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Abstract

Over the last few years, the network community has
started to rely heavily on the use of novel concepts
such as self-similarity and Long-Range Dependence
(LRD). Despite their wide use, there is still much
confusion regarding the identification of such phe-
nomena in real network traffic data. In this pa-
per, we show that estimating Long Range Depen-
dence is not straightforward: there is no systematic
or definitive methodology. There exist several esti-
mating methodologies, but they can give misleading
and conflicting estimates. More specifically, we ar-
rive at several conclusions that could provide quide-
lines for a systematic approach to LRD. First, long-
range dependence may exist even, if the estimators
have different estimates in value. Second, long-range
dependence is unlikely to exist, if there are several
estimators that do not “converge” statistically to a
value. Third, we show that periodicity can obscure
the analysis of a signal giving partial evidence of long
range dependence. Fourth, the Whittle estimator is
the most accurate in finding the exact value when
LRD exists, but it can be fooled easily by periodic-
ity. As a case-study, we analyze real round-trip time
data. We find and remove a periodic component from
the signal, before we can identify long-range depen-
dence in the remaining signal.

1 Introduction

Self-similarity and long-range dependence (LRD) have
become key concepts in analyzing networking traffic data
over the past years. The community recognizes their
overwhelming evidence of in multiple facets such as traf-
fic load, and packet arrival times. Simply put, most re-
searchers expect to identify and use LRD in their anal-
ysis or simulations. However, there are two important
questions related to long-range dependence that have not
received as much attention: a) how can we calculate it
accurately, b) what does it really mean for network anal-
ysis and modeling? In this paper, we focus on the first
question, since it is a necessary step to answer the second
question.

Surprisingly, despite its ever-increasing use, there does
not exist a definitive systematic way to calculate long-
range dependence. The question is simple: given a time

series does it exhibit long-range dependence? The pre-
dominant way to quantify long-range dependence is the
value of the Hurst exponent, which is a scalar. So, the
question becomes how we can calculate the Hurst expo-
nent. It turns out that this is not straighforward. For
one, the Hurst exponent can not be calculated in a defini-
tive way, it can only be estimated. Second, there are sev-
eral different methods to estimate the Hurst exponent,
but they often produce conflicting estimates. It is not
clear which of the estimators provides the most accurate
estimation. As a result, there is no systematic method
or a common reference point that would make the use
of long range dependence in a reliable and reproducible
way. As a consequence, studies can often arrive arbitrary
and misleading conclusions.

The goal of this paper is to shed some light in the
estimation of long-range dependence motivated by the
absence of such a systematic approach. In addition, we
also want to draw the attention of the community to
this problem. We start with a “reverse engineering” ap-
proach: we observe the results of the estimators on a
series of artificial and real signals. Our ambition is to be
able we can “interpret” the profile of an unkown signal
using our library of profiles. Through this work, we also
develop guidelines for a systematic approach to the esti-
mation of long-range dependence. More specifically, we
test the estimators with three different types of data.

o Synthetic data with known LRD value (for accu-
racy). We find that the values of the estimators
can differ significantly.

o Artificial non-LRD data (for sensitivity). We find
that it is easy to fool several of the estimators.
Specifically, we find that periodicity poses a serious
threat.

o Measured round-trip time from the Internet. We
find that the round-trip time is characterized by a
strong periodic component!, and only after this is
remover, we can identify long-range dependence.

An additional contribution is the tool, SELFYS, that
we developed for the purpose of this analysis. It is a

1We have not traced the origin of the periodicity. However, the
focus of the paper is on describing effectively real data.



collection of LRD estimators, generators, and time series
analysis methodologies. SELFYS is a java-based, open-
source, tool provided as a service to the community.
The rest of this paper is organized as follows. Sec-
tion 2 provides background work and the mathematical
definitions of self-similarity and long-range dependence.
Section 3 shows the evaluation of long-range dependence
estimators and presents cases that can deceive the esti-
mators. Section 4 is a study of long-range dependence
in RTT delay in the Internet. Section 5 concludes the

paper.

2 Definitions - Background

Self-similarity is observed when a time series has the
same autocorrelation function at different levels of ag-
gregation. That is, a stationary time series X; is self-
similar, if we define the aggregated series X ,(cm) using
different block sizes m, and X; has the same autocorre-
lation function r with X ,Em) for each aggregation level
m (where r(k) = E[(X;—p)(Xirr—p)]/0?) . Intuitively,
this means that a time series presents the same statistical
properties at different aggregation levels. If the autocor-
relation function follows a power law, that is r(k) ~ k=2
as k — oo then the process is said to have long-range
dependence. A metric of self-similarity is the Hurst ex-
ponent (H). Long-range dependence is characterized by
0.5< H<1.

There are many estimators that are used to estimate
the value of the Hurst exponent. In this paper we eval-
uate the following estimators:

o Absolute Value method, where the log-log plot of the
aggregation level versus the absolute first moment
of the aggregated series X (™) should be a straight
line with slope of H-1, if the data are long-range
dependent (where H is the Hurst exponent).

o Variance method, where the log-log plot of the sam-
ple variance versus the arrgegation level must be a
straight line with slope 8 greater than -1. In this
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case H=1-%.

o R/S method. A log-log plot of the R/S statistic
versus the number of points of the aggregated series
should be a straight line with the slope being an
estimation of the Hurst exponent.

e Periodogram method. This method plots the loga-
rithm of the spectral density of a time series versus
the logarithm of the frequencies. The slope provides
an estimate of H.

o Whittle estimator. The method is based on the min-
imization of a likelihood function, which is applied
to the periodogram of the time series.

e Variance of Residuals. A log-log plot of the aggre-
gation level versus the average of the variance of the
residuals of the series should be a straight line with
slope of H/2.

o Abry-Veitch. Wavelets are used in order to estimate
the Hurst exponent.

The ability of self-similarity based modeling to better
fit Internet data than traditional methods, has been well
documented over the past few years. Willinger and Pax-
son in [9] present the failure of the Poisson process to
capture Internet traffic. Furthermore, different types of
network traffic are shown to be dominated by long-range
dependence phenomena [3], [10], [7], [1]. The relevance
of LRD in network traffic is studied in [4], while in [8] a
new wavelet method for synthesizing LRD series is de-
veloped.

3 Evaluating the estimators

This section presents an evaluation of the methodolo-
gies that are used to estimate the Hurst exponent. In
the first part of the section, we use Fractional Gaussian
Noise generators in order to generate long-range depen-
dent series and study the behavior of the estimators. In
the second part, we show that non long-range depen-
dent signals can be identified as long-range dependent
by some of the estimators.

3.1 Evaluating the estimators using

Fractional Gaussian Noise

The evaluation of each estimator is achieved through
three different Fractional Gaussian Noise (FGN) gener-
ators.FGN generators are often used to synthesize long-
range dependence series with a specific Hurst value. The
description of the first two can be found in [6] and [2].
The third is based in the Durbin-Levinson coefficients.
Due to space limitation, we only present results from
the generator developed by Paxson. However, findings
are similar for the other two generators.

For each of the three generators we produce samples
with different levels of long-range dependence. That is
we produce samples of length 4096 with Hurst expo-
nent between 0.5 and 1.For each of these samples, we
use the methodologies described in the previous section
to estimate the Hurst exponent. Table 1 summarizes
our findings for the Paxson generator. The first column
shows the Hurst exponent value of the generated series,
while the rest columns show the corresponding estima-
tion for each estimator. Since the Whittle estimator and
the Abry-Veitch estimator produce confidence intervals
next to these columns we present the confidence intervals



for these two estimators. 2

Observing table 1, one can conclude that Whittle is
the most robust estimator. The Periodogram also gives
satisfying estimations. These conclusions agree with the
observations in [5]. The Abry-Veitch estimator seems to
overestimate H, while the rest cannot provide sufficient
estimations with the exception of RSplot when H is less
than 0.8.

3.2 Deceiving the estimators

This subsection shows that the estimators are sensitive in
various types of signals. Our goal is to identify cases that
would confuse the estimators. In particular we apply the
estimators in synthesized signals such as cosine functions
with noise or signals that show trend. The following
cases are considered.

e Cosine + White Gaussian Noise (WGN). The se-
ries is synthesized by WGN and the following cosine
function : Acos(azx). Table 2 presents results for
different values of the amplitude (A) of the cos func-
tion. In this case @ = 0.005. On the other hand,
table 3 presents results if A = 1 and « varies. Both
table show only the estimators that produce esti-
mates for the corresponding signal.

e FGN series + WGN. Table 4 presents the results
of the estimators when applied to FGN with WGN
series. The values in the parenthesis shows the es-
timation of the raw FGN data. The purpose of this
as well as of the next case, is to study the effect of
noise and periodicity in LRD signals

o FGN series + a cosine function. Table 5 presents
the results of the estimators when applied to FGN
with periodic components (cos(0.005z)). The values
in the parenthesis show the estimations if the am-
plitude of the cosine function is multiplied by three.

e Trend. We applied the estimators in various signals
that showed a trend. Such signals included com-
bination of WGN and cosine functions with trend.
In every case only Whittle gives an estimation for
Hurst which is always .99. Also the Periodogram
estimates Hurst to be greater than 1.

Summing up, we observed the following:

1. When the data are generated by FGN, Whittle and
Perdiodogram seem to give the most accurate esti-
mation for the Hurst exponent.

2. Perdiodicity can mislead the Whittle, the peri-
odogram and the R/S method into falsely reporting

2Throughout this paper, the results presented correspond to
confidence coefficients of 97% and 95% confidence intervlas.

LRD. Especially, if the amplitude is large and the
period small, then Whittle always estimates Hurst
to be 0.99. However, it is interesting to note that
Whittle estimates Hurst to be 0.99 even in a plain
cosine signal.

3. White noise affects the accuracy of Whittle (by 0.17)
more compared to the other estimators (less than
0.04)

4. Trend also misleads Whittle which reported a Hurst
value of .99 in every signal with trend.

4 Long-Range Dependence in

Round Trip Time

This section presents a real case study of the Hurst expo-
nent estimators. We apply the estimators in real Internet
RTT traces. The set of data includes measurements for
one route within the United States, from UCR to CMU.
For this route, we measure the Round Trip Time for dif-
ferent packet sizes and different sending rates with the
aid of NTP servers. The measurements took place from
October 6 to October 9 (Saturday-Monday). The send-
ing rates range from 20msec to 1sec. The packets are
sent, back-to-back according to the selected sending rate
for six minutes every 30 minutes. Hence, for every day
there are 48 different six-minute datasets.

To extract the useful information from the raw RTT
data, we applied specific time series methodologies like,
interpolation to recover from loss (so that our signal
would not have discontinuities), removal of outliers and
smoothing. Applying the estimators in the RTT signal,
resulted in non-consistent estimations, in the sense that
some of the estimators showed long-range dependence for
some of our datasets. However, further analysis of the
signal showed that it is dominated by periodic compo-
nents. In particular, there was increasing energy in the
signal every 5sec. This was true for 85% of our datasets.
Removing the periodicity from the signal and applying
the Hurst estimators in the new signal reveals long-range
dependent behavior. For almost all of our datasets H is
found to be between 0.55 and 0.68 by the majority of
the estimators. Figures 1 and 2 show a RTT signal, the
periodicity and two of the estimators before and after
the removal of the periodicity.

5 Conclusions

The goal of this paper is to provide the first steps to-
wards a systematic approach to long-range dependence
analysis. We find that this is an essential task, given the
increasing interest of the community for long-range de-
pendence. We show that identifying long-range depen-



dence is not straighforward: the estimators have con-
flicting results. Our work provides some general rules
on interpreting these inconsistent results. In addition,
we provide a tool that integrates most of the known re-
quired functionality for such analysis.

Our work leads to the following conclusions:

e There is no single estimator that can provide a
definitive answer. For example, Whittle is the most
accurate when LRD exists, but can be mislead in
showing LRD by periodic non-LRD data.

e Long-range dependence may exist even, if the esti-
mators have different estimates in value

e Long-range dependence is unlikely to exist, if there
are several estimators that do not “converge” sta-
tistically to a value

e periodicity can obscure the analysis of a signal giv-
ing partial evidence of long range dependence.

We also applied the estimators in real RTT data. RTT
is both periodic and long-range dependent. In particular,
we showed that RTT is dominated by a periodic compo-
nent of 5sec. The long-range dependent characteristics
of the RTT signals are revealed only after the periodicity
is removed.

Finally, our work provides the following tips for prac-
titioners.

e A visual inspection of the signal can be very useful
revealing many of its features, like periodicity®

e For efficient characterization, it may be necessary to
process and decompose the signal.

e Researchers should not rely only in one estimator
in deciding the existence of long-range dependence.
As we saw, several of the estimators (Whittle, Pe-
riodogram) can be overly optimistic in identifying
long-range dependence.

e A reporting of the Hurst exponent is meaningful,
only if its accompanied by the method that was
used, as well as the confidence intervals or corre-
lation coefficient.
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Table 2: Estimators predictions for the signal Acos(0.005z).
Increasing the amplitude, increases the estimation for
the Hurst exponent.

A | Period | R/S | Whittle | C.L

0.3 | 0.6 0.72 | 0.55 0.54-0.56
1.3 | 0.88 0.95 | 0.72 0.71-0.74
23 |1 0.98 | 0.8 0.79-0.82
3.3 | 1.17 0.98 | 0.85 0.84-0.87
4.8 | 1.2 0.96 | 0.89 0.88-0.91

Table 3: Estimators predictions for the signal cos(az).
Increasing the frequency, increases the Hurst value in
Whittle, while decreases in Periodogram and R/S.

e Period. | R/S | Whittle | C.I. ABS | Variance
0.01 | 0.55 0.82 | 0.7 0.68-0.71 | - -

0.08 | 0.59 0.56 | 0.72 0.71-0.74 | - -

0.09 | 0.55 0.53 | 0.72 0.71-0.73 | - -

0.1 0.53 0.54 | 0.72 0.71-0.74 | 0.35 | 0.38
0.16 | 0.43 0.47 | 0.73 0.71-0.74 | 0.41 | 0.44




Figure 1: A sample RTT signal and the 5sec (index * 20msec sending rate) periodicity (power vs period)
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Figure 2: Average method and RSplot before (left two) and after the removal of the dominating periodic components. Both
methods show LRD once the periodicity is removed.

Table 1: Estimators results using Paxson’s Generator. Whittle and the Periodogram estimate more accurate the generated

FGN series

H ABS | Variance | Period | Residuals | R/S | Whittle | C.L Abry-Veitch | C.I

0.5 |0.43 | 0.46 0.52 0.44 0.55 | 0.5 0.48-0.52 | 0.54 0.52-0.57
0.6 | 0.53 | 0.55 0.62 0.52 0.63 | 0.59 0.57-0.61 | 0.65 0.62-0.67
0.7 |10.61 | 0.63 0.72 0.61 0.7 | 0.69 0.67-0.71 | 0.75 0.73-0.78
0.8 10.69 |0.71 0.82 0.7 0.77 | 0.79 0.77-0.81 | 0.86 0.83-0.88
0.9 |0.76 | 0.78 0.92 0.78 0.83 | 0.89 0.87-0.91 | 0.96 0.93-0.98
0.95 | 0.79 | 0.81 0.97 0.82 0.85 | 0.94 0.92-0.96 | 1 0.98-1
0.99 | 0.81 | 0.83 1 0.85 0.87 | 0.98 0.96-1 1 1-1

Table 4: Estimations for generated FGN series with White Gaussian Noise. The values in the parenthesis show the estimation
of the raw FGN data. Noise affects most Whittle

Hurst | Period R/S Whittle Residuals | ABS Variance

0.5 0.5 (0.48) | 0.58 (0.56) | 0.5 (0.5) | 0.49 (0.44) | 0.45 (0.41) | 0.48 (0.43)
0.7 0.64 (0.68) | 0.69 (0.72) | 0.63 (0.7) | 0.6 (0.62) | 0.59 (0.6) | 0.62 (0.61)
0.9 0.86 (0.88) | 0.83 (0.85) | 0.73 (0.9) | 0.76 (0.78) | 0.71 (0.74) | 0.75 (0.76)

Table 5: Estimations for generated FGN series with a cosine function (cos(0.05z)). The values in the parenthesis show the
estimation if the amplitude of the cosine function is multiplied by three. All estimations are affected by the periodicity.

Hurst | Period R/S Whittle Residuals | ABS Variance
0.7 0.7 (0.78) | 0.69 (0.59) | 0.82 (0.99) | 0.63 (0.66) | 0.5 ( -) 0.54 (-)
0.9 0.9 (0.95) | 0.8 (0.66) | 0.98 (0.99) | 0.78 (0.78) | 0.68 (0.52) | 0.72 (0.59)




