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Abstract—The topology of the Internet at the Autonomous
System (AS) level is not yet fully discovered despite significant
research activity. The community still does not know how many
links are missing, where these links are and finally, whether the
missing links will change our conceptual model of the Internet
topology. An accurate and complete model of the topology would
be important for protocol design, performance evaluation and
analyses. The goal of our work is to develop methodologies and
tools to identify and validate such missing links between ASes. In
this work, we develop several methods and identify a significant
number of missing links, particularly of the peer-to-peer type.
Interestingly, most of the missing AS links that we find exist as
peer-to-peer links at the Internet Exchange Points (IXPs). First,
in more detail, we provide a large-scale comprehensive synthesis
of the available sources of information. We cross-validate and
compare BGP routing tables, Internet Routing Registries, and
traceroute data, while we extract significant new information from
the less-studied Internet Exchange Points (IXPs). We identify
40% more edges and approximately 300% more peer-to-peer
edges compared to commonly used data sets. All of these edges
have been verified by either BGP tables or traceroute. Second,
we identify properties of the new edges and quantify their effects
on important topological properties. Given the new peer-to-peer
edges, we find that for some ASes more than 50% of their paths
stop going through their ISPs assuming policy-aware routing. A
surprising observation is that the degree of an AS may be a poor
indicator of which ASes it will peer with.

Index Terms—BGP, Internet, inter-domain, measurement,
missing links, routing, topology.

I. INTRODUCTION

A N ACCURATE and complete model of the Internet
topology is critical for future protocol design, perfor-

mance evaluation, simulation and analysis [1]. The current
initiatives of rethinking and redesigning the Internet and its
operation from scratch would also benefit from such a model.
However, it remains as a challenge to develop an accurate
representation of the Internet topology at the AS level, despite
the recent flurry of studies [2]–[9]. Currently, there is a list of
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sources that contain such topological information. The list in-
cludes archives of BGP routing tables, archives of BGP routing
updates, Internet Routing Registries, and archives of traceroute
data. Each of these sources has its own advantages, but each
of them also provides an incomplete, sometimes inaccurate
view of the Internet AS topology, while these sources are
often complementary. Furthermore, as far as we know, IXPs
(Internet Exchange Points) have not received attention in terms
of Internet topology discovery, although they play a major role
in the Internet connectivity.

There are two major contributions in this work. First, we
design and implement a systematic framework for discovering
missing links in our current Internet topology snapshot, and pro-
vide two novelties compared to previous studies—the compre-
hensive synthesis of different data sources and the extraction
of topological information from IXPs. Second, we apply our
framework and conduct an in-depth study of the importance of
these new links, and improve our understanding of the Internet
topology at the AS level.

In more detail, our framework first identifies and validates
a significant number of AS links by a careful cross-reference
and synthesis of most known sources of information: BGP ta-
bles, traceroute, and IRR [10].1 Second, our framework extracts
significant new topological information from Internet Exchange
Points (IXPs); such information is typically not used in topo-
logical studies. While prior work [11] has proposed methods to
identify participating ASes at IXPs, our study greatly extends
their work and overcomes certain limitations.

Note that we set a highly selective standard in our framework:
we only accept edges which are verified by BGP tables or from
traceroute data. In other words, we do not provide a union of
the existing sources of information, but a critical synthesis. To
achieve this goal, we develop a large scale traceroute-based tool,
RETRO, to confirm the existence of edges, which we suspect
exist.

We arrive at several interesting observations. First, we find
a significant number of new edges, including 40% more edges
(15%) and approximately 300% more peer-to-peer edges (65%)
as compared to the widely used Oregon Routeviews data set
(all available BGP routing tables, respectively). Second, most of
the newly discovered edges are peer-to-peer edges: the current
topological models have a bias by under-representing peer-to-
peer edges. Third, most missing peer-to-peer AS links that we
find are at the IXPs: Our results show that nearly 95% of the

1We use IRR information as a source for optimizing the traceroute discovery
effort shown later in this paper. All AS edges reported here are verified either
by BGP tables or traceroute.

1063-6692/$25.00 © 2008 IEEE



2 IEEE/ACM TRANSACTIONS ON NETWORKING

peer-to-peer links missed from the BGP tables are incident at
IXPs. This suggests that exploring the connectivity at IXPs may
help us identify hidden edges between ASes that participate at
IXPs. Fourth, IRR is a good source of hints for finding new
edges, especially after it is filtered using a state of the art tool
[12] for this purpose.

We find that the new edges significantly change our view of
the Internet AS topology, and we also identify interesting pat-
terns of the new edges. First, the new edges change the models
of Internet routing and financial implications that previous
research studies may have arrived at by using the incomplete
topology models.

We quantify the routing decision changes in the routing model
due to the peer-to-peer edges not considered previously. We
find that for some ASes (mostly of degrees 10 to 300), more
than 50% of their paths stop going through a provider, com-
pared to a less complete topology. The financial implication is
that these ASes may not pay their providers to the extent that
was earlier expected. Clearly, business-oriented studies should
consider all peer-to-peer edges for accurate results. Second, we
find that provider-customer and peer-to-peer edges have signif-
icantly different properties and they should be modeled sepa-
rately: We find that the degree distribution of the provider-cus-
tomer only edges can be accurately described by a power-law
(with correlation coefficient higher than 99%) in all the topolog-
ical instances that we examine. In contrast, degree distribution
of the peer-to-peer only edges is better described by a Weibull
distribution with correlation coefficient higher than 99%, which
corroborates previous studies [9], [7]. Third, the degrees of the
nodes of a peer-to-peer link can vary significantly: 50% of the
peer-to-peer edges are between nodes whose degrees, ,
differ a lot either in absolute or relative value

. This has direct implications on how
we think about and model peer-to-peer edges. For instance, this
observation suggests that researchers need to use caution when
using the degree as an indication of whether two ASes could
have a peer-to-peer relationship. Our results can provide guide-
lines to AS policy inference algorithms, which partly rely on
the node degree. Fourth, we provide an educated guess on how
many edges we may still be missing. We estimate the edges to
be roughly 35% compared to the peer-to-peer edges we know at
the end of this study.

This paper is an extend version of our earlier work [13], which
has attracted the attention of the community. Our data set2 has
been downloaded by more than 50 different universities and re-
search institutes since January 2007. In this version, we provide
more details about our data, and discuss in more detail our re-
sults and our methodology of inferring IXP participants.

The rest of this paper is organized as follows. We review the
data sources and previous work in Section II. In Section III, we
present our framework and the motivation behind its design. In
Section IV, we quantify the impact of our new found AS links.
We introduce our methods to identify the IXP participants in
Section V. In Section VI, we summarize our work.

2http://www.cs.ucr.edu/~yhe/LordOfLinks/

II. BACKGROUND

A. Data Sources and Their Limitations

In this section, we describe the most popular data sources
and their two main limitations: incompleteness and a bias in the
nature of the discovered links.

BGP routing table dumps are probably the most widely used
resource that provides information on the AS Internet topology.
Each table entry contains an AS path, which corresponds to a
set of AS edges. Several sites collect tables from multiple BGP
routers, such as Routeview [14] and RIPE/RIS [15]. An advan-
tage of the BGP routing tables is that their link information is
considered reliable. If an AS link appears in a BGP routing table
dump, it is almost certain that the link exists. However, limited
number of vantage points makes it hard to discover a more com-
plete view of the AS-level topology. A single BGP routing table
has the union of “shortest” or, more accurately, preferred paths
with respect to this point of observation. As a result, such a col-
lection will not see edges that are not on any preferred path for
this point of observation. Several theoretical and experimental
efforts explore the limitations of such measurements [16], [17].
Worse, such incompleteness may be statistically biased based on
the type3 of the links. Some types of AS links are more likely
to be missing from BGP routing table dumps than other types.
Specifically, peer-to-peer links are likely to be missing due to
the selective exporting rules of BGP. Typically, a peer-to-peer
link can only be seen in a BGP routing table of these two peering
ASes or their customers. A recent work [9] discusses in depth
this limitation.

BGP updates are used in previous studies [3], [5] as a source
of topological information and they show that by collecting BGP
updates over a period of time, more AS links are visible. This is
because as the topology changes, BGP updates provide transient
and ephemeral route information. However, if the window of
observation is long, an advertised link may cease to exist [3] by
the time that we construct a topology snapshot. In other words,
BGP updates may provide a superimposition of a number of dif-
ferent snapshots that existed at some point in time. Recently,
Oliveira et al. [18] explicitly distinguished this commonly over-
looked “liveness problem” from the “completeness problem”,
which is the central topic of this paper. Note that BGP updates
are collected at the same vantage points as the BGP tables in
most collection sites. Naturally, topologies derived from BGP
updates share the same statistical bias per link type as from BGP
routing tables: peer-to-peer links are only to be advertised to
the peering ASes and their customers. This further limits the
additional information that BGP updates can provide currently.
On the other hand, BGP updates could be useful in revealing
ephemeral backup links over long period of observation, along
with erroneous BGP updates.

By using traceroute, one can explore IP paths and then trans-
late the IP addresses to AS numbers, thus obtaining AS paths.
Similar to BGP tables, the traceroute path information is consid-
ered reliable, since it represents the path that the packets actu-

3Most ASes peer with each other with two types of links: the provider-cus-
tomer links and peer-to-peer links. Normally, customer ASes pay their providers
for traffic transit, and ASes with peer-to-peer relationship exchange traffic with
no or little cost to each other.
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ally traverse. On the other hand, a traceroute server explores the
routing paths from its location towards the rest of the world, and
thus, the collected data has the same limitations as BGP data in
terms of completeness and link bias. One additional challenge
with the traceroute data is the mapping of an IP path to an AS
path. The problem is far from trivial, and it has been the focus
of several recent efforts [19]–[21].

Internet Routing Registry (IRR) [10] is the union of a
growing number of world-wide routing policy databases that
use the Routing Policy Specification Language (RPSL). In
principle, each AS should register routes to all its neighbors
(that reflect the AS links between the AS and its neighbors)
with this registry. IRR information is manually maintained and
there is no stringent requirement for updating it. Therefore,
without any processing, AS links derived from IRR are prone
to human errors, could be outdated or incomplete. However,
the up-to-date IRR entries provide a wealth of information that
could not be obtained from any other source. A recent effort
[12] shows that, with careful processing of the data, one can
extract a nontrivial amount of correct and useful information.

B. Related Work and Comparison

There has been a large number of measurements studies re-
lated to topology discovery, with different goals, at different
times, and using different sources of information.

Our work has the following characteristics that distinguish it
from most previous other efforts, such as [9], [2]: 1) We make
extensive use of topological information from the Internet
Exchange Points to identify more edges. It turns out that IXPs
“conceal” many links which did not appear in most previous
topology studies. 2) We use a more sophisticated, compre-
hensive and thorough tool [12] to filter the less accurate IRR
data, which was not used by previous studies. 3) We employ a
“guess-and-verify” approach for finding more edges by iden-
tifying potential edges and validating them through targeted
traceroutes. This greatly reduced the number of traceroutes that
were needed. 4) We accept new edges conservatively and only
when they are confirmed by a BGP table or a traceroute. In
contrast, some of the previous studies included edges from IRR
without confirming them with traceroute.

The most relevant previous work is done by Chang et al.
[2] with data collected in 2001. They identify new edges by
looking at several sources of topological information including
BGP tables and IRR. They estimate that 25%-50% AS links
were missing from Oregon Routeview BGP table, the most com-
monly used data set for AS topology studies. Their work was an
excellent first step towards a more complete topology.

In a parallel effort, Cohen and Raz [9] identify missing links
in the Internet topology. Our studies corroborate some of the
observations there. Note that, their work does not include an
exhaustive measurement, data collection and comparison effort
as our work. For example, IXP information was not used in their
work.

Several other interesting measurement studies exist. Net-
Dimes [4] is an effort to collect large volumes of host-based
traceroute information. The key here is to increase the number
of traceroute points by turning cooperative end hosts into ob-
servation points. The challenge now becomes the measurement

noise removal, the collection, and processing of the information
[22]. Our approach and NetDimes could complement and
leverage each other towards a more complete and accurate
topology. Donnet et al. [23] propose efficient algorithms for
large-scale topology discovery by traceroute probes. Rocket-
fuel [24] explores ISP topologies using traceroutes. In [5], the
authors examine the information contained in BGP updates.

Most of these studies and our work seek a complete snapshot
of the Internet topology. In other words, short-lived backup links
are most likely not included in most such studies. Some ASes
have such links, which normally are not “visible” unless the
primary links are down. Recently, active BGP probing [8] has
been proposed as a method for identifying backup AS links,
and this could complement our work and the efforts mentioned
above.

There are several efforts that study the topology and they
would benefit from an accurate and complete topology. A
plethora of efforts attempts to model the topology and to gen-
erate realistic topologies (e.g., [25]). Some studies [16], [26]
document the limitations of the sources of topological infor-
mation, but without necessarily attempting to identify a more
complete topology. A recent study [7] models the evolution
of the Internet topology by investigating the process of AS
peerings. Another recent work [18] models the evolution using
a constant rate birth–death process. Our work can be seen as a
basis that can provide more complete and accurate information
for such studies.

The exhaustive identification of IXP participants has received
limited attention. Most previous work focuses on identifying
the existence of IXPs. Xu et al. [11] develop what appears to
be the first systematic method for identifying IXP participants.
Inspired by their work, our approach subsumes their method,
and thus, it provides more complete and accurate results (see
Section V).

III. FRAMEWORK FOR FINDING MISSING LINKS

In this section, we present a systematic framework for ex-
tracting and synthesizing the AS level topology information
from different sources. The different sources have complemen-
tary information of variable accuracy. Thus, we cannot just
simply take the union of all the edges. A careful synthesis and
cross-validation is required. At the same time, we are interested
in identifying the properties of the missing AS links.

In a nutshell, our study arrives at three major observations
regarding the properties of the missing AS links: 1) most of the
missing AS edges are of the peer-to-peer type; 2) most of the
missing AS edges from BGP tables appear in IRR; and 3) most
newfound AS edges are incident at IXPs. At different stages of
the research, these three observations direct us to discover even
more edges, some of which do not appear in any other source of
information currently.

We present an overview of our work in order to provide the
motivation for the different steps that we take. We start with
the data set from Oregon routeviews BGP table Dump (OBD)
[14], the BGP table dumps collected at route-views.oregon-ix.
net, which is by far the most widely used data archive. Our work
consists of four main steps.
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TABLE I
TOPOLOGICAL DATA SETS USED IN OUR STUDY

TABLE II
STATISTICS OF THE TOPOLOGIES

A. BGP routing tables: We consider the AS edges derived
from multiple BGP routing table dumps [3], and compare them
to the Routeview data (OBD). The question we try to answer is
what is the information that the new BGP tables bring. We use
the term BD to refer to the union data from all available BGP
table Dumps. Table I lists the acronyms for our data sets.

B. IRR data: We systematically analyze the IRR [10] data
and identify topological information that seems trustworthy by
Nemecis [12]. We follow a conservative approach, given that
IRR may contain some outdated and/or erroneous information.
We do not accept new edges from IRR, even after our first pro-
cessing, unless they are confirmed by traceroutes (using our
RETRO tool). Overall, we find that IRR is a good source of hints
for missing links. For example, we discover that more than 80%
of the new edges found in the new tables (i.e., the AS edges in
BD but not in OBD) already exist in IRR. Even compared to
BD, IRR has significantly more edges, which are validated by
RETRO as we explain below.

C. IXPs and potential edges: We identify a set of potential
IXP edges by applying our methodology on inferring IXP par-
ticipants from Section V. We find that many of the peer-to-peer
edges missing from the different data sets could be IXP edges.

D. Validation using RETRO: We use our traceroute tool,
RETRO, to verify potential edges from IRR and IXPs. First,
we confirm the existence of many potential edges we identi-
fied in the previous steps. We find that more than 94% of the
RETRO-verified AS edges in IRR indeed go through IXPs. We
also discover edges that were not previously seen in either the
BGP table dumps or IRR. In total, we have validated 300% more
peer-to-peer links than those in the OBD data set.

The statistics of the topologies generated from the different
data sets in our study are listed in Table II.

A. The New Edges From a BGP Table Dump

We collect multiple BGP routing table dumps from various
locations in the world, and compare them with OBD. On May
12, 2005, we collected 34 BGP routing table dumps from the
Oregon route collectors [14], the RIPE/RIS route collectors [15]
and public route servers. Several other route collectors were not

Fig. 1. Most new edges in BD but not in OBD are peer-to-peer edges.

operational at the time that the data was collected and there-
fore, we do not include them in this study. For each BGP routing
table dump, we extract its “AS PATH” field and generate an AS
topology graph. We then merge these 34 graphs into a single
graph and delete duplicate AS edges if any. The resulting graph,
which is named as BD (BGP Dumps), has 19 950 ASes and
51 345 edges. The statistics of BD are similar to what was re-
ported in [3]. Interestingly, BD has only 0.5% additional ASes,
but 20.4% more AS edges as compared with OBD.

To study the business relationships of these edges, we use the
PTE algorithm [27], which seems to outperform most previous
such approaches. Specifically, it significantly increases the ac-
curacy (over 90%) of inferring peer-to-peer AS links. Most of
the AS edges are classified into three basic types on the basis of
business relationships: provider-customer, peer-to-peer and sib-
ling-to-sibling. Among them, sibling-to-sibling links only ac-
count for a very small (0.12%) portion of the total AS edges
and we do not consider them in this study. We count the number
of peer-to-peer (or “p-p” for short) and provider-customer (or
“p-c” for short) AS links for each BGP routing table. The statis-
tics for dumps with significant number of new edges are shown
in Table III.

For comparison purposes, we pick the most widely used AS
graph OBD as our baseline graph. For each of the other BGP
routing tables, we examine the number of additional AS edges
that do not appear in OBD, as classified by their business rela-
tionship. As shown in Table III, from each of the BGP routing
tables that provides a significant number of new edges to OBD,
most of the newfound edges are of the peer-to-peer type.

BGP table biases: underestimating the peer-to-peer
edges. A closer look at the data reveals an interesting di-
chotomy: 1) most edges in a BGP table are provider-customer;
and 2) given a set of BGP tables, most new edges in an additional
BGP table are peer-to-peer type. We can see this by plotting the
types of new edges as we add the new tables. In Fig. 1, we plot
the cumulative number of new found peer-to-peer edges and
provider-customer edges versus the total number of edges. To
generate this plot, we start with OBD with 42 643 AS edges and
merge new AS edges derived from the BGP table dumps other
than OBD, one table dump at a time, sorted by the number of
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TABLE III
COLLECTION OF BGP TABLE DUMPS (AS OF MAY 12, 2005)

new edges they provide. At the end, when all the BGP table
dumps in our data set are included, we obtain the graph BD;
this has 51 345 AS edges in total. Among these edges, there
are 7183 peer-to-peer edges and 1499 provider-customer edges
that do not exist in the baseline graph OBD. Clearly, Fig. 1
demonstrates that we discover more peer-to-peer AS edges
than provider-customer edges when we increase the number
of vantage points. Furthermore, the ratio of the number of
new found peer-to-peer edges to the number of new found
provider-customer edges is almost constant given that the two
curves (corresponding to the new found p-p edges and the p-c
edges) in Fig. 1 are almost straight lines.

The percentage of peer-to-peer edges increases with the
number of BGP tables. A complementary observation is that
for a BGP-table-based graph, the more complete it is (in number
of edges), the higher the percentage of peer-to-peer links. For
example, the AS graph derived from rrc12.ripe.net has 33 841
AS edges, 2024 (5.98%) of which are peer-to-peer edges. On
the other hand, the more complete AS graph OBD has 42 643
edges, and 5551 (13.0%) of these edges are peer-to-peer edges.

The union graph BD has an even higher percentage (24.8%) of
peer-to-peer links.

The above observations strongly suggest that in order to ob-
tain a more complete Internet topology, one should pay more
attention to discovering peer-to-peer links.

B. Exploring IRR

We carefully process the IRR information to identify potential
new edges. Recall that we do not add any edges until we verify
them with RETRO later in this section.

We extract AS links from IRR on May 12, 2005 and clas-
sify their business relationships using Nemecis [12] as per the
exporting policies of registered ISPs. The purpose of using Ne-
mecis to filter the IRR is that, Nemecis can successfully elimi-
nate most badly defined or inconsistent edges and, it can infer
with fair accuracy the business relationships of the edges.

There are 96 654 AS links in total and they are classified into
three basic types in terms of their relationships: peer-to-peer,
customer-provider and sibling-to-sibling. Sometimes two ASes
register conflicting policies with each other. For example, AS A
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TABLE IV
AS EDGES IN IRR (MAY 12, 2005) WITHOUT RELATIONSHIP CONFLICT

may register AS B as a customer while AS B registers AS A as
a peer. There are 7114 or 7.4% of such AS links and we exclude
them in our data analysis. We call the remaining edges noncon-
flicting IRR edges or IRRnc. Considering the different types of
policies, this set can be decomposed into three self-explanatory
sets: pcIRRnc, peerIRRnc and siblingIRRnc. From these edges,
we define the set IRRdual to include the edges for which both ad-
jacent ASes register matching relationships. (Contrarily, IRRnc
includes edges for which only one AS registers a peering rela-
tionship while the other AS does not register at all.) Similarly,
the IRRdual set can be decomposed by type of edge into three
sets: pcIRRdual, peerIRRdual and siblingIRRdual.

The statistics of these data sets are summarized in Table IV.
We notice that the number of edges in the more reliably defined
IRRdual set is significantly less than that of the IRRnc. In other
words, AS edges in IRRdual and its subsets (peerIRRdual, pcIR-
Rdual and siblingIRRdual) are fewer but we are more confident
about: a) their existence, and b) their business relationships.

We make the following two observations.
1) IRR is a good source of hints for missing edges. We per-

form the following thought experiment: knowing only the OBD
data set, would IRR be a good source of potential edges? We
compare the edges in graph BD but not in graph OBD with the
edges in IRR. We find that 83.3% of these edges exist in IRR:
7251 from a total of 8702 new edges. This high percentage sug-
gests that the IRR can potentially be a source for finding new
edges. We also notice that from among these 7251 edges, 6302
are classified in terms of their business relationships by Nemecis
[12]. From among these classified edges, 5303 edges are of the
peer-to-peer type and only 832 are of the provider-customer
type. This confirms the result shown in Fig. 1, where most new
found AS edges are of the peer-to-peer type. Recall that, for
Fig. 1, the business relationships are inferred by the PTE algo-
rithm [27], instead of Nemecis [12], which we use here. Both al-
gorithms give quantitatively similar results which provides high
credibility to both the data and the interpretations.

2) IRR has many more edges compared to our most com-
plete BGP-table graph (BD). Motivated by the observation
above, we examine the number of AS edges in IRR that are not
included in BD. Table V summarizes the number and the type of
IRR AS edges that do not appear in BD. From among the IRR
AS edges inferred as nonconflicting types, 71.1% are missing
from BD. The percentage is especially high for peer-to-peer
edges: 80.7% of the peer-to-peer AS edges in IRR are missing
from BD. This suggests that there may be many IRR links that
exist but are yet to be verified. We also notice that 59.7% of the

TABLE V
PERCENTAGE OF IRR EDGES MISSING FROM BD

provider-customer AS edges are missing. At this point, we can
only speculate that most of these missing provider-customer AS
edges represent backup links.

C. IXPs and Missing Links

Note that, when two ASes are participants at the same IXP,
it does not necessarily mean that there is an AS edge between
them. If two participating ASes agree to exchange traffic
through an IXP, this constitutes an AS edge, which we call an
IXP edge. Many IXP edges are of peer-to-peer type, although
customer-provider edges are also established.

Identifying IXP edges requires two steps: 1) we need to find
the IXP participants, and 2) we need to identify which edges
exist between the participants. We defer a discussion of our
method and tool on how to find the IXP participants to Sec-
tion V. However, even when we know the IXP participants, iden-
tifying the edges is still a challenge: not all participants connect
with each other. In addition, the peering agreements among the
IXP participants are not publicly known.

We start with a superset of the real IXP edges that contains
all possible IXP edges: we initially assume that the participants
of each IXP form a clique. We denote by IXPall the set of all
edges that make up all of these cliques. IXPall contains 141 865
distinct AS edges.

Potential missing edges and IXP edges. We revisit the pre-
vious sets of edges we have identified and check to see if they
could be IXP edges. First, we look at the peer-to-peer AS edges
that appear in BD but not in OBD. We call this set of AS edges
peerBD-OBD. Here we use the minus sign to denote the dif-
ference between two sets: A-B is the set of entities in set A but
not in set B. Second, we look at the AS edges that appear in
peerIRRnc but not in the graph BD. We call this set of links
peerIRRnc-BD. These AS links are the ones that are potentially
missing from BD. We define the peerIRRdual links not in BD as
peerIRRdual-BD.

Having made this classification, we compare each class with
the super set, IXPall, of edges that we constructed earlier. The
statistics are shown in Table VI. With our first comparison, we
find that approximately 86% of the edges in peerBD-OBD are in
IXPall and hence, are potentially IXP edges. Next, we observe
that 60% of the edges in peerIRRnc-BD and 83% of the edges
in peerIRRdual-BD are in IXPall. Thus, if they exist, they could
be IXP edges.

In summary, the analysis here seems to suggest that, most
of the peer-to-peer AS links missing from the BGP dumps but
present in IRR are potentially IXP edges.

D. Validating Links With RETRO

With the work so far, we have identified sets of edges and
obtained hints on where to look for new edges: 1) most missing
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TABLE VI
MANY MISSING PEER-TO-PEER LINKS ARE AT IXPS

links are expected to be the peer-to-peer type; 2) IRR seems to
be a good source of information; 3) many missing edges are
expected to be IXP edges.

However, as we have noted before, the peer-to-peer edges
learned through the IRRs and IXPall are not guaranteed to exist.
Therefore, in this section we focus on validating their existence
to the extent possible. Note here that with the validation, we
eliminate stale information that may still be present in the IRR
and IXP data sources. To verify the existence of the edges in
peerIRRnc-BD, we would like to witness these edges on tracer-
oute paths. Typically, when a traceroute probe passes through an
IXP edge between AS A and AS B, it will contain the following
sequence of IP addresses: [ ]. If such a
pattern is observed with our traceroute probes, it is almost cer-
tain that an IXP edge between AS A and AS B exists.

We first tried to use the Skitter4 traces as our verification
source; however, we soon found that it was not suitable for our
purposes. Between May 8 and May 12 in 2005, we collected a
full cycle of traces from each of the active Skitter monitors. De-
spite a total number of 21 363 562 individual traceroute probes
in the data set, we were only able to confirm 399 IXP edges in
peerIRRnc-BD. The reason could be that the monitors were not
in the “right” place to discover these edges: the monitors should
be at the AS adjacent to that edge, or at one of the customers of
those two ASes. With the limited number of monitors (approxi-
mately two dozen active ones) in Skitter, it is difficult to witness
and validate many of the peer-to-peer AS edges.

To address this limitation, we develop a tool for detecting and
verifying AS edges. We employ public traceroute servers (e.g.,
[28]) to construct RETRO (REverse TraceROute), a tool that
collects traceroute server configurations, send out traceroute re-
quests, and collect traceroute results dynamically. Currently, we
have a total of 404 reverse traceroute servers which contain
more than 1200 distinct and working vantage points. These van-
tages points cover 348 different ASes and 55 different countries.
We will see later that RETRO is very efficient in discovering
missing peer-to-peer edges—for the dataset peerIRRnc-BD, we
are able to confirm 5646 edges from less than 10 000 traceroutes.

With the RETRO tool, we conduct the following procedure
to verify AS edges in the peerIRRnc-BD set. For each edge in
peerIRRnc-BD, we find out if there are any RETRO monitors
in at least one of the two ASes incident on the edge. For about
2/3 of the edges in peerIRRnc-BD, we do not have a monitor in
either of the two ASes on the edge. If there is at least one mon-
itor, we try to traceroute from that monitor to an IP that belongs
to the other AS on the edge. There are two problems in finding
the right IP address to traceroute to. First, some ASes do not an-
nounce or can not be associated with any IP prefixes and thus,
we are not able to traceroute to these ASes. Second, most of

4http://www.caida.org/tools/measurement/skitter/

TABLE VII
RETRO VERIFIES PEER-TO-PEER LINKS IN IRR MISSING FROM BD

the rest of the ASes announce a large range (equal to or more
than 256, i.e., a full/24 block) of IP addresses. To maximize our
chances of performing a successful traceroute, we choose a des-
tination from the list of IP addresses that has been shown to be
reachable by at least one of the Skitter monitors. We then trigger
RETRO to generate a traceroute from the selected monitor to the
destination IP address that we choose. We call this set of tracer-
outes RETRO TRACE1.

Most newfound peer-to-peer links are incident at IXPs.
We define a candidate to be a potential edge between two
ASes, which satisfy the following two conditions: 1) we have a
RETRO monitor located in one of the two ASes, and 2) there
is at least one IP address from the other AS reachable by the
traceroute probe performed from the RETRO monitor. We
have 8791 such “candidates” for the potential AS edges in
peerIRRnc-BD. By appropriately performing traceroutes on
candidates, we get traceroute paths. In these paths, we search
for two patterns for each candidate ( , ): a) [

], and b) . If either of the two
patterns appears, it is almost certain that the AS edge between

and exists either as a) a direct edge or b) as an IXP
edge, respectively. The results that we obtain at the end of the
above process are summarized in Table VII.

Among 8791 candidates in peerIRRnc-BD, RETRO is able
to confirm that a total of 5646 edges indeed exist. The exis-
tence of the rest of the candidates does not show in our RETRO
data. Note that this method can only confirm the presence, but
not prove the absence of an edge. It could very well be that the
traceroute does not pass through the right path. An interesting
observation is that 94.2% (5317/5646) of the new edges are IXP
edges. This could always be an artifact introduced by biases
from the measurement approach. Another explanation could be
that the peer-to-peer links between middle or low ranked ASes
(national or regional ISPs) are typically underrepresented in
BGP tables. For those ASes, peering with other ASes at IXPs is
a much more cost-efficient way than by building private peering
links one by one. Our result strongly suggests that in order to
look for missing peer-to-peer links from BGP tables, we should
examine IXPs more carefully.

Discover edges not observed in BGP tables or IRRs. From
the results so far, we suspect that the missing edges are often IXP
edges. Following this pattern, we identify and confirm edges that
previously had not been observed in any other data source.

We consider those AS edges in IXPall that are neither in BD
nor in IRRnc, and call them IXPall-BD-IRR. We then attempt to
trace these edges by using RETRO. We call this set of tracer-
oute RETRO_TRACE2. The results from our experiments are
summarized in Table VIII.

We find 2603 new AS edges from 17 640 RETRO candidate
paths. The percentage of confirmed new AS edges is 14.8%.
This is much lower than what we see with peerIRRnc-BD. This
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TABLE VIII
RETRO VERIFIES AS EDGES NOT IN BD AND IRRNC

is due to the fact that IXPall is an overly aggressive estimate.
In addition, we have already identified that many edges from
IXPall are in the previous sets (BD and peerIRRnc-BD).

We also notice that there is a small number of confirmed edges
that are shown to exhibit direct peering instead of peering at
some IXP. A closer look reveals that many of such cases are due
to the fact that a small number of routers do not respond with
ICMP messages with the incoming interfaces, and therefore, the
IXP IP address, which is supposed to be returned by the tracer-
oute, is “skipped.” Note that this phenomenon does not stop us
from identifying the edge. It just makes us underestimate the
percentage of IXP edges among the confirmed edges.

IV. SIGNIFICANCE OF THE NEW EDGES

In this section, we identify properties of the new edges. Then,
we examine the impact of the new edges on the topological prop-
erties of the Internet. Finally, we attempt to extrapolate and es-
timate how many edges we may still be missing. Note that we
quantify the impact of the new edges that we were able to find in
the previous section. Clearly, any bias in the discovery process
will affect the observations in this section.

A. Patterns of the Peer-To-Peer Edges

We study the properties exhibited by nodes that peer. There-
fore, we examine the degrees, and , of the two peering
nodes that make up each peer-to-peer edge. Let us clarify that
the degrees and include both peer-to-peer and provider-
customer edges. One would expect that and would be
“comparable.” Intuitively, one would expect that the degree of
an AS is loosely related to its importance and its place in the AS
hierarchy; we expect ASes to peer with ASes at the same level.

However, we find that the node degree of the nodes connected
with a peer-to-peer link can differ significantly. We compare the
two degrees using their ratio and absolute difference. Note that
these two metrics provide complementary view of difference,
which leads to the following two findings. 1) Close to 78% of
the peer-to-peer edges connect ASes whose degrees differ by a
factor of 2 or more. In Fig. 2(a), we plot the CDF of the distri-
bution of the ratio of the peer-to-peer
edges. Another observation is that 45% of the peer-to-peer edges
connect nodes whose degrees differ by a factor of 5 or more.
This is a surprisingly large difference. One might argue that this
is an artifact of having peer-to-peer edges between low degree
nodes, say and , whose absolute degree dif-
ference is arguably small. This is why we examine the abso-
lute difference of the degrees next. 2) 35% of the peer-to-peer
edges have nodes with an absolute difference greater than 215.
In Fig. 2(b), we plot the CDF of the distribution of the abso-
lute value , where and remain as defined ear-
lier. Another interesting observation is that approximately half
of the peer-to-peer edges have a degree difference larger than
144. Differences of 144 and 215 are fairly large if we consider

Fig. 2. (a) Degree ratio distribution and (b) degree difference distribution of all
peer-to-peer AS links in the Internet.

that roughly 70% of the nodes have a degree less than 4. We in-
tend to investigate why quite a few high degree ASes establish
peer relationship with low degree ASes in the future.

B. Impact on the Internet Topology

We study the effect of the newfound peer-to-peer edges on
some commonly used Internet properties. Among all the prop-
erties that we examined, we show the ones that lead to the most
interesting observations.

1) The Degree Distribution: There has been a long debate on
whether the degree distribution of the Internet at the AS level
follows a power-law [29]–[31], [2]. This debate is partly due
to the absence of a definitive statistical test. For example, in
Fig. 3 top left, we plot the complementary cumulative distri-
bution functions (CCDF), on a log-log scale, of the graph ALL
defined earlier in Table I. The distribution is highly skewed,
and the correlation coefficient of a least square errors fitting is
98.9%. However, one could still use different statistical metrics
and argue against the accuracy of the approximation [31].

Furthermore, the answer could vary depending on which
source we think is more complete and accurate, and the purpose
or the required level of statistical confidence of a study. For
example, if we go with IRRdual, which is a subset of the AS
edges recorded in IRR filtered by Nemecis, the correlation
coefficient is only 93.5%; see Fig. 3 top right.

To settle the debate, we propose a reconciliatory divide-and-
conquer approach. We propose to model separately the degree
distribution according to the type of the edges: provider-cus-
tomer and peer-to-peer. We argue that this would be a more
constructive approach for modeling purposes. This decomposi-
tion seems to echo the distinct properties of the two edge types,
as discussed in a recent study of the evolution on the Internet
topology [7].

In Fig. 3, we show an indicative set of degree distribution
plots for graph ALL on the left column and IRRdual on the right.
We show the distributions for the whole graph (top row), the
provide-customer edges only (middle row), and the peer-to-peer
edges only (bottom row). We display the power-law approxima-
tion in the first two rows of plots and the Weibull approximation
in the bottom row of plots.

We observe the following two properties. 1) The provider-
customer-only degree distribution can be accurately approxi-
mated by a power-law. The correlation coefficient is 99.5% or
higher in the plots of Fig. 3 in the middle row. Note that, al-
though the combined degree distribution of IRRdual does not
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Fig. 3. The degree distributions of ALL (left) and IRRdual (right) in the top
row, their provider-customer degree distributions in the middle row, and their
peer-to-peer degree distributions in the bottom row.

follow a power law (top row right), its provider-customer sub-
graph follows a strict power law (middle row right). 2) The
peer-to-peer-only degree distribution can be accurately approx-
imated by a Weibull distribution. The correlation coefficient is
99.2% or higher in the plots of Fig. 3 in the bottom row.

It is natural to ask why the two distributions differ. We suggest
the following explanation. Power-laws are related to the rich-
get-richer behavior: low degree nodes “want” to connect to high
degree nodes. For provider-customer edges, this makes sense:
an AS wants to connect to a high-degree provider, since that
provider would likely provide shorter paths to other ASes. This
is less obviously true for peer-to-peer edges. If AS1 becomes a
peer of AS2, AS1 does not benefit from the other peer-to-peer
edges of AS2: a peer will not transit traffic for a peer. Therefore,
high peer-to-peer degree does not make a node more attractive
as a peer-to-peer neighbor. We intend to investigate the validity
of this explanation in the future.

2) Clustering Coefficient: Clustering coefficient is a metric
that has been used to characterize and compare generated and
real topologies [25]. Intuitively, the clustering coefficient cap-
tures the extent to which a node’s one-hop neighborhood is
tightly connected—it is the ratio of the number of edges that
the neighbors of a node have among themselves over the total
possible number of such edges. For a node with
neighbors, the clustering coefficient of is , where

, and is the number of edges between these
neighbors. A clustering coefficient of exactly one means that the
neighborhood is a clique. The average clustering coefficient of
OBD is 0.25 and it increases to 0.31 in ALL.

Fig. 4. The per-degree average clustering coefficient versus the degree for
graphs ALL and OBD.

In addition, we find that the density increase is not homo-
geneous. The neighborhoods of “middle-class” nodes become
more clustered. We use to denote the average clustering coef-
ficient of all nodes with degree . In Fig. 4, we plot versus the
node degree , for two graphs: ALL and OBD. The ALL graph
has overall higher clustering coefficients as expected. We find
that the clustering coefficient increase is larger for nodes with
degrees in the 10 to 300 range. Note that this property charac-
terizes the new edges, and could help us identify more missing
edges in future studies.

3) AS Path Length: We study the effect of the new edges
on the AS path lengths with policy-aware routing. The routing
policy is a consequence of the business practices driven by con-
tracts, agreements, and ultimately profit. As a first-order approx-
imation of the real routing policy, we use the No Valley Prefer
Customer (NVPC) routing, as described in [32], [33].

We have approximately 20 000 ASes present in the Internet
topology and examine all possible pairs of ASes. For each AS
pair, we compare the AS path lengths with OBD and with ALL.
We group those AS paths with the same shorter path length, and
show their path length changes in Fig. 5. We find that approx-
imately 10 million paths change in length. While we note that
this is a small fraction of the total number of paths, it is still a
significant number in terms of its absolute value. In addition, no
change in the length does not mean that the path did not change.
For this reason, we study how many paths changed even if they
did not change in length in Section IV-C.

One interesting observation here is that, by discovering the
new edges, some of the new paths become in fact longer than
before! This would never happen if the routing policy was based
on the minimum hop criterion. Here, the length increase is due
to the routing policy, which is based on the business relationship
types. In other words, an AS will prefer a longer path through a
peer than a shorter path through its provider.5 In Fig. 6, we show
all possible changes that a new peer-to-peer edge (AS 2–AS 3)
can cause to a path (from AS 4 to AS 5): (a) shorten the path;

5In practice, this is done by setting higher local pref value to peer links than
to provider AS links. When multiple BGP paths to a prefix are available, BGP
will first choose the route with the highest local pref value. [34]
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Fig. 5. The effect of the new links on the path length: fraction of the number
of paths that change length versus the length of the shorter path, with each line
representing a length change.

Fig. 6. The effect of adding a peer-to-peer link between AS 2 and AS 3 on the
path from AS 4 to AS 5. The arrow points from the provider to the customer.

(b) change the path but maintain the same length; and (c) elon-
gate the path. In more detail, Fig. 6(c) shows that initially the
path from AS 4 to AS 5 is [AS4, AS2, AS1, AS5]. With a new
peer-to-peer edge between AS 2 and AS 3, the path changes to
a longer one [AS4, AS2, AS3, AS6, AS5]. The reason is that,
in Fig. 6(c), AS 2 prefers to route through its peer AS 3 rather
than through its provider AS 1 according to the No Valley Prefer
Customer routing.

C. The Effect on ISP Revenue

We examine how much the new discovered AS links would
change the models previous studies had arrived at about
routing decisions and ISP income by using incomplete Internet
topology.

Similar to studying AS path length, we assume NVPC routing
in our model. For each AS, we count how many of its paths
stop going through one of its providers once the new edges
are added. We refer to these paths as ex-provider paths. The
number of ex-provider paths is an indication, of the financial
gains for that AS. Clearly, there are other considerations, such
as prefix-based traffic engineering and performance issues, that
our analysis cannot possibly capture. However, our results are a
good first indication of the effect of the new peer-to-peer links.

The significant financial benefits of the new peer-to-peer
edges. We plot the number of ex-provider paths for each node in

Fig. 7. The number of ex-provider paths (shown as impulses on the left y-axis)
of each node in order decreasing node degree (shown as a semi diagonal line
corresponding to the right y-axis). The x-axis shows the rank of the nodes in the
order of descending degree.

Fig. 7. The x-axis represents the rank of the nodes on a log scale
in order of decreasing degree; The y-axis at the left represents
the number of ex-provider paths. In addition, we plot the node
degrees (on the right y-axis) against their ranks as a semi diag-
onal line. Here we show an example of how to read the graph:
nodes of rank 1000 (x-axis) correspond to nodes of degree ap-
proximately 10 (right y-axis) and have up to 12K ex-provider
paths (left y-axis). We see that the difference between using
an incomplete graph (OBD) and using a more complete graph
(ALL) is dramatic: there are many ASes, for each of which, sev-
eral thousands out of the total 20K paths (to all other ASes) stop
going through a provider. For some ASes, more than 50% of
their paths stop going through their providers (10K out of 20K
possible paths per AS).

The rise of the “middle class” ASes. Another interesting ob-
servation is that the nodes which seem to benefit the most from
these changes have degrees in the range from 10 to 300 (right
y-axis). Top tier nodes (top 20 ranked) do not benefit almost at
all. This is not surprising, since they do not have any providers
anyway. Nodes with really low node degree do not benefit much
either. One possible explanation is that these nodes do not have
a lot of paths passing through them, as they don’t have many
customer ASes.

D. Are We Missing a Lot More Peer Edges?

Currently, the ALL graph has approximately 20.9K peer-to-
peer edges. However, we were very conservative in adding edges
from IRRnc: we required that the edges are verified by RETRO.
So, a natural question is, how many more edges could we verify
from IRRnc if we had more RETRO servers. In other words, how
many edges could we be missing? We attempt to provide an esti-
mate by extrapolating the success of our method in finding new
edges. Given the results above, we expect that the new edges
would be of the peer-to-peer type.

Conservative estimate using IRRdual: We revisit the IR-
Rdual graph and examine if we can include more edges than the
ones we validate with RETRO. As shown in Table VII, there
are 13 905 edges in the peerIRRdual-BD, and from these, only
4487 are “verifiable” candidates. Using RETRO, we verify 3529
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or 78.6% of the verifiable edges. Here, we generalize this per-
centage: we assume that if we had more RETRO monitors, we
could verify 78.6% of the 13 905 edges in peerIRRdual-BD.
This leads to an estimated 7.4K (10.9K–3.5K) more peer-to-
peer edges on top of the 20.9K peer-to-peer edges we currently
have in ALL. Assuming that the estimate is correct, in our ALL
graph, we are missing approximately 26% (7.4 out of 20.9+7.4)
of the total number of peer-to-peer edges, or 35% of the total
number of peer-to-peer edges that we have now.

Liberal estimate using IRRnc: In a similar way, we estimate
how many edges we could verify from peerIRRnc-BD, which
is a more “inclusive” set, that may contain more errors. Here,
the total number of peer-to-peer edges is 39 894, the verifiable
edges 8791, and the verified edges 5646. This gives rise to an
estimate of 39 894 5646/8791 = 25.6K peer-to-peer edges out
of which 5.6K are already in ALL. In other words, we have 20K
new peer-to-peer edges on top of the current 20.9K peer-to-peer
edges. Thus, in this more liberal guess, we may be missing 49%
of the total peer-to-peer edges.

V. IDENTIFYING IXP PARTICIPANTS

In this section, we present a method for identifying the par-
ticipants at Internet Exchange Points (IXPs). Our goal is to find
all the participants at each IXP, and this is a nontrivial problem.6
We find that knowing the IXP participants is key for identifying
many missing AS edges as explained in Section III.

Our approach consists of two complementary mechanisms: a
technique to infer IXP participants using the IXP’s IP addresses,
and an automated tool to parse and retrieve public archival in-
formation.

A. From the IP Addresses of IXPs

This part of our approach uses two techniques to infer IXP
participants from IXP IP addresses: 1) path-based inference,
where we perform a careful processing of collected traceroute
data, and 2) name-based inference, where we analyze the name
and the related information with regard to IXPs from the DNS
and/or WHOIS databases.

In both inference methods, we start with the IP address blocks
allocated to the IXPs, which we call IXP IP addresses. We ob-
tain this information from the Packet Clearing House (PCH)
[35]. In terms of traceroute data, we use a full cycle of Skitter
traceroute data between May 1, 2005 and May 12, 2005, and
our RETRO_TRACE1 data in May 2005 as described in Sec-
tion III-D.

1) Path-Based Inference: The high level overview of the
method is deceptively simple. First, for each IXP IP address

that we obtain from PCH, we search for the IP address that
appears immediately after in each of the obtained tracer-
oute paths. Second, if we find more than one such IP addresses
for the particular , we select the one that appears most to
be . We call the above procedure the majority selection
process. Third, we find the AS ASx that owns the IP address

, and consider that ASx to be a participant at the IXP.

6Efforts in improving IP-to-AS mapping try to identify IXP IPs, rather than
the participant ASes. Their goal is different: they only need to find whether an
observed IP address belongs to an IXP or not [19], [20].

Fig. 8. Typical structure of an IXP.

Furthermore, we consider that is the IP interface via which
ASx accesses the IXP.

To illustrate this with an example, let us consider Fig. 8.
A typical traceroute from AS A to router X yields the fol-
lowing sequence of IP addresses: [1.2.3.5, 198.32.0.5, 2.6.7.13,
5.34.23.17]. Since the address “2.6.7.13”, which belongs to
AS B, appears immediately after IXP IP address “198.32.0.5”,
we infer that AS B is a participant AS, and that 198.32.0.5 is
the interface that is assigned to AS B. Note from Fig. 8 that,
irrespective of the location of the traceroute source and its
destination, if an IXP address (the address 198.32.0.5 in our
example) appears in a traceroute, the IP address that appears im-
mediately after (the address 2.6.7.13 in our example) is owned
by the AS (in our example AS B) that uses the IXP address (e.g.,
198.32.0.5) to access the IXP as long as two conditions hold.
These conditions are: 1) each IXP interface address is assigned
to a single AS, and 2) routers always respond to a traceroute
probe with the address that corresponds to the incoming IP
interface.7 While the first condition largely holds, the second
condition does not always hold. There is a chance that a router
could respond to a traceroute probe with an alternate (not the
incoming) interface [19], [36]. In our example, router R could
respond to a traceroute probe from AS A to router X with an
alternate interface (e.g., 3.9.8.21), which makes the traceroute
path appear as [1.2.3.5, 198.32.0.5, 3.9.8.21, 5.34.23.17]. Since
3.9.8.21 could be within the IP space of AS C, one could
incorrectly infer that AS C is an IXP participant. We overcome
this limitation with our majority-selection process; the basis is
the assumption that in the majority of the cases, routers will
respond to a traceroute probe with the incoming interface. This
assumption has been shown to hold by numerous prior efforts
[19], [36], [37].

The previously proposed method in [11] does not have the
majority selection process. Furthermore the method does not as-
sociate the specific IXP IP interface addresses with their respec-
tive participating ASes. Our majority selection process elimi-
nates measurement noise and thus, ensures a lower “false pos-
itive” rate. We map the discovered AS participants to their as-
signed IXP IP addresses, and using this, exclude the addresses in
the name-based inference process that we describe below. This
practice reduces the number of total IXP IP addresses that are

7The incoming interface of a traceroute probe is the IP interface via which
the probe enters the router.
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subject to the name-based inference procedures which are inher-
ently less reliable, and thus reduces the possible errors overall.

2) Named-Based IXP Participants Inference: The basic
name-based IXP participants inference method, which was
proposed in [11], works in three main steps: 1) for every IP
address in each IXP prefix space, we do a reverse DNS look up,
and we find the host name for that IXP IP address; 2) we take
the domain name part (company. ) from
the host name, and do a DNS look up, which leads to a new IP
address; and 3) we find the AS that owns this address, and this
AS is considered a participant of that IXP. For example, IXP
DE-CIX has the IP address 80.81.192.186. If we do a reverse
DNS lookup, we get the host name

“GigabitEthernet3-2.core1.ftf1.level3.net”. A DNS lookup
of the domain name “level3.net” yields an IP address of
209.245.19.41. An IP address to AS number conversion reveals
that the IP address belongs to AS3356 (Level3). Therefore,
AS3356 is considered a participant at DE-CIX.

Although this method has been used successfully by previous
studies [11], it has two limitations: 1) sometimes it can return
incorrect AS numbers for IXP participants,8 and 2) it does not
always work: the DNS or the reverse DNS lookup may not re-
turn any answer.

We address the first limitation by excluding the IXP addresses
that have been mapped on to AS participants by our path-based
inference method. This greatly reduces the number of IXP ad-
dresses that are to be examined by the named-based inference
method and therefore reduces the possible number of erroneous
results.

We address the second limitation by proposing three new
methods to improve the success rate of name-based inference:

1) Examining host names containing AS numbers. Some-
times, the DNS name of an IXP IP address contains the AS
number of an IXP participant. For example, 195.66.224.71
is an IP address at the London Internet Exchange (LINX),
which has a DNS name fe-3-4-cr2.sov.as9153.net. From
that, we can infer that AS9153 is a participant at the LINX
IXP.

2) Examining common naming practices. We can increase the
success rate of DNS lookups by including common host
names with the inferred domain names. For example, al-
though company.net may fail to be resolved, the DNS look
up may succeed with ns.company.net. In fact, there are sev-
eral common hostnames such as “ns”, “ns1”, “mail” and
“www”. Hosts with these names usually belong to the same
AS. For example, 195.66.226.104 is an IP address at IXP
LINX at London, England. The host name of that IP ad-
dress is “linx-gw4.vbc.net” and the DNS lookup for the do-
main name “vbc.net” is unsuccessful. However, the DNS
lookup for “ns.vbc.net” returns the address 194.207.0.129,
which belongs to AS8785 (Astra/Eu-X and VBCnet GB).

8Often the incorrectly reported participant AS number has a relationship with
the correct one, e.g., they belong to the same company. For example, we use
this method to examine the CERN IXP at Geneva, Switzerland. The method
suggests erroneously that AS7018 (AT&T WorldNet Services) is a participant.
On the contrary, AS2686 (AT&T Global Network Services) is one of the CERN
IXP’s participants.

Fig. 9. The flow chart of our path-based method to infer IXP participants from
IXP IP addresses. Starting from the top, the numbers in the circle indicate the
priority (lowest number with highest priority) at a branching point.

3) Using the administrating personnel information. A
WHOIS lookup for a domain name often has an ad-
ministrative/technical contact person’s e-mail address.
The mail server is often within the same AS that
corresponds to the domain name. For example, for
“decix-gw.f.de.bcc-ip.net”, all DNS lookups described
previously, fail. However, if we look at the WHOIS
lookup for domain “bcc-ip.net”, we will find the contact
e-mail server is “bcc.de”, which has an IP address of
212.68.64.114, and it belongs to AS9066 (BCC GmbH).

3) Putting the Two Techniques Together: We integrate both
the path-based and named-based techniques, into a tool for in-
ferring IXP participants from IXP addresses. We start with the
path-based technique, and for every IP address in the IP block
of an IXP, we try to find it in a traceroute path. If this works,
then we do not re-examine this IP address. Otherwise, we use
the name-based inference and we utilize the three mechanisms
that we proposed above. For completeness, we show the flow
chart of the inference method in Fig. 9.

4) Evaluating Our Inference Approach: We use two comple-
mentary metrics: Recall and Precision , which are widely
used in the data mining literature for similar tasks. They are
defined as follows: and where

is the number of correctly inferred participants from
among those inferred, is the actual number of partici-
pants, and is the total number of inferred participants.
Note that the Precision metric, , has not been used in previous
studies although it is critical for detecting false positives. Other-
wise, we favor overly aggressive inference methods that suggest
a large number of correct and incorrect participants.

For the comparison and for lack of a better criterion, we se-
lect the six largest IXPs (in terms of number of participants) for
which we know the participants through the EURO-IX site [38]
or the IXPs’ own web sites as of May 12, 2005. In Table IX, for
each IXP, we list its actual number of participants, the number
of ASes that our algorithm inferred, and the number of ASes
that our algorithm inferred correctly. We also show the Recall
and Precision metrics.

It is easy to see that: a) our approach is very effective in de-
termining most of the participants in these IXPs, and b) our ap-
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TABLE IX
IXP PARTICIPANTS INFERRING COMPARISON (AS OF MAY 2005)

proach identifies correctly more participants than XDZC and al-
most always with better Precision. For the case of MSK-IX, we
only have slightly lower Precision (by 3%) but a significantly
higher Recall (by 20%).

Note that for the evaluation we need to use IXPs for which
we have the ground truth (published participants). The IXPs we
use here are rather large, and typically follow naming conven-
tions, which is important for some of our heuristics. For IXPs
that do not follow naming conventions, often the smaller IXPs,
our method may not outperform as much the previous method
[11]. It will be interesting to further compare the two method
in the future and isolate the effect of each heuristic on the total
performance.

B. From Web-Based Archive

We notice there are some limitations on inferring IXP partic-
ipants by the IXP IP addresses alone. For example, some IXPs
may have turned off the “time exceeded” ICMP error responses,
and therefore, IXP IP addresses may be invisible by traceroute
or appear as “ ”s in responses to traceroute probes.

To overcome these limitations, we include an additional
source of information by retrieving IXP participant information
from the web sites. We have developed a tool that automatically
downloads and parses the web pages, and outputs the AS
numbers of the participants periodically. We use the Euro-
pean Internet Exchanges Association [38] which maintains a
database with 35 IXPs and their participants. We are also able
to collect information from the web pages of 31 other IXPs.
Naturally, as any manually-maintained data, these archives can
also contain inaccuracies. However, we did not find any major
inconsistencies with our measured data.

C. The Combined Results

We applied our methods to infer the participants at various
IXPs on May 12, 2005. We first use our web-based archival in-
ference. For the rest of the IXPs, we collect information with
regard to their IP address blocks from Packet Clearing House
[35], and infer their participants from their IXP IP addresses by
using our inferring heuristics. We identify 2348 distinct partic-
ipants at 110 IXPs. Some ASes actively participate in multiple
IXPs. For example, AS 8220 (Colt Telecom) is inferred as a
participant in 22 different IXPs in 15 different countries. In this
study, we have used the combined results as our source of IXP
data.

VI. CONCLUSION

In a nutshell, our work develops a systematic framework for
the cross-validation and the synthesis of most available sources
of topological information. We are able to find and confirm ap-
proximately 300% additional edges. Furthermore, we recognize
that Internet Exchange Points (IXPs) hide significant topology
information and most of those new discovered peer-to-peer AS
links are incident at IXPs. The reason for such a phenomenon
is probably because, most missing peer-to-peer links are likely
to be at the middle or lower level of the Internet hierarchy, and
peering at some IXP is a cost-efficient way for the ASes to setup
peering relationships with other ASes. We show that by adding
these new AS links, some research results based on previous in-
complete topology, such as routing decision and ISP profit/cost,
change dramatically. Our study suggest that business-oriented
studies of the Internet should make a point of taking into con-
sideration as many peer-to-peer edges as possible.

So, how many AS links are still missing from our new snap-
shot of the Internet topology? Our findings suggest that if we
know the peering matrix of all the IXPs, we might be able to dis-
cover most of the missing peer-to-peer AS links. Unfortunately,
very few IXPs publish their peering matrices. Futhermore, the
published peering matrices are not necessarily accurate, com-
plete or up-to-date. In our conservative estimates, there might
be still 35% hiding peer-to-peer edges, in addition to what we
already have in current Internet AS graph.

Our future plans have two distinct directions. First, we want to
continue the effort towards a more complete Internet topology
instance. Using the framework we developed here, we are in
a good position to quickly and accurately incorporate new in-
formation, such as new BGP routing tables, or new traceroute
servers. Second, given our more complete AS topology, we are
in a better position to understand the structure of the Internet and
the socioeconomic and operational factors that guide its growth.
This in turn could help us interpret and anticipate the Internet
evolution and, indirectly, give us guidelines for designing better
networks in the future.
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