Failed

Fig. 2. Branch Regulation Checking Flow

4.2 Unintended Branches

We pursue hardware support for BR, for performance
and binary compatibility reasons, but more importantly
for security reasons. As we show in this section, an
attacker can find many unintended instructions in the
binary image of an ISA with variable size instructions

such as x86. Specifically, these are instructions that start
at a byte in the middle of a multi-byte instructions. We
show that these instructions account for a large number
of the gadgets exploitable by attackers. Software ap-
proaches do not typically protect from exploits that use
these instructions; for example, an unintended branch
will not appear in the CFG and will not be checked by
the software CFI implementation developed by Abadi et
al [16]. Attackers may bypass the software enforcement
completely by using gadgets consisting of unintended
instructions. Hardware support that checks every branch
closes this security vulnerability.

Disassembled code snippet from libc

Gadget with unintended jmp

E8 33 FE FF FF 8D BB 18 FF FF FF 8D 83 18 FF FF FF 29 C7

dec [ebp-0xE745] dec [ebp-0xE77D] jmp [ecx]

sub edi, eaxcall <_init> lea edi, [ebx-0xE8] lea eax, [ebx-0xE8]

Fig. 3. Example Gadget with Unintended Branch

To illustrate the concept of unintended branches, a
portion of the disassembly of the __libc_csu_init
function is shown on the top part of Figure 3. If the
decoding starts after skipping the first four bytes, a
different instruction sequence can be decoded as shown
at the bottom of Figure 3, containing an indirect jump
that the programmer did not intend to execute. One
particular property of indirect jump instructions that
makes them easier to discover in an instruction sequence
is that they start with FF —a common byte used in im-
mediate values (e.g. bit-masks and sign bits of negative
values). In the second lea instruction of the intended
code example, the negative immediate value -0xE8 is
encoded as FF FF FF 18 in two’s complement with
little endian byte order. The last one of these FF bytes
is adjacent to the opcode of the sub instruction which
is 29. These two bytes can be decoded as an indirect
jump which might be used by an attacker to jump to the
memory location that ecx points to.

As shown in Figure 4, the unintended branch in-
structions (and the gadgets constructed using them) far
outnumber the intended branches. For example, 80% of
all gadgets that can be constructed in libc use unintended
instructions. The percentages are even higher for other
libraries that we considered.

5 BR IMPLEMENTATION DETAILS

In this section, we describe the details of the BR imple-
mentation. We first discuss how function annotations are
implemented, and then describe the hardware support
for BR.

6

lib
c

lib
m

lib
cr

yp
to

lib
gc

ry
pt

lib
ss

l

0%

20%

40%

60%

80%

100%

P
er

ce
nt

ag
e

of
 B

ra
nc

he
s

lib
c

lib
m

lib
cr

yp
to

lib
gc

ry
pt

lib
ss

l

0%

20%

40%

60%

80%

100%

P
er

ce
nt

ag
e

of
 G

ad
ge

ts

a) Indirect Branches b) Gadgets

intended unintended intended unintended

Fig. 4. Number of Indirect Branches in the Binary and
Gadgets Generated with Indirect Branches

5.1 Function Annotations

Function limits are easily found in symbol tables of
executable formats such as ELF. We propose annotating
these points using a simple binary rewriting scheme
to inform the architecture about the function bound
information. We then check control altering instructions
to verify that they target legitimate destinations per the
BR rules.

Function Base < Target < Function Bound

(Function Bound < Target Address)

Target = <br-annotation>

JMP inside of the function

JMP to a new function

JMP to middle of another function

.global f1

 .type f1, @function

 <br-annotation>

 …

mov eax,ecx

 …

jmp edx

 …

.global f2

 .type f2, @function

 <br-annotation>

 …

add ecx,04h

 …

1

2

3

1

2

3

(Function Bound < Target Address)

Target Address ≠ <br-annotation>

Fig. 5. Branch Regulation Checks

BR annotation starts with a prefetch instruction to
a special address to ensure that the annotated code
retains binary compatibility; this is the same approach
for implementing annotations used by CFI [16]. This
instruction is followed by the size of the function. It
is unlikely to encounter this sequence of bytes inside
regular program code. Even though it is possible for
an attacker to write this annotation sequence inside the
program stack, it is not possible to use this sequence as
an annotation if the system has W ⊕X protection for the
data segment.

Figure 5 explains the use of BR annotations. Each
function starts with the annotation. In the first two cases
shown, the BR checks pass and the access is allowed.
In the third case, the violation is detected and a BR
exception is raised. The second branch represents a legal
use of indirect jumps since the branch target is an
annotation even though the destination address is out
of function bounds.

5.2 Architectural Support for BR

At runtime, BR checks are performed in hardware at the
execution stage of the pipeline after the target address
of an indirect branch is computed. Figure 6 shows the
architectural layout for BR. To maintain the function
bounds metadata, BR relies on a Secure Call Stack (SCS).
Similar to architected page table mechanism, OS allo-
cates the memory pages for the SCS, and handles the
growth of the stack by providing new pages. These pages
are marked as write protected, to make sure a buffer
overflow can not modify them; however, the hardware
can generate writes to the Secure Call Stack when it
encounters call instructions. The metadata of SCS (base,
size, current index) is part of a process context and is
therefore saved and restored upon a context switch, as
in [24].

The additional hardware includes a new structure,
which we call the Function Bounds Stack (FBS), to serve
as a cache for the legal return addresses and function
bounds that are stored in the SCS. Note that the only
purpose of the FBS is to improve performance. Indeed,
BR architecture can be implemented without hardware
FBS by looking up all bounds information in the SCS —
we analyze the performance impact of FBS in Section 8.
New entries that are pushed onto the FBS cause the
eviction of the oldest entries and a miss to the FBS
occurs only when all FBS entries are popped off the
stack by the return instructions; in this case, we bring
the next function bounds from the top of the SCS stored
in memory.

In addition, BR architecture requires the checking logic
that is used for comparison of target addresses with the
base and bound of the current function. While the base
and bound information of the current function is stored
at the top of FBS, return addresses and function bounds
for previous legitimate call instructions are stored in the
rest of the stack. An FBS entry for a 32 bit architecture
is composed of two 32-bit values, base and bound, and
a 32-bit return address.

Fetch

Function
Bounds
Stack

Current
Func.Bounds

Exception
Logic

Decode Execute Commit

I-Cache

BR
Check

D-Cache

Fig. 6. Processor Pipeline with Branch Regulation Hard-
ware

By the time a call instruction gets to the execution
stage, the next instruction has already been fetched. The
first 8 bytes of the next instruction are compared against
the BR annotation in order to decide if this is a function
call. If this check succeeds, then the current function’s
base and bound values are pushed onto the FBS along
with the return address for this call instruction. The

7

base and bound values of the newly called function are
updated with the information from the BR annotation.
Since call instructions update the same SCS pointer,
dependency and the order of execution is maintained
in an out-of-order pipeline.

When an indirect jump instruction is executed, its
target address is first compared against the current func-
tion bounds. The jump is allowed to take place if the
target address is within the function boundary, as the
first hop shown in Figure 5. A failed check signifies a
jump outside of the function boundary. In this case, an
additional check is required to determine if the jump is
the same as the call instruction check described above.
However, there is no need to store the return address for
a jump instruction.

For return instructions, when the return address is
computed, it is compared against the value at the top of
the FBS; if the check passes, the bounds for the current
function are popped. If the FBS is empty, then a memory
request is generated to access the SCS (to recover older
bounds that were pushed to the SCS when the FBS was
full). The entry that is retrieved from the memory has
the base and bound information of the caller function,
along with the return address. The equality of the two
return addresses are then checked by the BR logic.

6 SECURITY ANALYSIS OF BR
BR uses the Secure Call Stack (SCS) to track function
bounds and call points allowing us to directly match
returns to calls: this technique defeats return based at-
tacks such as return-to-libc and ROP. Thus, our concern
is Jump-oriented Programming (JOP) attacks [13], [14],
[15]. BR limits the attacker from selecting arbitrary gad-
gets across the entire code base to construct exploit code.
Instead, on a system with BR, the attacker is confined to
stay within a function. As a result, the security analysis
can be applied on a function by function basis. To carry
out a JOP attack, the attacker must find all the necessary
ingredients to launch and construct the attack within
the same function; these ingredients include an exploit to
initiate the attack, a Turing-complete set of gadgets to
construct the attack, and a syscall to attack the system.
There is a legitimate concern that a large function may
still contain all these ingredients, allowing the attacker
to mount a successful CRA.

Since it is very difficult to prove that a set of gadgets
is not Turing-complete, we approach the problem by
identifying the critical ingredients for a JOP attack and
showing that they do not exist within a single function
in the examined code bases. We focus our analysis first
on identifying the critical dispatcher gadget needed for
a JOP attack. We derive the conditions necessary for
a dispatcher gadget. All functions that do not have
these conditions are guaranteed to be safe due to the
absence of a dispatcher; we call the remaining functions
Dispatcher-Gadget Potential (DGP) functions. The presence
of the conditions does not necessarily mean that there
is a dispatcher. Thus, we developed a tool to identify

dispatcher gadgets; the functions that contain dispatch-
ers are called Dispatcher-Gadget Confirmed (DGC) func-
tions. Note that additional DGP functions may contain a
dispatcher since the detection algorithm may miss some
elaborate dispatcher gadgets. We focus further analysis
on DGC functions only.

We analyze DGC functions for the presence of other
ingredients. In general, BR provides security because
it substantially limits the scope of the attack, making
it extremely difficult (impossible for the libraries that
we studied) to find all the ingredients necessary for an
attack. For example, we analyze DGC functions for the
presence of system call instructions without which the
damage from the attack is limited to the compromised
program. We show that none of the DGC functions in
the libraries we analyzed has a system call. Another
important ingredient is the presence of sufficient gadgets
to build interesting attacks. We analyze this property
and show that most DGC functions include only a small
number of gadgets. Moreover, many of the gadgets in
these functions are not usable for reasons such as the
presence of side effects in the gadget that interfere with
the dispatcher or interrupt the control flow, or because
unintended instructions, which account for the majority
of gadgets, are inherently more difficult to use. Another
critical ingredient is the presence of a vulnerability to
initiate the attack in the same function (we did not study
the prevalence of vulnerabilities).

6.1 Dispatcher Gadgets

In ROP and JOP attacks, the attack proceeds as a
sequence of gadgets separated by returns in ROP or
indirect branches in JOP. We may view the stack pointer
as a Gadget-Level Program Counter (GLPC) which is
incremented to point to the address of the next gadget.
In a JOP attack, an indirect jump is used to divert
the control flow according to the GLPC. However, an
indirect jump instruction cannot advance the GLPC to
the next gadget address. Thus, a dispatcher gadget must
have the necessary instructions to both increment the
GLPC and to execute an indirect branch to the new
gadget address. Without a dispatcher gadget, a JOP
attack cannot be mounted [13], [14], [15].

Formally, a dispatcher gadget includes an iterator
that advances the GLPC to point to the address of
the next gadget, then either a loader that loads the
address into a register and a register indirect branch
which jumps to the address held in that register; or a
memory indirect branch which jumps to the address
held in the memory location pointed to the GLPC.
Note that, the necessary operations defined here can be
carried out in many possible ways. For example, a pop
instruction acts both as an iterator and a loader since it
modifies the stack pointer and loads from the stack. A
dispatcher gadget may also include extra data movement
instructions, called conveyors, that set the value of a
register using another register or a memory location.
Extra dereferencing, loading or copying operations are

8

not of importance as long as the GLPC is altered in a
predictable way so that the attacker knows where and
how to place the gadget addresses in the memory. Table 1
shows several dispatcher gadget examples. The types
of individual instructions and respective GLPC’s of the
dispatcher gadgets are also listed. Note that there may
be additional intervening instructions that operate on
different registers. We use two different approaches for
evaluating whether a function has a dispatcher gadget,
which are explained in the following two subsections.

Dispatcher Gadget Instruction Type GLPC

(a)
pop r1 loader and iterator

sp
jmp r1 register indirect jump

(b)
add r1, r2 iterator

r1
jmp [r1] memory indirect jump

(c)
lea r1, [r1 + r2] iterator

r1mov r3, [r1] loader
jmp r3 register indirect jump

(d)

sub r1, 4 iterator

*r1
mov r2, [r1] conveyor
mov r3, r2 conveyor
jmp [r3] memory indirect jump

(e)

pop r1 iterator

r3
mov r3, sp conveyor
mov r4, [r3] loader
mov r5, r4 conveyor
jmp r5 register indirect jump

TABLE 1
Example Dispatcher Gadgets

6.1.1 Identifying Dispatcher-Gadget Potential (DGP)
Functions

For each function, it is safe to assume that a dispatcher
gadget does not exist if at least one of the following
two conditions is true: (i) there are no indirect branches
or no valid instruction preceding an indirect branch: in
this case, there are no viable gadgets; or (ii) there are no
instructions that modify the targets of any of the indirect
branches: in this case, there can be no dispatcher gadget.

As stated previously in the threat model, the attacker
has full control over the register contents and data
memory at the initiation of the attack. However, after
initiating the attack, if none of the registers used by
indirect branches found in the function can be modified
or no memory location can be modified (as per the
second condition above), then the number of executable
gadgets is limited by the initial values. A limited number
of executable gadgets means that for any initial state,
it is known whether it will halt or not and therefore
it is not Turing-complete. Note that the presence of
the above conditions does not necessarily mean that
DGP functions have dispatcher gadgets. Therefore, as a
second approach we attempt to detect actual dispatcher
gadgets inside DGP functions.

6.1.2 Identifying Dispatcher-Gadget Confirmed (DGC)
functions

We adapted the methodology used by prior works to
discover dispatcher gadgets by looking for specific dis-
patcher patterns. We extend prior algorithms for dis-
patcher gadget discovery to construct a more flexible
discovery algorithm that searches for more complicated
dispatcher gadgets that have no limits on the number
of instructions or on the number of registers used.
Dispatcher gadgets (d) and (e) shown in Table 1 are
examples of such complicated patterns. Our approach
covers the trampolines introduced in [14], all cases ex-
plained in [13] (as well as multi-register schemes) and
control gadgets presented in [15].

The dispatcher discovery algorithm is shown in Algo-
rithm 1. It starts by building the gadget trie as described
in [9]. In a gadget trie, indirect jump instructions are
represented as immediate children of a dummy root
node. A child node of an indirect jump represents a
possible decoding of an instruction preceding the par-
ent instruction (an example gadget trie with its root
at the bottom is given in Figure 7). Once the trie is
constructed, the algorithm traverses the nodes starting
with an indirect branch toward its children, trying to
identify possible dispatchers as described in Section 6.1.
For memory indirect branches, the algorithm looks for
an iterator that advances the registers used in addressing
the memory. In case of register indirect branches, an
instruction that loads to the register is needed first. If
found, the algorithm then looks for an iterator for the
source registers of loaders. Loading can occur either di-
rectly from memory or through conveying a value from
other registers that are in turn loaded from memory (Al-
gorithm 2). find_setter function returns the closest
instructions on each path from a node to its descendants
that sets a given target register. Iteration is achieved
through arithmetic instructions that use the destination
also as a source operand. Addition/subtraction instruc-
tions or lea instructions that explicitly specify the source
register as their destination are considered as potential
iterators. find_iterator function is identical to the
find_loader algorithm, except instead of checking for
a load operation, it checks if the setter is an instruction
that iterates its target (such as add/sub/lea) and calls
itself recursively.

Consider the dispatcher gadget (e) shown in Table 1.
Since the target operand of the indirect jump is a reg-
ister, find_dispatcher_gadgets algorithm looks for
a loader and an iterator (see the if block in line 4-14
of Algorithm 1). Starting from the jump instruction
and examining the preceding instructions, mov r5, r4
is identified as the instruction that sets the value of
r5 by find_setters algorithm called from line 2 of
Algorithm 2. As this instruction simply conveys the
value from another register (line 6-10 in Algorithm 2),
the algorithm in turn looks for an instruction that sets
the source operand of this instruction, which is r4. Fur-

9

ther examining previous instructions, mov r4, [r3] is
identified as a loader instruction that sets r4 using r3
(line 4-6 in Algorithm 2). Once the loader is identified,
an iterator of the source register is searched for in line 11
of Algorithm 1. Here, mov r3, sp is identified as a
conveyor in find_iterators algorithm and finally
pop r1 is identified as an iterator of the sp.

Algorithm 1: find dispatcher gadgets(function)
D ← {} // dispatchers1
/* for trie building see Galileo in [9] */
trie← build gadget trie(function)2
foreach indirect jump: j in trie do3

if j is a register indirect jump then4
t← target register of j5
foreach loader: l in find loaders(j, t) do6

if l is also an iterator then // e.g. pop7
D ← D ∪ {l}8

else9
foreach source register: r that l uses do10

D ← D ∪ find iterators(l, r)11
end12

end13
end14

else if j is a memory indirect jump then15
foreach source register: r that j uses do16

D ← D ∪ find iterators(j, r)17
end18

end19
end20
return D21

Algorithm 2: find loaders(node, target)
L← {} // loaders1
S ← find setters(node, target) // setters2
foreach setter:s in S do3

if s loads from memory then4
L← L ∪ {s}5

else if s is a conveyor then // mov6
foreach source register: r that s uses do7

L← L ∪ find loaders(n, s)8
end9

end10
end11
return L12

6.2 Other Attack Considerations

Another ingredient needed for the attack is a system
call: without a system call, the attack’s damage is limited
to the process. For example, a system call is needed to
achieve privilege escalation or to communicate critical
data.

In addition, even if a dispatcher gadget is found in a
function, the attacker also needs a set of functional gad-
gets to be able to perform general computation. These
operations include arithmetic and logical operations and
control flow instructions. However, a dispatcher gadget
that operates on registers uses some registers as source
operands. If one of these registers is modified by a
functional gadget, it is considered to have a side effect
that disrupts the dispatcher gadget, unless it can be
patched up by another functional gadget. Since each
gadget that is useful for the attack can have multiple
unneeded extra instructions before reaching the indirect
jump, with each having their own side effects, recovering

from side effects is difficult when only a limited number
of gadgets is available to the attacker.

Finally, BR does not allow the attacker to move from
a vulnerability to an arbitrary location in the code. In
other words, the attacker must find a vulnerability in
the same function where the code reuse attack will be
attempted. This additional requirement further degrades
the attacker’s ability to launch an attack.

7 SECURITY EVALUATION

We implemented a software routine that uses libdisasm
to disassemble code sections of ELF binaries and analyze
them to identify gadgets. As our codebase, we selected
the GNU C Library (GLIBC) which is linked to almost
every program in GNU/Linux systems. Also we eval-
uated GTK+, GLib, GPG, OpenSSL, httpd, SQLite and
D-Bus. GTK+ is a popular GUI creation toolkit for the
X Window System. GLib is an advanced data structure
library. GPG is a PGP alternative under General Public
Licence and OpenSSL is the de facto standard for Secure
Socket Layer. Both are critical in applications communi-
cating over the Internet. Apache HTTP Server (httpd) is
the most widely deployed HTTP server. SQLite is one
of the most widely used SQL database engines. D-Bus
is an inter-process communication library used in many
popular software projects. We compiled the libraries on
an Intel x86 (32-bit) Ubuntu Linux 3.0.0 machine with
GCC-4.6.1.

Table 2 presents the number of vulnerable functions
and the maximum number of available gadgets remain-
ing in a vulnerable function. The NO BR column repre-
sent the baseline case where the entire library is avail-
able to the attacker. DGP and DGC columns show the
statistics for the DGP and DGC functions respectively.
Bars labelled DGC-SYS refer to the DGC functions with
system call instructions. The DGC-SEE column under
gadget statistics shows the number of gadgets left after
the gadgets with side effects are eliminated. Almost 95%
of the functions are safe. For the remaining part, we
identified 81 functions with dispatcher gadgets in total.
As shown in DGC-SYS column, no function that has a
dispatcher gadget also has a system call in the libraries
examined for this study.

The above analysis demonstrates that BR completely
protects all the libraries that we examined, because no
DGC functions in these libraries have a syscall instruc-
tion. To provide more insight into BR, we continued our
analysis of functions to further illustrate the difficulty of
attacks even if the requirement of executing a system call
is not present. As shown in NO BR vs. DGP statistics for
gadgets in Table 2, the vulnerable codebase is reduced by
93% even when only the provably secure functions (non-
DGP) are omitted. It is further reduced by two thirds
when we consider only the DGC functions. We examined
the remaining gadgets in these functions and eliminated
half of them due to their side effects on the program
state (see Section 6.2). Even if the system call requirement
was not considered, the remaining potentially vulnerable

10

Package Library IB (IIB) Functions Gadgets (UII)
NO BR DGP DGC DGC-SYS NO BR DGP DGC GDC-SEE DGC-SYS

GLIBC 2.14.1

libc 5611 (263) 7775 595 12 0 24689 (4925) 1430 (458) 1269 (419) 415 (62) 0 (0)
libm 280 (7) 1077 17 0 0 616 (165) 113 (64) 0 (0) 0 (0) 0 (0)
libpthread 201 (2) 800 26 1 0 165 (6) 19 (3) 13 (0) 13 (0) 0 (0)
libnsl 180 (11) 390 18 0 0 922 (237) 366 (112) 0 (0) 0 (0) 0 (0)
ld 369 (15) 302 27 4 0 1175 (255) 326 (84) 11 (8) 2 (1) 0 (0)
libresolv 220 (5) 287 13 0 0 168 (25) 42 (17) 0 (0) 0 (0) 0 (0)
libnss files 72 (0) 180 9 0 0 67 (0) 13 (0) 0 (0) 0 (0) 0 (0)
librt 103 (0) 158 6 0 0 60 (0) 10 (0) 0 (0) 0 (0) 0 (0)
libnss nisplus 109 (0) 145 4 0 0 39 (0) 9 (0) 0 (0) 0 (0) 0 (0)
libnss nis 121 (0) 141 8 0 0 81 (0) 10 (0) 0 (0) 0 (0) 0 (0)
libthread db 36 (0) 97 1 0 0 33 (0) 5 (0) 0 (0) 0 (0) 0 (0)
libnss compat 78 (0) 75 3 0 0 59 (0) 12 (0) 0 (0) 0 (0) 0 (0)
libnss hesiod 25 (0) 56 3 0 0 13 (0) 5 (0) 0 (0) 0 (0) 0 (0)
libcrypt 47 (0) 55 4 0 0 51 (0) 29 (0) 0 (0) 0 (0) 0 (0)
libdl 20 (1) 51 3 0 0 35 (4) 7 (0) 0 (0) 0 (0) 0 (0)
libcidn 44 (1) 41 5 0 0 147 (3) 69 (0) 0 (0) 0 (0) 0 (0)
libnss dns 52 (0) 30 5 0 0 38 (0) 10 (0) 0 (0) 0 (0) 0 (0)
libmemusage 34 (0) 29 4 0 0 16 (0) 6 (0) 0 (0) 0 (0) 0 (0)
libanl 14 (0) 23 1 0 0 13 (0) 4 (0) 0 (0) 0 (0) 0 (0)
libutil 10 (0) 21 1 0 0 6 (0) 4 (0) 0 (0) 0 (0) 0 (0)
libpcprofile 1 (0) 14 1 0 0 4 (0) 4 (0) 0 (0) 0 (0) 0 (0)
libSegFault 17 (0) 10 2 0 0 27 (0) 11 (0) 0 (0) 0 (0) 0 (0)
libBrokenLocale 1 (0) 8 1 0 0 4 (0) 4 (0) 0 (0) 0 (0) 0 (0)

GTK+ 3.4.1
libgtk 10996 (254) 15491 975 38 0 34899 (2829) 796 (207) 132 (3) 115 (3) 0 (0)
libgdk 791 (33) 1876 78 2 0 2396 (260) 234 (51) 17 (0) 12 (0) 0 (0)
libgailutil 46 (3) 38 3 0 0 91 (17) 78 (17) 0 (0) 0 (0) 0 (0)

GLib 2.31.0 libglib 2227 (76) 3527 219 6 0 7488 (590) 443 (101) 62 (14) 52 (11) 0 (0)
GPG 1.5.0 libgcrypt 702 (14) 1135 73 2 0 1578 (150) 117 (35) 31 (0) 13 (0) 0 (0)

OpenSSL 1.0.0e libcrypto 2843 (70) 7991 240 3 0 11256 (1337) 1385 (345) 76 (0) 57 (0) 0 (0)
libssl 816 (9) 1017 58 0 0 1381 (24) 153 (0) 0 (0) 0 (0) 0 (0)

httpd 2.4.2
httpd 1013 (31) 3017 130 8 0 2607 (226) 152 (39) 152 (39) 88 (17) 0 (0)
libapr (1.4.6) 292 (2) 1057 24 0 0 413 (36) 102 (33) 0 (0) 0 (0) 0 (0)
libaprutil (1.4.1) 173 (3) 620 15 0 0 264 (23) 39 (13) 0 (0) 0 (0) 0 (0)

SQLite 3.7.11 libsqlite 1323 (29) 1432 103 4 0 3059 (238) 291 (7) 291 (7) 210 (5) 0 (0)
sqlite 147 (2) 36 8 1 0 196 (9) 95 (0) 40 (9) 30 (6) 0 (0)

D-Bus 1.4.20 libdbus 511 (16) 1217 52 0 0 955 (116) 183 (42) 0 (0) 0 (0) 0 (0)
Total 29525 (847) 50219 2735 81 0 95011 (11475) 6576 (1628) 2094 (499) 1007 (105) 0 (0)

IB Number of indirect branches
(IIB) (Number of intended indirect branches)
Functions

NO BR: Number of functions in the whole library
DGP: Number of Dispatcher-Gadget Potential functions
DGC: Number Dispatcher-Gadget Confirmed functions
DGC-SYS: Number of Dispatcher-Gadget Confirmed functions with a system call instruction

Gadgets (UII): (Number of gadgets that use intended instructions)
NO BR: Total number of gadgets in the whole library
DGP: Maximum number of gadgets in a Dispatcher-Gadget Potential function
DGC: Maximum number of gadgets in a Dispatcher-Gadget Confirmed function
DGC-SEE: Maximum number of gadgets in a Dispatcher-Gadget Confirmed function when side effects are eliminated
DGC-SYS: Maximum number of gadgets in a Dispatcher-Gadget Confirmed function with a system call instruction

TABLE 2
Security Evaluation Results

11

code base shown in DGC-SEE column, is only 1.06% of
the entire code base. Moreover, recall that the attacker
must find a vulnerability in the function that it selects
for attack, making it further unlikely that these functions
can be attacked.

An example gadget trie obtained from the analysis
of the d2i_RSA_NET_2.isra.0 function which is part
of the libcrypto binary is depicted in Figure 7. The
trie is constructed using an algorithm similar to the
Galileo Algorithm defined in [9], except the gadgets here
are ending with indirect jump instructions instead of
returns. Each node of the trie represents an instruction,
while a path from one node all the way down to
the root forms a gadget. For example, the dispatcher
gadget found in this function is represented as three
nodes at the bottom of the middle sub-trie, pop ecx;
jg 0x000E0FF3; jmp ecx. The attacker has to ensure
that the conditional branch instruction (jg) is not taken
in order not to change the semantics of the dispatcher
gadget.

In fixed instruction length architectures, given a byte
stream and either a starting or ending point, there is only
one way of decoding an instruction sequence. However,
for architectures with variable instruction length, a given
byte stream and a starting point has only one meaning
as we decode forward, but a byte stream with a given
ending point may have several different meanings as we
decode backwards. These possible different meanings for
the same byte stream and ending point correspond to
the branches in the trie. This characteristic provides the
attacker with more gadgets in variable instruction length
architectures.

In the dispatcher gadget shown in the Figure 7, GLPC
is the stack pointer (esp) and ecx is a temporary reg-
ister which is overwritten with the next gadget address.
A leave instruction is equivalent to mov esp, ebp;
pop ebp and when a gadget containing the leave
instruction is executed, it overwrites the GLPC, leading
to a problem in the dispatcher gadget unless the damage
is recovered possibly by some other gadgets. The two
leave instructions shown in Figure 7 are therefore
said to have side effects. Since the nodes above these
instructions have side effects, these gadgets are not
usable, and the analysis of the remainder of this sub-
trie can be stopped. The remaining gadgets consist of
unintended instructions, which tend to be more difficult
to use and often require complementary gadgets to pre-
pare operands and fix side-effects; these complementary
gadgets are difficult to find within the same function.

Similar analysis of other functions reveal that uninten-
tional gadgets are of limited use without complementary
gadgets not present in the same function. Figure 8-a
shows the breakdown of intentional and unintentional
gadgets for libc results. The unintentional gadgets ac-
count for almost 70% of all gadgets. Additionally, we ob-
serve that the utility of gadgets is inversely proportional
to gadget length. In a gadget that has many instructions,
intermediate instructions are more likely to destroy the

machine state used by the attacker. Figure 8-b shows the
cumulative frequency histogram of gadget lengths found
in the function with the maximum number of gadgets for
DGC-SEE, which has 415 gadgets. This histogram shows
that only 30% of these gadgets have a single instruction
before the indirect jump. Therefore, 70% of the gadgets
have at least one intermediate instruction and over 30%
of the gadgets have at least five intermediate instruc-
tions.

N
O

 B
R

D
G

P

D
G

C
D

G
C

-S
EE

D
G

C
-S

YS

0

500

1000

1500

N
um

be
r

of
 G

ad
ge

ts

4925 →

24689 →

1 5 10 15 20 25 30 35 40 45 50
0%

20%

40%

60%

80%

100%

Gadget Length (instructions)

F
re

qu
en

cy

a) Intended – Unintended
Breakdown

b) Gadget Length Histogram
for DGC-SEE

intended unintended

Fig. 8. Gadgets for libc-2.14.1 with Intended and Unin-
tended Branches

Figure 9 shows the cumulative percentage of gadgets
present, first for all functions in libc, then in DGP, DGC
and DGC-SEE functions. Specifically, the functions are
sorted in order of the number of gadgets available for
exploitation, with the largest number first. The largest
number of gadgets are written (as ”max.”) on each
figure. Only a few functions account for most of the
remaining gadgets; most functions have very few gad-
gets and cannot be exploited. For example, even though
there are 12 DGC functions, gadgets contained in only
four functions with largest number of gadgets accounts
for 96% of all gadgets and 91% when gadgets with side
effects are eliminated (DGC-SEE).

2K 4K 6K
0%

20%

40%

60%

80%

100%

 ALL

Functions

C
um

ul
at

iv
e

F
re

qu
en

cy

100 200 300 400 500 600
0%

20%

40%

60%

80%

100%

 DGP

Functions

C
um

ul
at

iv
e

F
re

qu
en

cy

→max. 1430

1 2 3 4 5 6 7 8 9 101112
0%

20%

40%

60%

80%

100%

 DGC

Functions

C
um

ul
at

iv
e

F
re

qu
en

cy

→max. 1430

→max. 1269

1 2 3 4 5 6 7 8 9 101112
0%

20%

40%

60%

80%

100%

 DGC-SEE

Functions

C
um

ul
at

iv
e

F
re

qu
en

cy

→max. 415

total = 24689

Fig. 9. Gadget Distribution in Functions in libc-2.14.1

12

...

jg 0x000E0FF3

jmp ecx

pop ecx

add al, ch

add [eax], al

and al, 0x0D

or eax, 0xE8000000

add al, 0x24

add bh, al

add [eax], al

leave add al, 0xC9

std

and al, 0x04

inc esp

jmp eax

wait wait

dec [ecx+0x67E82434]

cmc fcomi st(0), st(5)

call ebx

add al, ch

add [eax], eax

add al, 0x00

std

and al, 0xE8

Dispatcher

Have side
effect

stdjg 0x000E0FBE mov gdtr, [edi-0x3]

jmp ecx

or eax, 0xE8000000add al, ch

add [eax], al

and al, 0x0D add bh, al

add al, 0x24

add [eax], al

leave add al, 0xC9

and al, 0x04

inc esp

...

Fig. 7. Gadget Trie of d2i_RSA_NET_2.isra.0 Function

8 PERFORMANCE EVALUATION OF BR:
METHODOLOGY AND RESULTS

For evaluating the performance of BR, we used PTL-
sim [55] - a cycle-accurate x86 processor simulator. We
simulated a 4-wide issue out-of-order core with 64KB L1
data and instruction caches, 512KB L2 cache and 2 MB L3
cache. Memory latency was assumed to be 100 cycles. We
used 18 C and C++ SPEC CPU2006 [56] benchmarks for
our experiments. We performed assembly-level instru-
mentation of the binaries for both BR and CFI to insert
the additional instructions needed to perform the checks
for both schemes. Note, that due to the high complexity
of CFI technique, we only performed behavioral simu-
lation of it for comparison purposes, without keeping
track of the actual meta-data or constructing a full CFG.
The benchmarks were compiled using GCC-4.2 compiler
on a x86 machine running Ubuntu with kernel version
2.6.24.

Each benchmark was simulated for 2 billion commit-
ted instructions after fast-forwarding for the first 100
million instructions. Since Control Flow Integrity[16]
technique relies on the use of Vulcan binary rewriting
tool [57] which is not publicly available, we simulated
CFI in the following manner. We generated the assembly
files (using -S flag) and instrumented them using a script
that inserts the extra control flow checking instructions
described in [16]. Our goal was to only support behav-
ioral simulation of CFI to measure its performance and
binary overhead compared to BR. The CFI performance
results obtained in this manner are consistent with what
was reported in [16]. For evaluating BR, we similarly
inserted the annotations to the assembly files to model
the increase in the code size and also simulated the
hardware structures to model the performance impact
of BR.

The binary size increase of CFI and BR is compared
in Figure 10. On the average across all benchmarks, CFI
has about 4% increase in the binary size, while BR has
less than 1% increase. While xalancbmk and omnetpp
benchmarks exhibit about 9% overhead, bzip2 and mcf

have no overhead for both CFI and BR.

pe
rlb

en
ch

bz
ip

2
gc

c
m

cf
go

bm
k

hm
m

er
sj

en
g

lib
qu

an
tu

m
h2

64
re

f
om

ne
tp

p
xa

la
nc

bm
k

m
ilc

na
m

d
de

al
II

so
pl

ex
po

vr
ay lb
m

sp
hi

nx
3

av
g

0%

2%

4%

6%

8%

10%

B
in

ar
y

S
iz

e
In

cr
ea

se

Control Flow Integrity Branch Regulation

Fig. 10. Executable Size Increase

Next, we evaluate the performance impact of BR and
compare it against that of CFI. For BR, the performance
is sensitive to the size of the hardware Function Bounds
Stack (FBS in 6) - the smaller stack will result in more
FBS misses for the return instructions and more memory
accesses. Performance of BR as a function of FBS size is
shown in Figure 11-a and percentage of FBS misses is
depicted in Figure 11-b. These results are shown in the
form of average values across all simulated benchmarks.

0 1 2 4 8 16 32 64 128

0%

2%

4%

6%

8%

10%

12%

14%

16%

18%

FBS Size

S
lo

w
do

w
n

0 1 2 4 8 16 32 64 128

0%
10%
20%
30%
40%
50%
60%
70%
80%
90%

100%

FBS Size

F
B

S
 M

is
s

R
at

e

a) Performance Overhead b) FBS Miss Rate

Fig. 11. Effect of FBS Size on Performance and FBS Miss
Rate

As expected, when the FBS size increases, the perfor-
mance impact due to BR overhead become smaller. On

13

the average across all benchmarks, the performance loss
is about 2% for the FBS size of 4 entries and about 1% for
the FBS size of 8 entries and above. The remaining degra-
dation in performance is due to slightly higher number
of misses in the instruction and data cache. For a 2-entry
FBS, 25% of FBS accesses result in a miss and require
the memory or cache access, as shown in Figure 11-b.
Increasing the FBS size to 4 entries reduces the number
of misses to less than 10%. The individual benchmark
results are presented in Figure 12 for a system with a
4-entry FBS as compared to CFI.

pe
rlb

en
ch

bz
ip

2
gc

c
m

cf
go

bm
k

hm
m

er
sj

en
g

lib
qu

an
tu

m
h2

64
re

f
om

ne
tp

p
xa

la
nc

bm
k

m
ilc

na
m

d
de

al
II

so
pl

ex
po

vr
ay lb
m

sp
hi

nx
3

av
g

0%

20%

40%

60%

S
lo

w
do

w
n

Control Flow Integrity Branch Regulation

Fig. 12. Performance Overhead of Branch Regulation

For a 4-entry FBS, performance overhead of BR is
2.14% on the average and it is less than 7% for all bench-
marks. This compares favorably to 22% performance
overhead for CFI on the average across all benchmarks.
Figure 13 shows the percentage of relevant control
flow instructions in the dynamic instruction stream. As
shown, performance overhead strongly correlates with
the number of control instructions. However, sphinx3,
dealII, namd and lbm do not behave similarly since FBS
performs better for these benchmarks. Because of the
high FBS hit rate in these benchmarks, it is less likely
that a memory access for obtaining the function bounds
will be required.

pe
rlb

en
ch

bz
ip

2
gc

c
m

cf
go

bm
k

hm
m

er
sj

en
g

lib
qu

an
tu

m
h2

64
re

f
om

ne
tp

p
xa

la
nc

bm
k

m
ilc

na
m

d
de

al
II

so
pl

ex
po

vr
ay lb
m

sp
hi

nx
3

av
g

0%
1%
2%
3%
4%
5%
6%
7%

P
er

ce
nt

ag
e

of
 B

ra
nc

h
In

st
ru

ct
io

ns CALLS RETS INDIR JMPS

Fig. 13. Prevalence of Calls, Returns and Indirect Jumps

9 CONCLUDING REMARKS

In this paper, we presented Branch Regulation (BR),
a new low-overhead defense mechanism against Code
Reuse Attacks (CRAs). BR limits the target addresses of
branches to be either within the same function or at the
start of another function, with the exception of return
statements that are matched to prior calls. By preserving

these simple invariants, we show that BR dramatically
reduces (to 1% of the original number) the ability of the
attacker to find exploitable gadgets needed for the CRA.
In addition, we demonstrated that no CRA (including re-
turn and jump-oriented programming attack) is possible
with BR in place for five sample libraries, including the
standard C library and several cryptographic libraries,
when the attacker has to use a system call instruction as
part of the attack.

We demonstrated that the security benefits of BR are
achieved at a very modest cost: about 2% performance
loss, about 1% binary size increase, simple hardware at
the execution stage of the pipeline, and simple binary
annotations based on the information that is readily
available from the symbol tables.

10 ACKNOWLEDGEMENTS

This material is based on research sponsored by Air
Force Research Laboratory under agreement number
FA8750-09-1-0137 and by National Science Foundation
grants CNS-1018496 and CNS-0958501.

REFERENCES

[1] Aleph One, “Smashing the stack for fun and profit,” Nov. 1996.
[2] J. Pincus and B. Baker, “Beyond stack smashing: Recent advances

in exploiting buffer overruns,” IEEE Security and Privacy, vol. 2,
pp. 20–27, July 2004.

[3] A. Baratloo, N. Singh, and T. Tsai, “Transparent run-time defense
against stack smashing attacks,” in Proceedings of the USENIX
Annual Technical Conf., 2000, pp. 251–262.

[4] T. Chiueh and F.-H. Hsu, “RAD: A compile-time solution to buffer
overflow attacks.” in ICDCS’01, 2001.

[5] C. Cowan, C. Pu, D. Maier, H. Hintony, J. Walpole, P. Bakke,
S. Beattie, A. Grier, P. Wagle, and Q. Zhang, “StackGuard: Au-
tomatic adaptive detection and prevention of buffer-overflow
attacks,” in Proceedings of USENIX Security, vol. 7, 1998.

[6] J. McGregor, D. Karig, Z. Shi, and R. Lee, “A processor archi-
tecture defense against buffer overflow attacks,” in Proceedings of
ITRE, aug. 2003, pp. 243 – 250.

[7] M. Prasad and T. Chiueh, “A binary rewriting defense against
stack based overflow attacks,” in Proceedings of the USENIX An-
nual Technical Conf., 2003, pp. 211–224.

[8] S. Designer, “”return-to-libc” attack,” 1997, bugtraq.
[9] H. Shacham, “The geometry of innocent flesh on the bone: Return-

into-libc without function calls (on the x86),” in Proceedings of CCS.
ACM Press, Oct. 2007, pp. 552–61.

[10] L. Davi, A.-R. Sadeghi, and M. Winandy, “Dynamic integrity
measurement and attestation: towards defense against return-
oriented programming attacks,” in Proceedings of ACM STC.
ACM, 2009, pp. 49–54. [Online]. Available: http://doi.acm.org/
10.1145/1655108.1655117

[11] P. Chen, H. Xiao, X. Shen, X. Yin, B. Mao, and L. Xie, “Drop:
Detecting return-oriented programming malicious code,” in Pro-
ceedings of ICISS. Springer-Verlag, 2009, pp. 163–177.

[12] J. Li, Z. Wang, X. Jiang, M. Grace, and S. Bahram, “Defeating
return-oriented rootkits with ”return-less” kernels,” in Proceedings
of EuroSys. New York, NY, USA: ACM, 2010, pp. 195–208.
[Online]. Available: http://doi.acm.org/10.1145/1755913.1755934

[13] T. Bletsch, X. Jiang, V. W. Freeh, and Z. Liang, “Jump-oriented
programming: a new class of code-reuse attack,” in Proceedings
of ASIACCS. ACM, 2011, pp. 30–40. [Online]. Available:
http://doi.acm.org/10.1145/1966913.1966919

[14] S. Checkoway, L. Davi, A. Dmitrienko, A.-R. Sadeghi,
H. Shacham, and M. Winandy, “Return-oriented programming
without returns,” in Proceedings of CCS, 2010, pp. 559–72.

[15] P. Chen, X. Xing, B. Mao, L. Xie, X. Shen, and X. Yin, “Automatic
construction of jump-oriented programming shellcode (on the
x86),” in Proceedings of ASIACCS. ACM, 2011, pp. 20–29.
[Online]. Available: http://doi.acm.org/10.1145/1966913.1966918

14

[16] M. Abadi, M. Budiu, U. Erlingsson, and J. Ligatti, “Control-flow
integrity,” in Proceedings of CCS. ACM, 2005, pp. 340–353.

[17] M. Kayaalp, M. Ozsoy, N. Abu-Ghazaleh, and D. Ponomarev,
“Branch Regulation: Low-overhead protection from code reuse
attacks,” in Proceedings of ISCA, Jun. 2012.

[18] C. Cowan, S. Beattie, J. Johansen, and P. Wagle, “Pointguardtm:
protecting pointers from buffer overflow vulnerabilities,” in
Proceedings of USENIX Security. USENIX Association, 2003,
pp. 7–7. [Online]. Available: http://dl.acm.org/citation.cfm?id=
1251353.1251360

[19] H. Etoh and K. Yoda, “Propolice: Improved stack-smashing attack
detection,” IPSJ SIG notes on computer security, Oct 2001.

[20] Vendicator, “Stack shield technical info file v0.7,” January 2001,
http://www.angelfire.com/sk/stackshield/.

[21] R. B. Lee, D. Karig, J. P. McGregor, and Z. Shi, “Enlisting hardware
architecture to thwart malicious code injection,” in Proceedings of
SPC, 2003, pp. 237–252.

[22] S. Sinnadurai, Q. Zhao, and W. fai Wong, “Transparent runtime
shadow stack: Protection against malicious return address modi-
fications,” 2008.

[23] J. Xu, Z. Kalbarczyk, S. Patel, and R. K. Iyer, “Architecture support
for defending against buffer overflow attacks,” in Proceedings of
Workshop on Evaluating and Architecting Systems for Dependability,
2002.

[24] H. Ozdoganoglu, T. Vijaykumar, C. Brodley, and A. Jalote,
“Smashguard: A hardware solution to prevent security attacks on
the function return address,” IEEE Trans. Comput., pp. 1271–1285,
Oct. 2006.

[25] P. Team, “Pax non-executable pages design & implementation,”
http://pax.grsecurity.net/docs/noexec.txt.

[26] S. Andersen, “Part 3: Memory protection technologies,” in
Changes to Functionality in Microsoft Windows XP Service Pack
2. Microsoft Corp., 2004, http://technet.microsoft.com/en-
us/library/bb457155.aspx.

[27] E. Buchanan, R. Roemer, H. Shacham, and S. Savage, “When good
instructions go bad: generalizing return-oriented programming
to risc,” in Proceedings of CCS. ACM, 2008, pp. 27–38. [Online].
Available: http://doi.acm.org/10.1145/1455770.1455776

[28] S. Checkoway, A. J. Feldman, B. Kantor, J. A. Halderman, E. W.
Felten, and H. Shacham, “Can DREs provide long-lasting se-
curity? The case of return-oriented programming and the avc
advantage,” in Proceedings of EVT/WOTE, aug 2009.

[29] L. Davi, A. Dmitrienko, A.-R. Sadeghi, and M. Winandy, “Return-
Oriented Programming without returns on ARM,” System Secu-
rity Lab - Ruhr University Bochum, Tech. Rep., 2010.

[30] A. Francillon and C. Castelluccia, “Code injection attacks on
harvard-architecture devices,” in Proceedings of CCS, 2008.

[31] F. Lindner, “Developments in cisco ios forensics.
confidence 2.0. presentation,” 2009, http://www.recurity-
labs.com/content/pub/FX Router Exploitation.pdf.

[32] T. Dullien and T. Kornau, “A framework for automated
architecture-independent gadget search,” 2010.

[33] T. A. Edward J. Schwartz and D. Brumle, “Q: Exploit hardening
made easy,” in Proceedings of USENIX Security, 2011.

[34] R. Hund, T. Holz, and F. C. Freiling, “Returnoriented rootkits:
Bypassing kernel code integrity protection mechanisms,” in Pro-
ceedings of Usenix Security, 2009.

[35] R. G. Roemer, “Finding the bad in good code: Automated return-
oriented programming exploit discovery,” Master’s thesis, Uni-
versity of California, San Diego, 2009.

[36] P. Bania, “Security mitigations for return-oriented programming
attacks,” CoRR, vol. abs/1008.4099, 2010.

[37] K. Onarlioglu, L. Bilge, A. Lanzi, D. Balzarotti, and E. Kirda,
“Gfree: Defeating return-oriented programming through gadget-
less binaries,” in Proceedings of ACSAC, 2010, pp. 49–58.

[38] D. Dhurjati and V. Adve, “Backwards-compatible array bounds
checking for C with very low overhead,” in Proceedings of
ICSE. ACM, 2006, pp. 162–171. [Online]. Available: http:
//doi.acm.org/10.1145/1134285.1134309

[39] J. Devietti, C. Blundell, M. M. K. Martin, and S. Zdancewic,
“Hardbound: architectural support for spatial safety of the c
programming language,” in Proceedings of the ASPLOS. New
York, NY, USA: ACM, 2008, pp. 103–114. [Online]. Available:
http://doi.acm.org/10.1145/1346281.1346295

[40] S. Ghose, L. Gilgeous, P. Dudnik, A. Aggarwal, and C. Waxman,
“Architectural support for low overhead detection of memory
violations,” in Proceedings of DATE, 2009.

[41] M. Castro, M. Costa, and T. Harris, “Securing software
by enforcing data-flow integrity,” in Proceedings of OSDI.
USENIX Association, 2006, pp. 147–160. [Online]. Available:
http://dl.acm.org/citation.cfm?id=1298455.1298470

[42] P. Akritidis, C. Cadar, C. Raiciu, M. Costa, and M. Castro, “Pre-
venting memory error exploits with WIT,” Security and Privacy,
IEEE Symposium on, vol. 0, pp. 263–277, 2008.

[43] M. Dalton, H. Kannan, and C. Kozyrakis, “Raksha: a flexible
information flow architecture for software security,” in Proceedings
of ISCA. ACM, 2007, pp. 482–493. [Online]. Available: http:
//doi.acm.org/10.1145/1250662.1250722

[44] M. Ozsoy, D. Ponomarev, N. Abu-Ghazaleh, and T. Suri, “SIFT:
A low-overhead dynamic information flow tracking architecture
for smt processors,” in Proceedings of CF, May 2011.

[45] G. E. Suh, J. W. Lee, D. Zhang, and S. Devadas, “Secure
program execution via dynamic information flow tracking,”
in Proceedings of ASPLOS. ACM, 2004, pp. 85–96. [Online].
Available: http://doi.acm.org/10.1145/1024393.1024404

[46] J. Newsome and D. Song, “Dynamic taint analysis for automatic
detection, analysis, and signature generation of exploits on com-
modity software,” in Proceedings of NDSS, feb 2005.

[47] F. Qin, C. Wang, Z. Li, H.-s. Kim, Y. Zhou, and Y. Wu,
“Lift: A low-overhead practical information flow tracking
system for detecting security attacks,” in Proceedings of MICRO.
IEEE Computer Society, 2006, pp. 135–148. [Online]. Available:
http://dx.doi.org/10.1109/MICRO.2006.29

[48] P. Team, “Pax address space layout randomization (aslr),”
http://pax.grsecurity.net/docs/aslr.txt.

[49] E. D. Berger and B. G. Zorn, “Diehard: probabilistic memory
safety for unsafe languages,” in Proceedings of PLDI. ACM,
2006, pp. 158–168. [Online]. Available: http://doi.acm.org/10.
1145/1133981.1134000

[50] O. Whitehouse, “An analysis of address space layout randomiza-
tion on windows vista,” 2007.

[51] T. Newsham, “Format string attacks,” September 2000,
http://julianor.tripod.com/bc/tn-usfs.pdf.

[52] A. Sotirov and M. Dowd, “Bypassing browser memory protec-
tions,” in In Proceedings of BlackHat, 2008.

[53] D. Champagne and R. B. Lee, “Scalable architectural support for
trusted software,” in Proceedings of HPCA, 2010, pp. 1–12.

[54] T. O. Group, “IEEE Std 1003.1, 2004,” http://pubs.opengroup.
org/onlinepubs/009695399/functions/setjmp.html.

[55] M. T. Yourst, “Ptlsim: A cycle accurate full system x86-64 microar-
chitectural simulator,” in Proceedings of ISPASS, 2007, pp. 23–34.

[56] C. D. Spradling, “Spec cpu2006 benchmark tools,” SIGARCH
Comput. Archit. News, vol. 35, no. 1, pp. 130–134, 2007.

[57] A. Edwards, H. Vo, A. Srivastava, and A. Srivastava, “Vulcan
binary transformation in a distributed environment,” MSR-TR-
2001-50 Microsoft Research, Tech. Rep., 2001.

Mehmet Kayaalp is a PhD student in the Department
of Computer Science at SUNY Binghamton. Her research
interests are in the areas of computer architecture and
secure system design.

Meltem Ozsoy is a PhD student in the Department of
Computer Science at SUNY Binghamton. Her research
interests are in the areas of computer architecture and
secure system design.
Nael Abu-Ghazaleh is an Associate Professor in the
Department of Computer Science at SUNY Binghamton.
His research interests are in the areas of secure system
design, parallel discrete event simulation, networking
and mobile computing. He received his PhD from the
University of Cincinnati in 1997.
Dmitry Ponomarev is an Associate Professor in the
Department of Computer Science at SUNY Binghamton.
His research interests are in the areas of computer ar-
chitecture, secure and power-aware systems and parallel
discrete event simulation. He received his PhD from
SUNY Binghamton in 2003.

