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Abstract—Glycemic variability, or fluctuation in blood glucose
levels, is a significant factor in diabetes management. Excessive
glycemic variability contributes to oxidative stress, which
has been linked to the development of long-term diabetic
complications. An automated screen for excessive glycemic
variability, based on the readings from continuous glucose
monitoring (CGM) systems, would enable early identification
of at risk patients. In this paper, we present an automatic
approach for learning variability models that can routinely
detect excessive glycemic variability when applied to CGM data.
Naı̈ve Bayes (NB), Multilayer Perceptron (MP), and Support
Vector Machine (SVM) models are trained and evaluated on
a dataset of CGM plots that have been manually annotated
with respect to glycemic variability by two diabetes experts.
In order to alleviate the impact of noise, the CGM plots are
smoothed using cubic splines. Automatic feature selection is
then performed on a rich set of pattern recognition features.
Empirical evaluation shows that the top performing model
obtains a state of the art accuracy of 93.8%, substantially
outperforming a previous NB model.

Index Terms—classification, glycemic variability, diabetes

I. INTRODUCTION

Over 220 million people have diabetes, a disease in which
the body fails to effectively produce or use insulin, an essential
hormone needed to convert food into energy [1]. Although
diabetes can not be cured, it can be treated and managed. The
focus of diabetes management is blood glucose control. By
keeping blood glucose profiles as close to normal as possible,
patients can delay or avoid serious diabetic complications,
including heart disease, kidney failure, blindness, and strokes
[2]. Patients are routinely monitored for hyperglycemia, or
high blood glucose levels, as well as for hypoglycemia, or low
blood glucose levels. There is a recent growing awareness that
excessive glycemic variability, or fluctuation in blood glucose
levels, also contributes to diabetic complications [3], [4], [5],
[6], [7], [8]. However, patients are not yet routinely screened
for excessive glycemic variability in clinical practice. There
is no definitive metric for glycemic variability; nor is there
any available tool to detect excessive glycemic variability [9].
Yet, diabetes specialists readily recognize excessive glycemic
variability when they see it in blood glucose plots. This
situation motivated the use of machine learning classification

to capture physician perception in an automated screen for
excessive glycemic variability.

II. PRELIMINARY STUDY

A preliminary study was conducted in [?] to assess the
feasibility of automatically classifying blood glucose profiles
as exhibiting excessive or acceptable glycemic variability. A
synopsis of this previous effort is provided in this section to
set the stage for the current work. Blood glucose profiles of
diabetes patients were obtained via continuous glucose moni-
toring (CGM) systems with sensors that sample blood glucose
levels at 5-minute intervals. Actual CGM plots illustrating
excessive and acceptable glycemic variability are shown in
Figure 1.

(a) Excessive glycemic variability (b) Acceptable glycemic variability

Fig. 1. Blood glucose plots obtained through continuous glucose monitoring.

Two physicians were individually shown approximately 300
CGM plots and asked to rate them as excessively variable or
not. The physicians concurred in their classifications of 218
plots. These were given as training examples to a naı̈ve Bayes
classifier, using as features three domain dependent metrics:
mean amplitude of glycemic excursion (MAGE), distance
traveled (DT), and excursion frequency (EF).

MAGE was the first glycemic variability metric [10], and
it remains the most respected [9]. MAGE calculates the mean
distance between the local minima and maxima of a blood
glucose plot. Only distances exceeding the standard deviation
of the blood glucose values are included in the aggregate. DT
and EF were devised to account for aspects of variability
not captured by MAGE. DT is the sum of the distances
between each pair of consecutive data points; it captures
overall fluctuation. EF counts the number of blood glucose
excursions. These are the distances between the local minima



and maxima. Only distances greater than 75 mg/dl are included
in the count.

To evaluate performance, each physician was asked to
classify 100 randomly selected blood glucose plots twice.
The naı̈ve Bayes classifier had 85% accuracy on the 61 plots
for which physicians gave consistent and concordant classifi-
cations. This preliminary work established proof of concept
and was previously reported in [?]. The rest of this paper
describes our subsequent research on methods for improving
the glycemic variability classification performance.

III. SUPERVISED LEARNING FOR EXCESSIVE GLYCEMIC
VARIABILITY DETECTION

Our new approach to detecting excessive glycemic variabil-
ity is developed along three orthogonal directions: noise elim-
ination, feature engineering, and learning algorithms. First,
we describe methods for smoothing CGM data to eliminate
random noise from the CGM sensors. We then propose a
rich set of classical pattern recognition features with the
aim of modeling aspects of blood glucose variability not
captured by MAGE, DT, and EF. Optimal subsets of features
are created by running automatic feature selection algorithms
on a separate development dataset, either independent of, or
guided by, the actual learning algorithm. Finally, we train
and evaluate Support Vector Machines (SVM) and Multi-layer
Perceptrons (MP), two general learning algorithms known to
obtain state-of-the-art generalization performance in a wide
array of domains, and compare them against a previously
proposed Naı̈ve Bayes (NB) approach.

IV. NOISE ELIMINATION

Smoothing and filtering CGM data has gained interest in
the diabetes technology community recently [11], [12]. This is
because CGM sensors do not record data with 100% accuracy.
The sensors used in this study are known to record values
at ±20% of the actual blood glucose level [13]. Physicians
implicitly smooth the original sequence of values recorded by
the CGM sensor. Figure 2 shows an example plot of CGM
data on which a physician has explicitly marked the actual
graph used for making diagnostic decisions. We investigated

Fig. 2. An example of how a physician smooths a daily plot of CGM data.

a number of smoothing techniques such as simple moving
averages, exponential moving averages, polynomial regression

with L2 regularization, low pass discrete Fourier transform
filter, and cubic spline smoothing. Since smoothing the CGM
data using cubic splines was identified by the physicians to
best correspond with their implicit smoothing process, we
chose to use this method to preprocess the entire dataset.

A. Smoothing CGM Graphs with Cubic Splines

Cubic spline smoothing is a regularized version of cubic
spline interpolation. Given a set of n points {(xi, yi)}, the
objective of cubic spline interpolation is to connect adjacent
points using simple cubic functions Si, as follows:

Si(x) = ai(x−xi)3+bi(x−xi)2+ci(x−xi)+di,∀x ∈ [xi, xi+1]

While this type of interpolation produces smooth curves, ran-
dom noise from the CGM data is still preserved in the resulting
spline. In cubic spline smoothing, the spline S = {Si} is
allowed to deviate from the original data points, at the same
time requiring that the spline and its first and second derivative
remain continuous at all points {(xi, yi)}. In our approach,
the spline is determined by minimizing the objective function
shown in Equation 1 below:

L =

n∑
i=1

wi
Z

(Si(xi)− yi)2 +
λ

xn − x1

∫ xn

x1

|S
′′
(x)|

2
dx (1)

where wi/Z is a normalized weight associated with the i’th
point and Z =

∑
wi is the normalization constant. When

smoothing the CGM plot, the physicians draw a curve that
passes through the significant (i.e. least noisy) local optima.
To replicate this behavior, a subset of local optima is identified
automatically by examining a window of 90 minutes before
and after each CGM point. If the point is the maximum or
minimum value out of all points in the window, then that point
is considered to be a significant local optima. Correspondingly,
each wi is defined as:

wi =

{
C, if (xi, yi) is a significant local optima
1, otherwise

A local optima weight of C = 1000 was found to obtain the
best smoothing behavior on the development data.

Fig. 3. Cubic spline smoothing with λ = e−20 and C = 1000.

Minimizing the first term of Equation 1 leads to a curve
that is close to the original data points, and especially close
to the significant local optima because of the larger weights.



The second term corresponds to the average curvature of the
spline, and its minimization is meant to effectively smooth
away the noise in the original graph. The parameter λ controls
the trade-off between the two terms. When λ = 0, the result
is an interpolating spline that passes through every data point,
with a volatile concave-convex behavior. At the other extreme,
a large value for λ results in a straight line. To avoid issues
with missing data points and different starting times of the
first CGM reading, we normalize the total curvature of the
spline by the length of the graph. Because the number of local
optima is not constant for every plot, the weights wi are also
normalized. An example of this type of smoothing is shown
in Figure 3.

V. FEATURE ENGINEERING

The original set of domain specific features described in [?]
contains MAGE, distance traveled and excursion frequency.
To increase the discriminative performance of the model, we
augment the feature set with a rich set of pattern recognition
features. Table I contains a summary of the features investi-
gated in this work.

TABLE I
INVESTIGATED FEATURES.

Feature Description
MAGE Mean Amplitude of Glycemic Excursion
EF Excursion Frequency
DT Distance Traveled
σ Standard Deviation

AUC Area Under the Curve
RR Roundness Ratio
BE Bending Energy
ε Eccentricity

DCi Direction Codes, for 1 ≤ i ≤ 3
FFi Amplitudes of low DFT frequencies for 1 ≤ i ≤ 24
µpq 2-Dimensional central moments of order p+ q ≤ 3

A. Excessive Glycemic Variability Detection Features

1) Standard Deviation: Given a CGM graph represented as
a sequence of points {(xi, yi)}, this feature is computed as the
sample standard deviation over the set of measurements {yi}.
The intuition is that an excessively variable day will have a
higher standard deviation than an acceptable day.

2) Area Under the Curve: This feature is computed as
the total area between the CGM graph and a horizontal line
corresponding to the minimum blood glucose level measured
for that day. Figure 4 shows a blood glucose plot in which
the shaded region is used to compute the area under the
curve (AUC). The intuition is that a larger area correlates with
increased glycemic variability.

3) Central Image Moments: Image moments are computed
on the pixel intensities of a given image and can be used to
derive useful properties of the image such as the total intensity,
centroid, orientation, and moment of inertia. To compute the
image moments of a CGM graph, we use the 2-dimensional
region shown in Figure 4. If we use C to denote this region and

Fig. 4. Area under the curve for the CGM plot shown in Figures 2 and 3.

f(x, y) for the binary intensity values at any pixel position,
then the image moments are calculated as follows:

mpq =
∑
x

∑
y

xpyqf(x, y) (2)

For m00, this equation computes the total number of points in
the object. If the entire image contains N ×M pixels, then
the N ×M moments mpq of order p+ q uniquely determine
the image. The lower order moments can therefore be used
to summarize the image. Since glycemic variability does not
change when the CGM region is translated, we will be using
instead the lower order central moments, modified versions of
image moments that are translation invariant.

Using m00 along with m10 and m01, the center of mass of
each axis can be computed, which then gives the centroid of
the shape (x̄, ȳ):

x̄ =
m10

m00
, ȳ =

m01

m00

The central image moments are then computed as follows:

µpq =
∑
x

∑
y

(x− x̄)p(y − ȳ)qf(x, y) (3)

As features for variability detection we use central moments
of order up to 3, i.e. µ11, µ20, µ02, µ21, µ12, µ30, and µ03.
Moment µ00 is excluded, since it is equivalent to the already
considered AUC feature.

4) Eccentricity: Eccentricity can be thought of as the ratio
between the maximum and minimum distance from the bound-
ary of the object to its centroid [14]. Eccentricity conveys how
much the shape of an object deviates from being circular, or
equivalently, how elongated the object is. It is computed as in
Equation 4 below, using central image moments:

ε =
(µ20 − µ02)2 + 4µ11

µ00
(4)

The intuition behind using this feature is that an acceptable day
is expected to be more elongated than an excessively variable
day, and consequently will have a higher eccentricity.

5) Discrete Fourier Transform: Using the Discrete Fourier
Transform (DFT), the sequence {yi} of n CGM measurements
in the time domain is transformed into a sequence {Yk} of n
complex sinusoidal components in the frequency domain, as
shown in Equation 5 below, where e−

2πj
n is the n-th complex



root of unity:

Yk =

n−1∑
i=0

yie
− 2πj

n ki,where k = 0, 1...n−1 (5)

The corresponding time points {xi} are sampled every 5
minutes for an entire day, resulting in n = 288 samples
{yi}. The complex numbers {Yk} represent the magnitude and
the phase of the sinusoidal components of the sampled input
function {yi}. A particular Yk corresponds to a sinusoidal
component with frequency k/n cycles per day. Like the image
moments, the DFT uniquely determines the original signal;
therefore, we can use the lower frequencies to summarize
the CGM graph. Since very rapid fluctuations are indicative
of noise, we use as features the magnitudes of the first 24
components, i.e. {||Yk||, 1 ≤ k ≤ 24}. By ignoring the
component Y0 (a real number), we make the DFT feature set
translation invariant.

6) Roundness Ratio: This feature is a ratio between the
perimeter of the CGM graph and its area. If {pi = (xi, yi)}
is a sequence of n CGM points, then the perimeter and the
roundness ratio are defined as in Equation 6 below:

RR =
P 2

4πµ00
,where P =

n−1∑
i=1

‖pi+1 − pi‖ (6)

In the general case of 2D objects, this feature will take
the value of 1 for a perfect circle, and larger values as the
objects deviate more from a circular shape. If an acceptable
day resembles a rectangle and an excessively variable day
resembles a similar rectangle that is much more jagged (a
similar area with a larger perimeter), then the roundness ratio
of the excessively variable day will be much larger than that
of the acceptable day. Due to its dependence on the perimeter,
smoothing CGM data is expected to enhance the discriminative
power of this feature.

7) Bending Energy: Bending energy computes the average
curvature of the CGM graph {(xi, yi)}, as shown in Equation
7 below, in which P refers to the perimeter.

BE =
1

P

n−2∑
i=1

(θi+1−θi)2,where θi = arctan
yi+1 − yi
xi+1 − xi

(7)

Due to larger and more frequent fluctuations in blood glucose
levels, an excessively variable day should have a higher bend-
ing energy than a day with acceptable variability. Smoothing
CGM data is expected to improve the discriminative power
of this feature because the angles between consecutive points
become less sensitive to random noise.

8) Direction Codes: A direction code (DC) is the abso-
lute difference between the values of two consecutive blood
glucose readings. Consequently, a CGM plot with n blood
glucose measurements has n − 1 direction codes. Direction
codes for the entire day are placed into bins, depending on
their value. A bin bi is defined by a minimum DC value lowi
and a maximum DC value highi, i.e. bi = [lowi, highi). If
ci is the total number of direction codes falling into bin bi,

then the corresponding direction code feature is defined as
DCi = ci/(n−1). The bins used to define the DC features for
this application are b1 = [0, 3), b2 = [3, 6), and b3 = [6, 9). We
arrived at this particular set of bins by analyzing histograms
of direction codes on the CGM data.

(a) Excessively variable day (b) Acceptable day

Fig. 5. Direction code histograms on smoothed data.

Figure 5(a) shows the histogram of direction codes on the
smoothed CGM data for the excessively variable day presented
in Figure 2. Figure 5(b) shows a histogram for a different day
with acceptable variability. The width of each bin in these two
histograms is 2 mg/dl. When comparing the two figures, there
is an obvious shift of distribution into the first bin, indicating
fewer 5-minute blood glucose spikes on the acceptable day.
This behavior was consistent across different days of data. A
similar, albeit less pronounced difference, was also observed
in the histograms of direction codes on raw CGM data when
using a bin width of 5 mg/dl.

Based on the analysis of these histograms, a bin width
of 3 mg/dl was chosen. This width would only introduce
three DC features, adding finer granularity to the raw data
histograms and capturing most of the distribution variation in
the smoothed data histograms. Using the three bins b1 = [0, 3),
b2 = [3, 6), and b3 = [6, 9) means that direction codes with
value greater than 9 are ignored (these direction codes are still
counted in the total number n− 1).

B. Feature Selection

Automatic feature selection was performed on the devel-
opment dataset for both raw and smoothed CGM data. We
investigated filter methods based on the Pearson’s Correlation
Coefficient (PCC) and the t-test, and the wrapper approach
using greedy backward elimination.

1) Filter Methods: The proposed features in Table I were
ranked using Welch’s t-test (unequal variance two sample t-
test). Table II shows the features ranked based on their p-value,
using bold for features whose p-value is less than a threshold
that was determined based on performance on the development
data. Features which did not meet this criteria were filtered
out. Filtering features using the PCC did not result in better
performance on the development data.

2) Wrapper Methods: Greedy backward elimination was
performed 10 times on the development data set, using all but
one of the 10-folds as training data. The features which were
most common from the results of wrapper selections across
the 10 folds were chosen. The features selected using the raw



and the smooth CGM data are shown in bold in the last two
columns of Table II.

TABLE II
FEATURE SELECTION USING t-TEST AND BACKWARD ELIMINATION.

T -test Filter (p-value) Backward Elimination
Raw Smooth Raw Smooth

AUC (2×10−11) DC1 (2×10−9) DC1 DT

EF (3×10−10) DT (4×10−8) FF1 FF12 RR

DT(3×10−9) AUC (5×10−8) EF DC3

σ (5×10−9) DC3 (1×10−7) µ20 MAGE

DC1 (1×10−8) EF (6×10−7) ε σ

DC3 (4×10−8) σ (7×10−7) σ AUC

MAGE (1×10−7) µpq (2×10−5) DT EF

µpq (2×10−7) DC2 (3×10−5) MAGE ε

DC2 (1×10−3) MAGE (4×10−5) RR DC1

ε (2×10−3) FFi (8×10−5) DC3 DC2

FFi (3×10−2) RR (9×10−5) BE BE

RR (0.12) BE (2×10−3) AUC FFi
BE (0.30) ε (5×10−3) DC2 µpq

The four sets of selected features shown in Table II are quite
different from each other. No feature appears in all four sets.
Direction Codes, Excursion Frequency, Standard Deviation,
and Distance Traveled were the only features that appeared in
three of the four feature sets. The only features that were not
selected in any of the four sets are Eccentricity and Bending
Energy. The fact that the four feature sets are very different
indicates that the features overlap in terms of the CGM plot
information they encode. In the backward elimination setting,
the Fourier features were selected only when using raw data.
This behavior is consistent with our expectation that smoothing
eliminates some of the random noise from the CGM data.

VI. EXPERIMENTAL EVALUATION

In preliminary work, the best performance on excessive
glycemic variability detection was obtained using a naı̈ve
Bayes learning algorithm. We now believe that the naı̈ve Bayes
model is not the most appropriate algorithm for this prob-
lem. Naı̈ve Bayes assumes that the features are independent
of each other given the class label, which is not the case
for our extended set of features. EF and DT, for example,
are not independent, since each excursion greater than 75
mg/dl represents a large distance traveled. This motivated
us to explore Multilayer Perceptrons (MP) [15] and Support
Vector Machines (SVM) [16], [17], two learning algorithms
that can seamlessly accommodate overlapping features. MPs
that are implemented as a backpropagation network with
enough hidden nodes can approximate any decision surface
[18]. Similarly, an SVM with a Gaussian kernel is a very
flexible learning model, as it can approximate highly non-
linear decision boundaries.

The MP and SVM parameters are tuned using grid search
on a separate development dataset – the same data that is also
used for feature selection. There are 262 examples in the entire
glycemic variability dataset, 187 positive and 75 negative.
The development dataset is created from 52 randomly chosen
examples, 37 positive and 15 negative. The remaining data

is used for training and evaluating the models, using 10-fold
cross validation. The distribution of the output label in the
development set is similar to the label distribution in each
of the 10 folds. The same setting (same folds, and same
development data) is used for evaluating all the systems. The
overall evaluation process is illustrated in Figure 6 below.

Fig. 6. Illustration of the evaluation setting.

The MP uses the development set to find optimal values for
the learning rate and momentum, parameters that control the
speed at which the MP corrects itself. The SVM model uses
the development set to find the best kernel, and then it re-uses
the development set to find optimal parameters for the capacity
parameter and the kernel parameters. In all tuning experiments,
the Gaussian kernel obtained the best performance. The width
of the Gaussian kernel was then optimized on the same
development data. We used the Weka implementation [19] for
the naı̈ve Bayes model and the Multilayer Perceptron. We used
LibSVM [20] for the SVM implementation.

A. Results and Discussion

We report performance using accuracy, sensitivity, and
specificity, three error metrics that are commonly used for
analyzing the performance of classifiers in the medical domain.

We evaluated the model developed in the preliminary study
by training a naı̈ve Bayes classifier on raw data using only
the three original features: MAGE, Excursion Frequency, and
Distance Traveled. The 10-fold cross validation results are
shown in Table III as NB Raw.

TABLE III
PRELIMINARY RESULTS USING 10-FOLD CROSS VALIDATION.

Model Accuracy Sensitivity Specificity
NB Raw 87.1% 78.3% 90.6%

Table IV shows the results of the 10-fold cross validation
evaluation for each of the three learning models, using the
features automatically selected by the t-test filter. This is
shown for both raw and smoothed CGM data. Table V shows
the performance of the three learning models when the features
are automatically selected using greedy backward elimination.
Accuracy, sensitivity, and specificity were reported using the



default probability threshold of 0.5 for the NB model and the
trained decision boundary for the SVM and MP models.

TABLE IV
RESULTS OF 10-FOLD EVALUATION USING t-TEST FILTERING OF

FEATURES.

Model Accuracy Sensitivity Specificity
NB Raw 87.1% 81.6% 89.3%
NB Smooth 91.9% 91.6% 92.0%
MP Raw 90.0% 83.3% 92.6%
MP Smooth 91.4% 85.0% 94.0%
SVM Raw 89.5% 78.3% 93.3%
SVM Smooth 92.8% 88.3% 94.6%

TABLE V
RESULTS OF 10-FOLD EVALUATION USING GREEDY BACKWARD

ELIMINATION OF FEATURES.

Model Accuracy Sensitivity Specificity
NB Raw 91.9% 88.3% 93.3%
NB Smooth 89.5% 85.0% 91.3%
MP Raw 91.4% 85.0% 94.0%
MP Smooth 93.8% 86.6% 96.6%
SVM Raw 92.8% 85.0% 96.0%
SVM Smooth 91.4% 80.0% 96.0%

When using automatic feature selection, the best accuracy
of 93.8% is obtained by the MP model trained on smooth
data, with a feature set selected through greedy backward
elimination. Smoothing the data increases the performance
consistently when using feature sets selected through the t-test.
Smoothing also improves the accuracy of the best performing
system in the greedy backward elimination setting. A one
sided, paired t-test was performed to investigate the signifi-
cance in improvement between the two best systems shown in
bold in Tables IV, V, and the previous NB system shown in
Table III. The improvements are significant at levels p < 0.01.
A more detailed analysis of the statistical significance of the
results is presented in the Appendix.

Figure 7 shows the receiver operating characteristic (ROC)
curves computed for: the previous NB system (Table III),
the current best accuracy system (Table V), and the best
accuracy system using a t-test filter (Table IV). To compute
the ROC curves, a probability threshold was varied against the
probabilities computed by the NB model on the test instances.
For the SVM and MP models, the ROC points where obtained
by comparing the value of the decision function against a
variable threshold.

One interesting result is that, in terms of area under the ROC
curve, the best system is the SVM trained on smooth data with
filtered features, and not the Multilayer Perceptron with greedy
backward elimination that obtained the best accuracy.
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Fig. 7. Comparison of ROC curves for the best classifiers.

VII. CONCLUSIONS AND FUTURE WORK

We have shown that excessive glycemic variability can
be automatically detected with high accuracy by training
classification models on a small dataset of CGM graphs
manually annotated by two diabetes experts. The new models
exploit a rich set of pattern recognition features and are trained
using two high performance learning algorithms. Experimental
results show that smoothing the CGM data leads to significant
improvements in performance, and consequently, the current
best models substantially outperform a previously proposed
Naı̈ve Bayes model. Furthermore, our results indicate that
top performance can be obtained using domain independent
pattern recognition features to augment and/or replace domain
specific metrics.

A constraint that we faced during development of the current
models was the relatively small size of the glycemic variability
dataset. In order to obtain statistically significant results from
the 10-fold cross validation, we had to limit the size of the
development set, which may have led to suboptimal parameters
and imperfect feature selection. Collecting more annotated
CGM plots from diabetes experts is therefore a high priority
for future work.

We also plan to change the binary annotation scheme to a
“5-star” ordinal scheme wherein physicians would annotate
CGM plots using 5 ordered labels, from least variable (1
star) to excessively variable (5 stars). This new annotation
scheme would alleviate the problem of disagreement between
annotators, with minimal additional effort for the annotators.
The new annotations have the potential to further improve
accuracy when used in an ordinal regression setting [?].

Once refined, this work could be applied as a routine clinical
screen to identify at risk patients. Currently, the requisite
CGM data may be obtained in one of two ways. Real-time
CGM may be integrated with the insulin pumps worn by
patients with type 1 diabetes. Retrospective CGM may be
used diagnostically for patients with any type of diabetes, for
from 3 to 7 days at a time. If a patient were to use CGM



for the week preceding an office visit, automated excessive
glycemic variability detection could inform clinical diabetes
management.
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APPENDIX

Tables VI through VIII show the accuracy results previously
reported in Section VI-A, together with their standard devia-
tion computed over the 10 folds. Additionally, the tables show
the confidence intervals associated with confidence levels of
95% and 99%.

TABLE VI
NB PRELIMINARY RESULTS.

Model Accuracy σ 95% 99%
NB Raw 87.1% 5.0% ±3.1% ±4.1%

TABLE VII
t-TEST FILTERING.

Model Accuracy σ 95% 99%
NB Raw 87.1% 3.9% ±2.4% ±3.1%
NB Smooth 91.9% 3.9% ±2.4% ±3.1%
MP Raw 90.0% 4.7% ±2.9% ±3.8%
MP Smooth 91.4% 6.6% ±4.1% ±5.4%
SVM Raw 89.5% 5.6% ±3.4% ±4.5%
SVM Smooth 92.8% 6.4% ±3.9% ±5.2%

TABLE VIII
GREEDY BACKWARD ELIMINATION.

Model Accuracy σ 95% 99%
NB Raw 91.9% 5.0% ±3.1% ±4.1%
NB Smooth 89.5% 4.9% ±3.0% ±4.0%
MP Raw 91.4% 4.3% ±2.7% ±3.5%
MP Smooth 93.8% 5.9% ±3.6% ±4.8%
SVM Raw 92.8% 5.1% ±3.1% ±4.1%
SVM Smooth 91.4% 5.8% ±3.6% ±4.7%
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