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Abstract—We consider the problem of target coverage in
visual sensor networks with Pan-Tilt-Zoom (PTZ) cameras. The
finely controllable movement in PTZ dimensions creates a large
number of possible Field-of-View (FoV) settings, making it pro-
hibitively expensive to consider them all in coverage algorithms.
However, these FoVs are redundant as each group of targets is
generally covered by many FoVs. Thus, an important problem
is how to identify FoVs that cover all maximal subsets of targets
(MaxFoV) efficiently. We show that MaxFoV is an instance of
generating all maximal cliques, which is NP-hard in general
but polynomial if the number of cliques is polynomial. We
construct an optimal algorithm to solve the problem with a worst
case complexity of O(n3). Simulation and testbed experiments
show that the algorithm drastically reduces the number of
FoVs allowing multi-camera coverage to scale without sacrificing
coverage quality.

I. INTRODUCTION

Smart camera networks, also called Visual Sensor Net-
works (VSNs) [19], are used in a range of applications such
as monitoring and surveillance, traffic management and health
care [3], [14]. Coverage is a key problem in VSNs: how can
cameras select their Field-of-Views (FoVs) to increase the
amount and quality of information collected by the network.
Coverage algorithms require identification of a set of feasible
FoVs for each camera. Out of the feasible FoVs, coverage
algorithms assign one FoV to each camera. The complexity
of coverage algorithms increases significantly as a function of
the number of feasible FoVs. Thus, it is critical to reduce the
number of feasible FoVs without affecting coverage quality.

We focus on the problem of target coverage in VSNs with
Pan-Tilt-Zoom (PTZ) cameras [18]. PTZ cameras can change
their Field-of-View (FoV) in three dimensions: horizontal
(pan), vertical (tilt), and depth (zoom). In VSNs, coverage has
typically been considered for directional sensors (or pan-only
cameras) [7], [10], [21] where each sensor can orient (pan)
to cover k different sectors. The coverage problem assigns
each camera to one sector to meet the coverage objective; for
instance, to maximize the total targets covered [7], [8], [16],
or to schedule cameras to allocate their time among different
targets [11]. While PTZ cameras are able to provide superior
coverage to pan-only cameras (or directional sensors), they
introduce new challenges.

In coverage algorithms for directional sensors [2], [7], [8],
[10], [16], [21], all discrete FoVs (sectors corresponding to
the pan directions) are considered by coverage algorithms. We
call this algorithm for generating feasible FoVs per camera the
DISCRETE algorithm. For PTZ cameras, DISCRETE leads to

a prohibitively high number of FoVs. The Axis-213 camera [4]
at the finest control steps can be configured into millions of
different FoVs. If we reduce the number of FoVs by increasing
the step with which the FoV is varied in the three axes,
this leads to missing FoVs that lie between the chosen steps,
causing suboptimal coverage.

Reducing the number of FoVs considered by the multi-
camera coverage algorithms is critical to their efficiency
and scalability. The multi-camera target coverage problem
is known to be NP-hard [2]; it is an assignment problem
of one FoV to each camera with the goal of maximizing
the overall number of covered targets. A high number of
feasible FoVs, representing the possible camera assignments
in coverage algorithms, significantly increases the complexity
of coverage algorithms. With millions of FoVs for each cam-
era, coverage algorithms become computationally infeasible,
especially in mobile scenarios where coverage decisions must
be continuously made in real-time [17].

In this paper, we define a new problem of deriving the
optimal set of FoVs to be considered by PTZ cameras. The
performance of PTZ coverage algorithms can be substantially
increased by reducing the number of candidate FoVs for
each camera. Rather than focusing on camera parameters,
we focus on the groups of targets covered; only a small
subset of FoVs need to be considered as some FoVs cover
the same group of targets or a subset of targets covered by
some other FoVs. Supporting coverage optimality requires that
every subset of targets that is jointly coverable appears in
at least one FoV in the solution set. Thus, our goal is to
identify a minimal set of FoVs while supporting coverage-
optimality. We formally define this problem, which we call the
Maximal FoV Identification Problem (MaxFoV), in Section II.
We believe that MaxFoV is a new and fundamental problem
that is necessary for target coverage in PTZ cameras, allowing
practical solutions to this important class of sensor networks.

We show that MaxFoV under some conditions is an
instance of the maximal cliques generation problem, which
is known to be NP-hard for general graphs [9]. However,
the problem is known to have polynomial time solutions
for special graphs, where the number of maximal cliques is
polynomial [20]. We show that for coverage graphs that arise
in our problem the number of maximal cliques is in fact
polynomial due to the geometric properties of the problem.
Furthermore, we develop a polynomial time algorithm, called
the Geometric Extreme FoV algorithm (G-EFA), and prove
its optimality. G-EFA has cubic runtime as a function of the
number of targets in range of the camera in the worst case.
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Fig. 1. Field-of-view of a camera.

We evaluate the algorithm both in simulation and on a small
multi-camera testbed. Our results indicate that, compared to
DISCRETE with 1◦ of step size, G-EFA generates 53x fewer
FoVs per-camera in testbed scenarios with 20 targets, and up
to 5000x fewer FoVs per-camera in simulated scenarios with
100 targets. Furthermore, DISCRETE fails to allow multi-
camera coverage algorithms to reach optimality unless the
finest camera control steps are used (proportionately increasing
the number of candidate FoVs).

The primary contributions of the paper are:

1. We identify a new problem, MaxFoV, whose goal is to find
unique maximal-FoVs for a PTZ camera. MaxFoV is an essen-
tial first step in solving target-oriented coverage problems for
PTZ cameras; it provides coverage algorithms with a minimal
but coverage-optimal set of FoVs, reducing their complexity
while not limiting coverage of multi-camera algorithms.

2. We prove (in Theorem 1) that MaxFoV under some con-
ditions is an instance of the problem of finding all maximal
cliques in a graph, which is known to be NP-hard for general
graphs [9], [13]. However, the complexity can be polynomial
if the number of maximal cliques is polynomial, which we
show in the case for MaxFoV.

3. We present a polynomial time algorithm to solve MaxFoV,
Geometric Extreme FoV Algorithm (G-EFA) that has O(n3)
complexity in the worst case. G-EFA is initially formulated
based on the process used to derive the number of maximal
cliques in step 2, which is then optimized using geometric con-
straints to further improve performance. G-EFA is presented
in Section V.

4. We demonstrate – both in simulation and testbed – that
G-EFA substantially improves the efficiency of multi-camera
coverage algorithms. G-EFA efficiently generates a minimal
coverage-optimal set of FoVs whose cardinality is orders of
magnitude smaller than that produced by DISCRETE. Max-
FoV enables dramatic reduction in the complexity of multi-
camera coverage algorithms while not limiting the quality of
the coverage. Evaluation results are presented in Section VI.

II. MOTIVATION AND PROBLEM DEFINITION

In this section, we first describe the FoV of a PTZ camera,
and then motivate and formally present the MaxFoV problem.
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Fig. 2. (a) Impact of varying step sizes of DISCRETE on maximum coverage;
(b) Time required to generate the multi-camera coverage solution.

A. Camera FoV and PTZ Configurations

A Field-of-View (FoV) of a camera represents the extent of
its visible field. Typically, an FoV is represented by its angle-
of-view (α) and depth-of-field (R). The Angle-of-View (AoV)
is represented in terms of the horizontal AoV, αh, and the
vertical AoV, αv , as shown in the Figure 1. The depth-of-field
(DoF) represents the area of the visual scene that is acceptably
sharp, bounded by Rmin and Rmax.

For PTZ cameras, panning and tilting allow rotating the
camera around its axis to adjust FoV horizontally (pan) and
vertically (tilt). Camera zoom level can be controlled to change
the camera DoF: zooming-in results in an increase in Rmin and
Rmax, at a cost of a decrease in α, and vice versa. This change
in FoV shape with respect to zoom complicates the problem
of determining all maximal FoVs.

B. Motivation

Recall that the DISCRETE algorithm is typically used to
enumerate the set of FoVs a camera can use [7], [8], [10],
[16], [21]. In this section, we highlight limitations of using
DISCRETE for PTZ cameras. Although current commercial
cameras enable finely controllable movements in PTZ dimen-
sions, DISCRETE allows only a finite set of FoVs per camera
(e.g. 8 pans separated by 45◦ [2], [16]). To show the limitations
of DISCRETE we conduct an experiment with 10 cameras and
100 targets placed uniformly on a 100× 100× 100m3 terrain.
Each camera first generates all discrete candidate FoVs, which
are passed to a coverage maximization algorithm [2], [16] to
generate camera-FoV assignments that cover the maximum
number of unique targets. Percent Coverage is used to evaluate
coverage; it measures the percentage of targets covered out of
all the targets that could be covered with some PTZ setting.
Percent coverage is used simply to ignore non-coverable
targets.

Figure 2(a) shows the impact of using various DISCRETE
step-sizes on coverage. For example, step-size of 1 means the
pan and the tilt angles are considered at intervals of 1◦ and the
focal-length (zoom) at intervals of 1 mm. To limit the run-time,
all cameras are constrained with 90◦ movement in pan, 40◦
movement in tilt, and 3× zoom. Even with such constrained
movement, DISCRETE with step-size 1 generates over 2.5
million FoVs for 10 cameras. Yet DISCRETE misses some
optimal FoVs that would have maximized the coverage, as
indicated by the gap between DISCRETE step-1 and Optimal.
As the step-size is increased, more intermediate FoVs that
cover the most number of targets are missed, resulting in re-
duced coverage. Figure 2(b) shows that the time to find optimal
camera-FoV assignments is significantly high for smaller step-
sizes. Such delay is especially harmful in dynamic settings,
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where the problem has to be solved repeatedly as the targets
or cameras move [17].

C. MaxFoV Problem Statement

Motivated by the goal of minimizing the number of FoVs
per camera, we first define the Maximal FoV Identification
(MaxFoV) problem and propose a solution to solve it effi-
ciently. MaxFoV is a per-camera problem of finding a min-
imum set of non-redundant maximal FoVs. We first develop
the following definitions.

Definition 1: A Coverable Set (CoverC) is a set of targets
that can be covered by one or more feasible FoVs of a camera
C; a Coverage Set (CSF ) is a set of targets that are covered
by a particular FoV, F , of a camera.

Definition 2: A Maximal Coverage Set (MCS) is a cover-
age set that is not a proper subset of another coverage set.

The MaxFoV problem aims to obtain all MCS’s for a camera.
The reasoning is that any coverable set of targets is coverable
by one or more MCS. Thus, retaining only MCS’ in the
candidate FoV set for each camera is guaranteed not to restrict
the coverage that can be obtained by the multi-camera coverage
algorithm.

Figure 3 shows a scenario with two cameras and 7 targets.
Each camera can cover one or more targets in its FoV. For
C1, the coverable set CoverC is {T1, T2, T3, T4, T5}, and the
possible coverage sets are: {T1}, {T2}, {T1, T2}, {T2, T3},
{T3, T4}, {T4, T5}, {T3, T4, T5}. Out of these coverage sets,
only three are maximal coverage sets, {T1, T2}, {T2, T3}, and
{T3, T4, T5}, formed by maximal FoVs F1, F2, F3 of C1,
respectively. Note that the FoV F1 of C1 uses a lower zoom to
form a wider FoV that can jointly cover {T1, T2}. Similarly,
the maximal coverage sets for C2, {T3, T4, T5}, {T5, T6},
{T6, T7}, are formed by maximal FoVs F1, F2, F3 of C2,
respectively. We have omitted Rmin in the figure for clarity.

The maximal FoVs serve as an input to all target-oriented
coverage algorithms for PTZ cameras. For instance, the opti-
mal camera-FoV assignment to enable covering the maximum
number of targets is C1 − F1, C2 − F1 or C1 − F3, C2 − F3,
which results in covering 5 targets. On the other hand, the
greedy assignment, where each camera locally selects an FoV
that covers the maximum targets, would be C1−F3, C2−F1,
resulting in covering only 3 targets.

Assumptions: We assume that the locations of targets are
known to the cameras. This assumption is consistent with the
prior works, where targets’ locations are determined using a
complementary mechanism such as using a supporting network
of low-resolution wide-angle cameras [12], [15], or camera
calibration [5]. To illustrate the feasibility of this assumption,
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Fig. 4. Fig. (a) FOV 2 is set at Min-Zoom to cover target T2. FOV 2 covers
T1 and T3, which would be missed by FOV 1 with its longer zoom; Fig. (b)
shows coverage-graph for scenario in Fig. 3; In Fig. (c) Clique (T1, T2, T3)
does not belong to the coverage set {T1, T2, T3} when zoom is considered.

in our testbed experiments, we implement calibration-based
localization and evaluate its accuracy. We also assume that the
targets are stationary and a target is covered when some point,
say its centroid, is visible in the FoV. Target mobility can be
supported by re-invoking the coverage algorithm [17].

III. MAXFOV: COMPLEXITY ANALYSIS

In this section, we show that solving MaxFoV is at least as
hard as solving the problem of generating all maximal cliques.

Considering first the FoV shape to be fixed, a group of
targets is coverable in an FoV if the maximum horizontal
and vertical angles made by the targets with the camera are
less than the FoV angles (αh and αv , respectively (please see
Figure 1), and the distance of each target to the camera is
between Rmin and Rmax. We call this test the Fixed-FoV
Coverage Test.

However, since the FoV shape changes with zoom, it is
difficult to determine joint-coverability of a group of targets.
To address this difficulty, we first introduce the Minimum Zoom
Level (MZL) property, which defines an order for considering
targets for establishing joint target coverability.

A. Minimum Zoom Level (MZL) Property

The Minimum Zoom Level (MZL) property is based on the
observation that the width of the FoV monotonically decreases
as the zoom level increases. Thus, to maximize coverage,
while covering a given farthest target, MZL implies that we
should consider FoVs with the minimum zoom that covers that
farthest target, as shown in Figure 4(a). Minimum Zoom can
be formally defined as:

Definition 3: Minimum Zoom (Min-Zoom): Let a target
T be in the coverable range from camera C. Then T is said
to bound an FoV with Min-Zoom, if the the zoom can not be
reduced further without losing T .

MZL allows us to use one zoom value that maximizes the
chance to cover the group of targets together. Once the zoom
value is fixed to the minimum zoom that will cover the farthest
target, the FoV shape is fixed allowing direct application of
the Fixed-FoV Coverage Test to check if the group of targets
is jointly coverable.

B. MaxFoV and Generating All Maximal Cliques

We now show that solving MaxFoV for PTZ cameras is at
least as hard as solving the problem of Generating All Maximal
Cliques (GAMC), which is known to be NP-hard [9], [13] for
general graphs. We show this by showing that solving MaxFoV
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for Pan-Tilt (PT) cameras, with fixed zoom = 1×, requires
solving GAMC.

A coverage graph G = (V,E), can be constructed using
the targets coverable by a camera C, CoverC . In G, each target
is a vertex, and there exists an edge between two vertices if
those targets are jointly coverable by the camera. For instance,
Figure 4(b) shows a coverage graph generated for the scenario
in Figure 3. Shaded regions show maximal-cliques, which
correspond to MCS’ or maximal-fovs. Now we show that
finding all coverage sets for a camera requires finding all
cliques in G.

First, we show that each coverage set (CSF ) can be
represented by a clique, and vice versa. A clique is a subset
of vertices of a graph where each vertex is connected to each
other vertex. A maximal clique is one that can not be extended
by including one more vertex.

Theorem 1: For Pan-Tilt camera, a clique, C, is present in
G iff the union of targets ∈ C is a coverage set.

Proof: First, we show that if there is a coverage set, there
must be a clique in the graph, G. A coverage set is a set where
there exists an FoV that covers all the targets jointly. Thus,
each pair of nodes in the coverage set are pairwise coverable
by the same FoV, and the coverage set forms a clique in the
graph G.

Next, we prove that the opposite is true for PT cameras:
that if there exists a clique, C, in G, then all the targets ∈ C
are jointly coverable, forming a coverage set. We will prove
this statement by induction.

Base case: consider a clique of one target. This clique is also
a cover set since the target is coverable by the camera.

Inductive step: we show that if we have a clique of n vertices
in the graph that forms a coverage set of targets T1 . . .Tn, say
CSn, then a new clique of size n + 1 is formed by adding a
new target Tn+1 to the original clique if and only if Tn+1 is
jointly coverable with CSn. If the inductive step is true, then
all cliques are also coverage sets.

We prove this step by showing that Tn+1 is jointly cov-
erable in the pan dimension first, and then the tilt dimension.
Without loss of generality, consider that T1 is the leftmost and
Tn is the rightmost target in the CSn. If Tn+1 is to the left
of T1 then it is jointly coverable with all the nodes in the pan
dimension since it is pairwise coverable with the rightmost
node Tn. The same reasoning applies if Tn+1 is to the right
of Tn. If Tn+1 lies between T1 and Tn, then it is easy to
see that it is jointly coverable in the pan dimension (e.g., by
the same setting of the FoV covering CSn). After fixing the
pan to cover all T1 . . . Tn+1 targets, the same reasoning can
be applied for the tilt dimension to show joint coverability in
both dimensions. Thus, the inductive step is true.

Thus, all maximal coverage sets (MCS’s) of CoverC corre-
spond to all maximal cliques in G. That is, solving MaxFoV
for PT cameras requires solving GAMC on the coverage graph.

MaxFoV for PTZ cameras: The proof above relies on a
fixed FoV shape (which is true when the zoom is fixed) for
the inductive step to be true. Since the shape of the FoV
changes with the zoom value, not every clique in the graph

is guaranteed to be a jointly coverable set. We show this by
example in Figure 4(c) where three targets are each pairwise
coverable with each of the other two, but are not jointly
coverable since no single FoV exists that covers all three. We
call such cliques non-coverable cliques.

In order to solve MaxFoV for PTZ cameras, one can solve
GMAC to identify all maximal cliques. If all targets in a
maximal clique are jointly coverable, they represent an MCS.
If they are not jointly coverable, then sub-cliques of smaller
cardinality have to be generated from them and checked for
coverability.

Solving MaxFoV for PTZ cameras is at least as hard as
solving MaxFoV for PT cameras. In other words, if there
existed a solution with lesser complexity for PTZ camera, it
must be applicable for the special case of PT cameras (PT
cameras with zoom = 1×).

The problem of GAMC for general graphs is NP-hard [9],
[13]. However, Tsukiyama et al [20] showed that polynomial
time solutions are possible when the number of maximal
cliques in the graph is polynomial. As a result, the problem has
polynomial time complexity for special graphs such as chordal
graphs and planar graphs. In the next section, we show that
the number of maximal cliques (and maximal coverage sets) in
the coverage graph is in fact polynomial due to the geometric
constraints of the FoV shape.

IV. EFOVS: POLYNOMIAL TIME MCS GENERATION

In this section, we define the notion of Extreme-FoVs
(EFoVs) and use it to show that the number of maximal
coverage sets (and also the number of maximal cliques in the
coverage graph) is polynomial. In the case of PT cameras,
this result establishes that a polynomial time algorithm for
generating all maximal cliques exists for coverage graphs since
the problem is an instance of GMAC [20]. In the next section,
we develop algorithms to optimally solve general MaxFoV in
polynomial time; i.e., the problem has polynomial complexity
even for PTZ cameras.

EFoVs are the FoVs that have at least one target at the
extreme edges of each of the pan, tilt, and zoom dimensions
of the FoV. The targets on the edges of an FoV are called
bounding targets. Informally, the key property of EFoVs is
that they enable covering the maximum number of other targets
in addition to the bounding targets. We first formally define
EFoVs, and then prove that every MCS must be covered by
at least one EFoV. Finally, we show that with respect to the
number of coverable targets, only a polynomial number of
EFoVs exists.

Definition 4: Extreme FoV (EFoV) Let F be an FoV of
a camera C. F is an Extreme FoV if it is bounded by a target
in each of the Pan, Tilt, and Zoom dimensions. An FoV, F ,
is said to be bounded by a target TB in a dimension (pan,
tilt or zoom) if a new FoV, F ′, obtained by moving F by
an arbitrarily small distance in the bounding dimension away
from the target (i.e., towards the opposite boundary in the same
dimension) results in an FoV that does not cover the target.

Each of the n targets may serve as the bound for an
EFoV in each of the Pan, Tilt, and Zoom dimensions; note
that one target can also be a bound in multiple dimensions
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(a) (b)

Fig. 5. Fig. (a) P1 > P2. Thus, FoV creating angle P1 with X-axis is Max-
Pan FoV w.r.t. target T. Both Min-Pan and Max-Pan FoVs are EFoVs in pan,
bounded by T. Fig. (b) shows Min-Zoom and Max-Zoom FoVs to cover T.

simultaneously. An FoV has two bounding edges in each
pan, tilt, and zoom dimensions. Depending on which edge is
bounded by a target, an EFoV can be classified as Min/Max-
Pan/Tilt/Zoom EFoV. For instance, when a target bounds an
EFoV in Min-Zoom, which was defined Section III-A, it is
called as a Min-Zoom EFoV. Definitions for Max-Zoom, Min-
Pan, Max-Pan, Min-Tilt, and Max-Tilt can be constructed in a
similar way.

For example, Figure 5(a) shows how an FoV can created to
bound target T with two edges of pan, creating two EFoVs. De-
pending on the angle they create with the X-axis, we classify
them as either Min-Pan or Max-Pan FoVs. Min-Tilt and Max-
Tilt FoVs can also be shown in similar way. Figure 5(b) shows
two FoVs bounding T with minimum and maximum zoom
values, creating Min-Zoom and Max-Zoom FoVs. Essentially,
Max-Zoom FoV bounds the FoV with Rmin2 and Min-Zoom
FoV bounds the FoV with Rmax1

Note that cameras may not be able to bound a target in the
pan, tilt or zoom dimensions due to the camera’s mechanical
limits. In such cases, the bound is obtained as the nearest legal
camera setting.

Theorem 2: Each MCS is covered by at least one EFoV.

Proof: By definition, every MCS S can be covered by at
least one FoV F . To prove the theorem, we must show that S
can also be covered by an EFoV. We start from the covering
FoV F and show that there also exists an EFoV EF that covers
S by construction.

We start by reducing the zoom of F to the point where
it may no longer be decreased without losing a target, or
the minimum zoom limit is reached, whichever comes first.
Reducing the zoom expands the pan and tilt angles, and
therefore does not remove coverage of any existing targets. If
zoom reduction was stopped to avoid a target loss, the target
will be at the edge of the FoV in the zoom direction; such a
target is a bounding target, defining the Min-Zoom bound of
an EFoV.

Bounding targets (or limits on Pan and/or Tilt movements)
in the remaining two dimensions can also be obtained in a
similar fashion. For example panning the FoV to the left (or
right) until it is bounded by a target, will not lose coverage of
any targets. It will also not remove the zoom bound since the
two directions are orthogonal. Similarly, tilting the FoV up (or

down) until it is bounded by a target, will not affect the pan or
zoom bound, resulting in an FoV that is bounded in all three
axes – this is an EFoV that covers S. With this procedure, we
show that an EFoV exists that covers each maximal subset of
coverable targets. In the special case that F cannot be moved
in one or more dimensions without losing coverage of a target,
then it is already bounded in those dimensions and need only
be moved in the unbounded dimensions, if any, to construct
an EFoV.

Polynomial Number of EFoVs: Thus far, we have shown
that every MCS can be covered by an EFoV. Next we show
that there is only a polynomial number of EFoVs, and conse-
quently, a polynomial number of MCS’.

Each EFoV is bound by 3 (or less if one target is the bound
in more than one direction) targets in the three dimensions. If
there are n coverable targets, a maximum of n3 combinations
of three targets can be generated. Given a group of three
targets, they may each bound the EFoV in any of the three
dimensions. Moreover, in each dimension, the bound can be
in two directions (for example, Min-Pan or Max-Pan). Thus, a
group of 3 targets, can provide the bounds for up to 8 different
EFoVs. Thus, the total number of EFoVs can be no more than
8n3: it is a polynomial function of the number of targets.

V. MAXFOV ALGORITHMS

We now present two polynomial time algorithms for solv-
ing MaxFoV. The first algorithm (Basic Extreme FoV Algo-
rithm (B-EFA), generates all EFoVs and filters out infeasible
or redundant ones. The second algorithm, Geometric Extreme
FoV Algorithm (G-EFA), exploits the geometric structure of the
problem to generate only feasible EFoVs and to find maximal
EFoVs. Finally, we present an FoV centering mechanism
to provide tolerance against target localization errors, since
the targets on the edges of EFoVs are most vulnerable to
localization errors.

A. Basic Extreme FoV Algorithm (B-EFA)

B-EFA simply generates all possible EFoVs. by consider-
ing all possible combinations of three targets to bound an FoV
in all three dimensions. Thus, B-EFA generates 8n3 EFoVs.

Filtering non-Maximal FoVs: Not all groups of three targets
are jointly coverable. For instance, two targets may be in the
front, while the third target may be behind the camera. We
remove such infeasible EFoVs by discarding any FoV that
exceeds the camera’s FoV parameters.

Furthermore, some EFoVs may be redundant (e.g. a group
of three targets can be bounded by both Min-Pan and Max-
Pan), and non-maximal (e.g. CS {T4, T5} in Figure 3, which
is a subset of MCS {T3, T4, T5}). To remove such EFoVs, B-
EFA performs pairwise matching of each of their CS’s with
the other CS’s, resulting in an O(m2) comparisons, where m
is the input number of EFoVs. We implement more efficient
filtering that exploits the geometry of the FoVs in G-EFA.

B. Geometric Extreme FoV Algorithm (G-EFA)

G-EFA avoids creating unnecessary EFoVs by using the
following geometric observations: (1) EFoVs identified by B-
EFA can be infeasible, since many triplets of targets are not
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jointly coverable; and (2) For each triplet of targets, it is suffi-
cient to consider only one EFoV, instead of 8 possible EFoVs.
We now illustrate how G-EFA exploits the two observations
(Algorithm 1 shows the full implementation).

Optimization 1 - Finding only feasible target triplets: Since
an FoV has a limited angle-of-view or AoV (45◦ for Axis
213 PTZ camera at minimum zoom), all the pairs of targets
whose angle with the camera is larger than the camera’s
maximum AoV are not jointly coverable. Thus, to obtain only
jointly coverable triplets of targets, G-EFA considers targets
∈ CoverC ordered in zoom, pan, and tilt dimensions (line 1).
For the first target in decreasing zoom-order (i.e. the farthest
target from camera), TRmax , G-EFA sets the Min-Zoom, ezoom
to cover it (line 2,3). Next it refines the coverable targets set,
say Coverezoom , to consider the only targets that are jointly
coverable with TRmax

(line 4).

G-EFA repeats this process for pan and tilt bounding targets
(lines 5-7): From Coverezoom , it selects a target in pan order,
Tepan

, for which, epan is the Min-Pan. G-EFA refines the
coverable targets set, Coverezoom,epan

, to consider the only
targets that are jointly coverable with TRmax and Tepan . Now,
each target in Coverezoom,epan acts as a bounding target in tilt,
and thus forms a triplet of jointly coverable targets with TRmax

and Tepan . For each such triplet, its corresponding EFoV and
coverage set are constructed (lines 9-11).

Once all triplets of jointly coverable targets with TRmax

and Tepan
are formed, the next target in pan order is selected.

At this point, Tepan
can be safely ignored from Coverezoom

(not from CoverC though), since all triplets with it are already
formed (line 12). We call this process progressive elimination,
which is also applied for each tilt, and zoom bounding targets.

Correctness: To generate feasible target triplets, G-EFA
differs from B-EFA in its use of a progressive elimination
technique. Thus, we show that progressive elimination does
not result in missing any feasible target triplets. Consider
progressive elimination for zoom, where targets are considered
in the decreasing zoom order, and are bounded by Min-
Zoom. In such cases, after generating all EFoVs specific to the
current zoom-bounding target, that target can never be a part of
EFoVs generated using the remaining zoom-bounding targets
(the ones that require lower Min-Zoom). The correctness of it
can be trivially verified based on the definition of Min-Zoom.
Similarly, the correctness of progressive elimination for pan
and tilt dimensions can be shown.

Optimization 2 - Selecting only one out of 8 EFoVs: Note that
G-EFA constructs only one EFoV out of the 8 possible EFoVs
for each triplet of jointly coverable targets (line 9). G-EFA
considers the EFoV bounded by 〈 Min-Zoom,Min-Pan,Min-
Tilt 〉, but we can choose to use either Min-Pan or Max-Pan,
and either Min-Tilt or Max-Tilt. However, for zoom, only Min-
Zoom can be used.

Correctness: The min-bound or max-bound in the pan and tilt
dimensions can be alternatively used because when the zoom
is fixed, the FoV size remains constant. Thus, the FoV can be
moved in pan and tilt dimensions as long as the coverage set
remains the same; thus, we can move the FoV so that it is
bounded in our choice of min-bound or max-bound and still
cover the MCS. However, Max-Zoom bound can not be used,

because as the zoom is increased, the FoV narrows and some
targets may become uncovered.

Algorithm 1: Geometric Extreme-FoV Algorithm
input : CoverC = Set of coverable targets of C
output: E = Set of all EFoVs for C

Sort CoverC three times once for each dimension, pan,1
tilt and zoom
for Trmax ∈ CoverC , the farthest remaining target do2

ezoom = the minimum zoom necessary to cover3
Trmax

.
Coverezoom = the set of targets pairwise coverable4
with Trmax

at zoom ezoom; the targets are sorted in
pan-dimension.
for Tepan

∈ Coverezoom , the bounding target in the5
pan dimension do

Coverezoom,epan
= the set of targets jointly6

coverable with both Trmax
and Tepan

; the
targets are sorted in tilt-dimension.
for Tetilt ∈ Coverezoom,epan

, the bounding7
target in tilt dimension do

Coverezoom,epan,etilt = Coverable targets in8
addition to Trmax, Tepan, and Tetilt.
EFOV = 〈ezoom, epan, etilt〉.9

E = E ∪
〈
EFOV,Coverezoom,epan,etilt

〉
10

Coverezoom,epan
= Coverezoom,epan

\ Tetilt11

Coverezoom = Coverezoom \ Tepan12

Coverezoom = Coverezoom \ Trmax
13

Complexity: While G-EFA has a worst case run-time of
O(n3), geometric bounds help reduce the sizes of Coverezoom
and Coverezoom,epan

significantly. Note that the targets can
be pre-sorted in pan, tilt, and zoom dimensions. In addition,
coverable set construction (line 8) can be performed in O(1),
since the targets are already sorted in the tilt-dimension.

Obtaining Maximal FoVs: G-EFA applies geometric optimiza-
tions to avoid performing m2 pair-wise matching of CS’s to
remove non-maximal and redundant CS’s (recall that m is the
number of generated FoVs):

Optimization 1: If targets Ti ∈ CSF and Tj ∈ CSF ′ are not
jointly coverable, then their coverage sets, CSF and CSF ′ ,
will never have one of them as a proper subset of the other.

Optimization 2: Once a set is found to be redundant, or once it
is compared against all other subsets, it is removed from further
matching consideration. Thus, to facilitate quick detection
and elimination of redundant subsets, we compare the largest
cardinality subsets first, which increases the likelihood of
finding and eliminating redundant subsets quickly.

While complexity of finding maximal FoVs is O(m2),
geometric optimizations help ignore matching many coverage
sets, resulting in a significantly lower runtime for most target
distributions.

C. FoV Refinement using Centering

MaxFoV uses EFoVs that are bounded by targets; this
leaves little tolerance for localization errors for the targets on
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Fig. 6. (a): FoV generation delay ( milliseconds); (b): tolerance of localization
error, represented as a slack (in meters.)

Targets G-EFA Discr 1 Discr 2 Discr 3 Discr 4 Discr 5
40 0.151 47.360 3.432 0.967 0.402 0.294
80 0.424 68.838 5.553 1.961 0.754 0.517

120 1.314 88.097 8.383 2.879 1.361 0.808

TABLE I. TIME (IN SECONDS) TO COMPUTE OPTIMAL CAMERA-FOV
ASSIGNMENTS.

the FoV edges. To increase the tolerance, we apply centering
on the resulting EFoVs. The goal of FoV-centering is to bring
the group of covered targets at the center of the FoV. This is
achieved by adjusting the FoV to maximize the distance (or
slack) of bounding targets from the edges of the FoV.

Specifically, FoV centering is a two step process. First,
we compute a geometric center, Gc, of the FoV coverage set
(covered targets), and adjust pan and tilt to bring Gc at the
center of the FoV. Next, we increase zoom in small steps,
which reduces the slack in pan and tilt dimensions, until the
slacks in all pan, tilt, and zoom dimensions are equal. FoV
centering is applied after the execution of G-EFA.

VI. PERFORMANCE EVALUATION

We evaluate the MaxFoV algorithms using simulation and
a small testbed. The camera testbed consists of Axis 213 cam-
eras [4] integrated with the OpenCV library which provides
implementations of common vision algorithms [1]. The testbed
size and location limits us to experiments with limited numbers
of targets. Thus, to study more general scenarios, we developed
3D camera coverage models within the QualNet simulator. We
carefully modeled the camera parameters in terms of its FoV
and PTZ ranges to match the Axis 213 cameras used in the
testbed. Finally, we present a use case, in which we integrate
G-EFA with coverage maximization algorithms [2], [16] to
study the impact of FoV selection on multi-camera coverage.

A. Simulation: Target Scale and Distribution

In simulation, We study the impact of different scales and
distributions of targets on the number of FoVs generated, the
FoV generation time, and the tolerance for localization errors.

1) MCS Generation: For a single camera, we evaluate B-
EFA and G-EFA to study the EFoV generation overhead and
localization error tolerance for varying number of targets. The
camera and targets are deployed on a 100 × 100 × 100 m3

terrain. The PTZ ranges used for the camera are similar to that
of the Axis-213 camera: Pan: +180◦ to −180◦, Tilt: +90◦ to
−90◦, and 26× zoom (i.e. focal-length range of 3.5 mm to
91 mm).

Uniform Distribution: For the first set of experiments, the
targets and cameras are placed using a uniform distribution
in the simulation area. Results for each setting are obtained
by averaging 20 different runs. Figure 6(a) plots the FoV
generation delay for B-EFA and G-EFA. As expected, the delay
for B-EFA is cubic in nature, as shown in the graph. However,
the FoV generation time for G-EFA is reduced by an average of
96% due to the geometric optimizations reducing the number
of generated FoVs.

Next, to obtain the localization error tolerance, we mea-
sure minimum slack observed after centering MaxFoVs. The
minimum slack is essentially the minimum distance between
the covered targets and the FoV edges. As shown in the
Figure 6(b), minimum slack decreases with the increasing
target density, since more and more targets can fit within an
FoV. However, even for 200 targets, the minimum slack is
about 1.75 m. This shows that G-EFA with FoV-centering
tolerates localization errors even in case of high target density.

2) G-EFA Vs. DISCRETE: In this experiment, we use G-
EFA and DISCRETE as FoV generation approaches for each
camera in a multi-camera setting. The goal of this experiment
is to study the difference in coverage benefit and overhead
using DISCRETE with varying step-size and G-EFA.

For the experiment discussed in Section II-B, G-EFA not
only provides the optimal solution, but also solves the multi-
camera problem in 0.83 seconds. G-EFA generates only 544
FoVs. For varying number of targets, Table I compares the
delay to generate optimal camera-FoV assignments, when G-
EFA and DISCRETE are used. As the target density increases,
G-EFA takes relatively more time as more EFoVs must be
considered. Nonetheless, the delay required by G-EFA is
drastically less than that of DISCRETE with fine step-sizes,
while maintaining optimality.

Figure 7 and 8 represent the percentage of targets covered
and the total number of FoVs generated by all cameras,
respectively. For this experiment, we consider uniform camera
and target deployment in a 3D space of 100×100×100m3. For
the discrete case, x in Discrete x represents the step size. The
results show that irrespective of the number of targets, G-EFA
provides optimal coverage with significantly less overhead
(number of FoVs).

B. Testbed Validation

In this section, we first discuss the camera calibration and
target localization methods used in our testbed experiment,
followed by the evaluation of G-EFA in realistic settings.

1) Calibration and Target-localization: For the miniatur-
ized testbed, we perform calibration and target localization
to automatically obtain world coordinates of the targets. The
coordinates of cameras are assumed to be known. The cameras
first map their PTZ parameters to the world coordinates; this
process is called calibration. We use landmark-based calibra-
tion using anchor targets whose world coordinates are known
in advance. The cameras view the anchors in various FoVs by
slightly altering their PTZ parameters, allowing them to local-
ize using known approximation techniques. The cameras then
detect the targets (circles), and localize them by transforming
the local PTZ parameters to the world coordinates.
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Fig. 10. People monitoring scenario Fig. 11. Maximal EFoVs
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We observed an average accuracy error in localization is
around 1.3 cm, which translates to around 2% error in the
testbed area. Figure 9 shows localization errors in a random
scenario with 10 targets. More advanced location estimation
techniques, such as SLAM and SURF [6], can also be used.

2) MCS Generation: We now demonstrate the applicability
of MCS generation process of G-EFA in realistic settings. Our
experiments are based on a people monitoring application. We
begin with a small scale experiment, where two cameras are
trying to monitor four persons standing in a room. For our
subsequent experiments, we abstract a person’s face into a
circle (or dot) primarily for three reasons: (1) to work with
medium-scale scenarios of targets; (2) to maintain privacy of
people; and (3) to miniaturize the testbed space to efficiently
perform the testbed specific operations.

Camera Testbed: Figure 10 shows the topology of two
cameras (Cam1 and Cam2) monitoring four persons (P1 to P4).
Coordinates of the center of a person’s face is considered as a
target’s coordinate. EFoVs cover the whole face by adjusting
the epan and etilt angles by the angle constituting half side
of a face. Each camera locally executes G-EFA and generates
MCS’s (EFoVs) as shown in the figure.

Recall that G-EFA only needs to consider either Min-Pan
and Min-Tilt, or Max-Pan and Max-Tilt out of the all possible
EFoVs that it can generate by keeping bounding targets on the
edges. We show both the types of EFoVs–all EFoVs except
EFoV 2 for Cam2 are Min-Pan and Min-Tilt based. EFoV 2
for Cam2 has its Max-Pan bounded by P4 and Max-Tilt
bounded by P3. In contrast, a Min-Pan and Min-Tilt based
version of EFoV 2 for Cam2 would have bounded P3 in Pan
and P4 in Tilt dimensions.

3) G-EFA Vs. DISCRETE: We compare G-EFA and DIS-
CRETE in the miniature testbed by placing 20 targets ran-
domly in an area of 50×16 cm2. In this area, the camera has an
overall pan and tilt range of around 48◦ and 10◦, respectively.
G-EFA provides 9 MCS for this scenario, all of which were
detected in the testbed. In the DISCRETE experiment, we vary
the step size of pan and tilt by 1◦, 3◦, 5◦ and 10◦. Figure 12
shows the number of FoVs generated, and the number of
MCS detected under each step size. At smaller step-sizes, the
number of FoVs generated is large. However, most of the FoVs
generated are redundant; redundant FoVs cover a sub-set of
the targets that are already covered in a non-redundant FoV.
For example, at a step-size of 1◦, there are 477 FoVs that are
generated, out of which only 9 FoVs are non-redundant. All
the targets tracked in other 468 are already tracked in at least
one of the 9 non-redundant FoVs.

The number of MCS detected also varies depending on
the step-size. Smaller step size aids in detecting all the MCS,
which are calculated by the G-EFA algorithm. Larger step-size
misses a majority of the MCS. For example, with a step-size
of 10◦, only 4 out of 9 MCS are detected. Thus, DISCRETE
algorithm either results in large number of redundant FoVs or
detects only a small fraction of available MCS; both hinder
the coverage algorithm to track maximum number of targets.

C. Use-case: Target Coverage Maximization

We now present a use-case for a multi-camera coverage
maximization approach. Our approach is two-fold: (1) G-EFA
is applied to generate MCS’s for each camera; (2) Using the
MCS’s for all cameras as an input, existing target coverage
maximization approaches [2], [16] are run in testbed and in
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Fig. 13. Clustered Placement of Tar-
gets. Fig. 14. G-EFA Use-case: Optimal vs Greedy Fig. 15. Simulation: coverage maxi-

mization

simulation to generate best camera-FoV assignments to cover
maximum unique targets. We modify the existing approaches,
developed for 2D coverage using Pan-only cameras, to incor-
porate the 3D coverage model for PTZ cameras.

In testbed, we evaluate two multi-camera algorithms,
greedy and the centralized optimal. In the greedy approach,
each camera locally configures the EFoV that maximizes the
number of targets covered by that camera. In the centralized
optimal approach, EFoVs of all cameras are provided to a
central solver that generates optimal camera-FoV assignments
to cover maximum unique targets [16]. To compare the two
strategies, we deploy cameras and targets as shown in Fig-
ure 13. Figure 14 shows that greedy coverage fails to track
two targets whereas the optimal coverage tracks all the targets.

In simulation, we study the existing centralized and dis-
tributed heuristics: Centralized Greedy Approach (CGA), Cen-
tralized Force-based Approach (CFA), and Distributed Greedy
Approach (DGA) [2], [16]. We do not describe these ap-
proaches in the interest of space. We deploy 10 cameras with
varying target density uniformly on a 100 × 100 × 100m3

terrain. The algorithms use G-EFA (denoted as * efa) and
Discrete 1 (denoted as * d) FoV generation approaches. In
Figure 15, it is interesting to note that not only the Opti-
mal efa, but also the centralized heuristic, CFA efa, provides
better coverage than the Optimal d approach.

VII. CONCLUDING REMARKS

We considered the coverage problem for PTZ smart camera
networks. The degrees of freedom in the selection of FoVs for
PTZ cameras make it prohibitively expensive to consider all
possible FoVs. We formulated a MaxFoV problem whose goal
is to identify FoVs representing the maximal subsets of targets.
MaxFoV is a new problem fundamental to target coverage in
sensor networks with PTZ cameras. We showed that MaxFoV
is at least as difficult as generating all maximal cliques in
a graph, which, for general graphs, is NP-hard. For some
special graphs, number of maximal cliques is known to be
polynomial. The geometric nature of PTZ coverage also makes
MaxFoV polynomial, which we demonstrated by constructing
an efficient algorithm to optimally solve the problem with a
worst case complexity of O(n3). We showed the correctness of
the algorithm and studied its performance and run-time both
in a testbed and in a simulation environment. The proposed
algorithm substantially outperforms the existing schemes by
providing only the essential FoVs that are required for optimal
coverage, thus significantly reducing the time required to solve
coverage problem in multi-camera networks.
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