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Abstract. In this paper, we develop methods to “sample” a small realistic graph
from a large real network. Despite recent activity, the modeling and generation
of realistic graphs is still not a resolved issue. All previous work has attempted to
grow a graph from scratch. We address the complementary problem of shrinking
a graph. In more detail, this work has three parts. First, we propose a number of
reduction methods that can be categorized into three classes: (a) deletion meth-
ods, (b) contraction methods, and (c) exploration methods. We prove that some
of them maintain key properties of the initial graph. We implement our methods
and show that we can effectively reduce the nodes of a graph by as much as 70%
while maintaining its important properties. In addition, we show that our reduced
graphs compare favourably against construction-based generators. Apart from its
use in simulations, the problem of graph sampling is of independent interest.

1 Introduction

Small graphs that resemble the Internet topology are needed for conducting simulations
of various network protocols. Real graphs can have prohibitively large sizes, especially
for highly detailed simulations such as packet level simulations. To produce high con-
fidence results, one averages the experimental results over many graphs of a given size.
Running the experiments over a range of sizes allows reseachers to interpolate the re-
sults to graph sizes outside the tested range. In particular, it shows whether the per-
formance of the tested protocols scales well with increasing size, leading to accurate
performance predictions for the Internet graphs of the future.

Currently, all known models for graph generation incrementally grow a graph with
desired properties. Our work follows the opposite approach: we wish to reduce real
large Internet instances to produce small realistic topologies. This task can be thought
of as graph sampling, and it has attracted attention in other settings [18] [19].

Among the existing Internet topology generators, none has yet been widely accepted
as sufficiently accurate. These generators produce arguably realistic graphs, but they do
not necessarily match all the known topological properties of the Internet. Most graph
generators attempt to grow a graph, an approach that we call constructive. This area has
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seen unprecedented activity since the discovery of skewed degree distributions in the
Internet topology [11]. The generators either use “biased” or preferential growth policy
[2] [3] [5] [10] [23] or force a power-law degree distribution [1] [16]. The weakness of
these constructive methods lies in their dependence on the principles of construction,
and the choice of parameter values. Furthermore, several of them focus on matching
the degree distribution, while they often fail to match other topological properties, as
multiply documented [5] [7] [15] [16] [29].

In this paper, we address the following problem: we want to “sample” a real topol-
ogy1 to produce a smaller graph. The overarching goal of our approach is very practi-
cal: we want the simulations on the sampled graph and the initial larger graph to lead
to the same conclusions. This is a novel problem in the Internet modeling community,
although some related work in other areas exists [18] [19]. We call our approach of
generating a graph reductive. Intuitively, our approach has the easier task of not “de-
stroying” the existing properties, in contrast to the task of the constructive approach,
which has to reproduce all the right properties.

How do we evaluate the success of our approach? Establishing criteria for the re-
alism of a generated graph is an open ended problem. In the case of graph sampling,
the question is more involved: which Internet instance should the reduced graph try to
match? One can distinguish two objectives: we can either try to match the properties
of: (a) the real Internet instance of the same size (thus “reversing” the evolution of the
Internet), or (b) the initial instance (thus producing its small imitation.) If the prop-
erties do not change with size, then both goals are equivalent. However, no obvious
time independent topological metrics seem to exist [28]. The findings of [28] suggest
that even though every Internet instance at the AS-level has power-law characteristics,
there are variations in the value of the slope. Thus we chose the first method above,
and we compare the reduced graph with an equal size real Internet instance.

The contribution of this paper is twofold: (i) we provide efficient graph sampling
algorithms, and (ii) we compare our reduction methods against constructive methods.
In addition, we compare our graphs using network protocol simulation but this study
could not be included here due to space limitations. This paper significantly extends
a preliminary version of this work [21], while a more detailed version appears as a
technical report [20].

Graph Sampling Algorithms. As our main contribution, we develop and quantify the
performance of a number of reductive methods. We group these methods into three main
categories: (a) deletion methods, (b) contraction methods and (c) exploration methods.
Our work yields the following results.

– Our best algorithms successfully reduce the graph size by up to 70%, in the num-
ber of nodes, while preserving the desired topological properties. Our methods are
statistically robust to the initial topology and the randomization seed.

– We show analytically that some of our methods will maintain the power-law of the
degree distribution, if such a distribution exists in the initial topology.

Comparison of Reductive and Constructive Methods. We compare our best reduc-
tion methods with commonly used constructive methods and find that our methods

1 To make it more specific, the current Internet has more than 14,000 nodes. The smallest avail-
able Internet instance (from 1997) has about 3,000 nodes, but even this size is computationally
expensive, if not prohibitive, for some types of simulations such as BGP simulations or flow
level simulations [8] [27] [14].
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match more closely the properties of the real instances. We find that the best con-
structive generator is Inet [16], which takes as input the available real instances. Inet
currently does not generate graphs with less than 3000 nodes. Therefore, we can confi-
dently say that for really small graphs (n < 3, 000), the reductive methods are the best
choice.

It is worth noting that the reductive approach has two additional attractive properties:

– A “statistically fair” reduction may preserve many graph properties, including some
that we have not used for our metrics, or even some properties that we have not yet
identified.

– The reductive method is likely to extend to different types of graphs, for example,
the policy-based Internet topology, or the Web graph.

Graph sampling can be used as a tool to provide insight into the topological prop-
erties and structure of the graph. Finally, sampling can also complement a visualization
effort, when the sizes are too large for a meaningful graphical representation.

2 Background and Metrics

In this section, we introduce the topology model and several topological properties of
the Internet, which we use to evaluate the realism of our graphs.

2.1 Internet Instances

The Internet is divided into autonomously administered domains or Autonomous Sys-
tems (AS). In our study, we focus on the AS level topology, and we model the Internet
as an undirected graph whose nodes are AS’s and whose edges are inter-domain con-
nections. This has been a standard approach in the past literature and there continues to
be significant activity in measuring and modeling the AS level Internet as an undirected
graph. It is worth noting, however, that, more recently, there have been efforts [13] [22]
[4] to model the Internet as a directed graph by including business relationships.

Our real data come from the Oregon Routeviews project [12]. This is the frequently
used archival data by researchers in this area and the only data archive that has instances
spanning over 5 years. This data is specifically chosen for our study as we need a wide
range in the size of the Internet topology. This was the reason why we could not use
the [7] archive which spanned only over three months. Each instance in this paper is
named using its collection date, in the format IYYMMDD. For example, the instance
collected on May 07, 2001 is named I010507. We use real Internet instances [12] from
November 1997 to March 2003 in our experiments.

2.2 Graph Properties

Several graph properties have been proposed to capture the characteristics of real Inter-
net graphs [11] [15] [26], and we adopt most of these metrics in our study. Needless to
say, preserving these properties is necessary for the generated graphs to resemble the
Internet topologies, but it may not be sufficient, for these topologies may share other
properties that have not yet been discovered.

Average and Standard Deviation of Degree. The average degree of a graph is equal
to 2m/n, where m is the number of links and n is the number of nodes. The average
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degree represents the density of a graph. The average degree of Internet topologies is
known to increase over time, as the size of the graph also increases. Another measure
we examine is the standard deviation of the degree distribution, which can be thought
of as a measure of the “diversity” of the nodes in the network.

Degree Distribution. It has been shown that power laws approximate well2 the skewed
degree distribution [11]. Here, we focus on power law 1, the degree rank exponent and
power law 2, the degree exponent. Degree rank exponent is defined as the slope of log-log
plot of the nodes’ degrees versus their rank, where the k-th ranked node is the one with
the k-th highest degree. Degree exponent3 is the slope of the log-log plot of the degree
frequency versus degree. The two power laws can be shown to be, in fact, equivalent. In
practive, however, the actual degree distributions follow these power laws only approxi-
mately, and studying both laws provides slightly different approximate views of the real
degree distribution4. In this metric, we check the existence of power-laws and then com-
pare the value of the exponent of the power laws [24]. Power laws are approximations
whose accuracy is typically quantified by the correlation coefficient. In addition, power
laws often target the tail of a distribution, which is the focus of our analytical work.

Spectral Analysis. Gkantsidis et al. [15] characterize the clustering and spatial proper-
ties of a topology using spectral analysis of the adjacency matrix of a graph. Spectral
analysis captures significant information about the clustering properties of the topology
in a unique way. It subsumes the clustering coefficient metric that was used before [5].

In more detail, spectral analysis examines the eigenvectors corresponding to the
largest eigenvalues of the normalised transposed adjacency matrix of an entire topol-
ogy. These vectors correspond loosely to the eigenvectors of the main clusters in the
topology. The resulting plot depicts the 100 largest eigenvalues in order of magnitute,
from largest to smallest. It is found that the clustering properties (the corresponding
plot) have not changed significantly despite the Internet growth [15].

C. Graph Generators. Early graph generators failed to match the skewed degree dis-
tribution [6] [9] [31] [32]. Several recent generators build topologies with power-law
degree distribution in mind [1] [3] [5] [16]. It is worth mentioning that the pioneering
Barabasi-Albert model [3] generates a graph through preferential attachment: in attach-
ing new nodes to existing ones, it favors high-degree nodes. Mitzenmacher provides an
overview of methods to generate power law distributions [25].

To illustrate that the reduction methods generate graphs which resemble Internet
topology better than the constructive methods, we compare the topology obtained by
reducing the AS level Internet topology using our best reduction method with similar
graphs generated by Inet [16], Waxman [30], Barabasi-Albert [3], and the modified
GLP heuristic [5].

Finally, the problem of graph reduction and sampling appears in other disciplines,
often with different goals. For example, graph sampling has been used in graph parti-

2 Chen et al. [7] created a more complete Internet graph at the BGP level, but recent work by
Siganos et al. [28] shows that the power laws hold with 99% correlation coefficient even in
this new graph.

3 We use the reverse cumulative distribution function (RCDF) of power law 2, which is more
robust than the cumulative distribution function (CDF)[28].

4 The correlation coefficient of the power law fit was verified by the authors of [7], who use
more metrics to examine the goodness of the fit.
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tioning in the context of distributed computing [18] [19], and randomized graph sam-
pling has been used to solve different graph problems, such as min-cut approximation
[17]. To our knowledge, however, prior to our work, no research has been reported on
using graph sampling for generating realistic network topologies.

3 Graph Reduction Methods

This section presents our approach for reducing a real AS level Internet topology to a
smaller realistic topology. Our methods fall into three categories: (a) deletion methods,
that remove edges or nodes from the graph, one by one, until a desired size is reached,
(b) contraction methods, that contract adjacent nodes, step by step, until a desired size
is reached, (c) exploration methods, that traverse a desired number of nodes according
to a given exploration policy, and retain the subgraph induced by those nodes. For con-
sistency of notation, we abbreviate the methods starting with the letter that indicates the
category they belong to: D for deletion, C for contraction, and E for exploration.

3.1 Deletion Methods

Our deletion methods are embedded in the following framework: The input consists
of an initial graph G with n nodes and m edges, and the total percentage P of nodes
to be deleted. The graph is reduced iteratively in stages, where at each stage a small
percentage s of nodes is removed (where s is a parameter that can be set by the user.)
A stage consists of several steps, in which we remove either one edge or one vertex
selected according to the specific method. After each stage, connected components are
found and the largest connected component is retained. The procedure stops when the
reduced graph has approximately n(1−P/100) nodes. By reducing a small percentage
s of the graph in each iteration, we are able to meet the target size more accurately. In
practice, a reduction of 3% to 5% of the nodes at each stage was sufficient to achieve
the desired reduction. (The partition into stages was introduced for efficiency, for main-
taning connected components incrementally, under node or edge deletion operations, is
either very slow or cumbersome to implement.) The deletion methods we study are:

Deletion of Random Vertex (DRV): Remove a random vertex, each with the same
probability.

Deletion of Random Edge (DRE): Remove a random edge, each with the same prob-
ability.

Deletion of Random Vertex/Edge (DRVE): Select a vertex uniformly at random, and
then delete an edge chosen uniformly at random from the edges incident on this vertex.

Hybrid of DRVE and DRE (DHYB-w): In this method, with probability w we execute
DRVE and with probability (1−w) we execute DRE. In particular, DHYB-1 is DRVE,
and DHYB-0 is DRE. (This method was motivated by our initial studies showing that
DRVE and DRE had opposite performances with respect to different metrics, namely
when one of them underestimated a metric’s target value then the other overestimated
it.) We consider nine values of w in our experiments, ranging from 0 to 1.0 in increments
of 0.1. For clarity, we show only a subset of those here.
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3.2 Contraction Methods

These methods proceed by contracting adjacent nodes. The two methods below differ
in the manner their connecting edge is chosen.

Contraction of Random Edge (CRE): Pick a random edge, uniformly, and contract
its endpoints. The neighbors of the merged nodes become neighbors of the new node.
(This method bears some similarities to the random matching method [19] and the edge
coarsening method [18]. We also considered a generalization of the CRE method, where
more neighbors contract all at once, but the results were not satisfactory and are not
shown here.)

Contraction of Random Vertex/Edge (CRVE): Pick a random vertex, uniformly, and
contract it with a uniformly-chosen random neighbor.

3.3 Exploration Methods

Here, we pick an initial node randomly, traverse the graph according to a given explo-
ration method, until a desired number of nodes is visited. We then retain the subgraph
induced by these nodes: all nodes that have been visited and the edges between them
are retained in the final graph. We study two ways to explore a graph:

Exploration by Breadth First Search (EBFS): Randomly select a start node, and then
do breadth-first search starting from that node, until the desired number of nodes have
been visited.

Exploration by Depth First Search (EDFS): Randomly select a start node, and then
do a depth-first search starting from this node (following a random yet non-traversed
edge at each forward step), until the desired number of nodes have been visited.

4 Analysis

In this section, we prove that two of our reduction methods, DRE and DRV, preserve
the degree power-law. More specifically, we show that if an original graph satisfies the
power law, then the reduced graph satisfies it too, with the same exponent, for large
degrees.

Let G denote the original graph with n vertices and m edges. By nd we denote the
number of nodes of degree d, and by dave the average degree. These quantities are related
to each other by n =

∑
d nd, m = 1

2

∑
d dnd, and dave = 2m/n.

The symbols n′, m′, n′
d, d′ave denote the corresponding values in the reduced graph

G′. Since our reduction methods are probabilistic, these symbols actually represent
expected values of the corresponding random variables.

We assume that the degree sequence of G satisfies the power law in the following
form: nd = Cnd−α, where C = (

∑n
d=1 d−α)−1 and α is the degree exponent. We

wish to show that a similar property holds (approximately) in G′.

DRE and Power Law Preservation. The DRE method, as implemented in our ex-
periments, removes edges at random, one at a time, and retains the largest connected
component. This process, in its raw form, is not amenable to analytical studies, as the
degree distribution of the eliminated nodes depends heavily on (unknown) topological
properties of G. To facilitate the analysis, we will approximate DRE by another process
that is easier to analyze. This approximation will proceed in several steps.
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First, we ignore the fact that DRE removes the nodes outside the largest connected
component, and study instead the degree distribution among all the vertices of G, after
the edges are deleted. Thus, throughout this section, G′ has the same vertex set as G
and n′ = n. This simplification is justified by experimental results showing that the
nodes eliminated by DRE have very low degree, so this simplification should not affect
the asymptotic behavior of the degree distribution.

Let p = m′/m. We can think of p as a probability of an edge being retained in
the graph. Thus, in the second approximation, instead of removing edges one by one,
we will flip a coin for each edge, independently, and remove each with probability
q = 1 − p. Although this does not guarantee that the resulting graph will have exactly
m′ edges, its expected number of edges is very heavily concentrated around m′, and the
two processes have asymptotically the same behaviors.

Informal argument. Our goal is to show that in G′ the degrees satisfy n′
d = C ′n′d−α,

for some constant C ′. The general idea of our proof is summarized as follows. Roughly
speaking, nodes in G with degree between (d − 1

2 )/p and (d + 1
2 )/p end up in G′ with

an expected degree of d. Since this range covers 1/p different degrees, and for degrees
c close to d the values nc are close to nd, we might anticipate that for d not too small,
we should get n′

d ∼ 1
pnd/p = Cpα−1n′d−α, preserving the power law with the same

exponent.

Theorem 1. For any fixed exponent α > 1 and probability p ∈ (0, 1), given a graph
with degree distribution given by nd = Cnd−α, the degree distribution of the graph re-
duced through the process above will approximately follow a power-law: n′

d ≈ Cpα−1

d−α.

The formal statement of the above theorem and its proof are omitted due to space
limitations.

DRV and Power Law Preservation. An analogous argument as for DRE can also
be applied to DRV. We only outline an informal explanation here: Let n′ = pn. We
can think about DRV as removing each vertex in G, independently, with probability
q = 1 − p. Then, roughly speaking, a fraction p of the nodes with degree between
(d − 1

2 )/p and (d + 1
2 )/p end up in G′ with an expected degree of d. Other nodes

are either deleted or their new degrees are not d. Since this range covers 1/p different
degrees, and for degrees c close to d, the values nc are close to nd, as long as d is large
enough, we should get n′

d ∼ nd/p = Cpα−1n′d−α, preserving the power law with the
same exponent.

5 Graph Reduction Evaluation

We examine the performance of our sampling methods in practice. The starting point of
the reduction in most of the experiments in this paper is the AS level Internet topology
I010507 collected on 07/05/2001. (However, we have experimented with other topolo-
gies with similar results.) The I010507 graph has 10,966 nodes and 22,536 edges, thus
an average degree of 4.11. The “Internet curve” shown in all the graphs represents the
value of actual Internet instances of size corresponding to the value on the x-axis. If we
reduce the I010507 graph by 70% we end up with about 3,300 nodes which is roughly
the same size as the I980124 graph. Each data point in our plots represents the average
of 50 runs with different random seed.
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Fig. 1. Average degree comparison of Dele-
tion, Contraction and Exploration Methods
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Fig. 2. Average degree comparison of Hy-
brid Methods

Our experimental results show that among all the methods DHYB-0.8 seems to have
the least deviation from the Internet’s topological properties. Thus it is the best method
with respect to topological metrics described in Section II. Among the non-hybrid meth-
ods, DRV performs well. Recall that the DHYB method combines edge deletions DRE
and DRVE. It is interesting to see how well the random node removal DRV worked in
practice. In Table 1 we present the top performing methods according to some metrics.
Variations of DHYB and DRV are consistently present in every column. We have not
shown the performance of all the DHYB methods here as the graph becomes very con-
gested. As the value of w in DHYB is increased, the metric values increased between
DRE and DRVE.

Test 1: Average Degree and its Deviation. DHYB-0.8 has the best performance. Fig-
ure 1 shows how the average degree varies for the deletion, contraction and explo-
ration methods. Figure 2 shows the average degree of the hybrid methods with w =
0.1, 0.5, 0.6, 0.8. DRVE follows the evolution of the average degree fairly closely up
to 50% reductions, but then it diverges quickly. DHYB-0.8 stays close to the Internet
curve in the whole range, and it has nearly the same value of average degree at the 70%
reduction point.

We also found that DHYB-0.8 is better in terms of the average deviation, with an
average percentage deviation of 4.2%, followed by DRVE with 5%. These methods are
followed by DHYB-0.6 and DRV with average percent deviations of 11% and 12.2%
respectively. We have selected only methods whose average degree decreased under
graph reduction, mirroring the trend in the real Internet data observed in Figures 1 and 2.
With the exception of one data point, the Internet’s average degree constantly decreased
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with decreasing size. All the other methods are farther away from the Internet, so we
conclude that they do not fare well in this metric comparison.

Test 2: Exponent of Rank Power Law. DHYB-0.6 is the best method. The hybrid
methods follow the variation of the Internet rank exponent more closely than the other
methods, as is evident in Figures 3 and 4. In fact, the average percent deviations was
within 3% for DHYB-0.6, DHYB-0.5 and DHYB-0.8. DHYB-0.8 and DHYB-0.5 are
the second best methods after DHYB-0.6 which lie above and below the Internet line.
DRV was quite close, with an average percentage deviation of 5.2%.

Test 3: Correlation Coefficient of Rank Power Law. DHYB-0.5, 0.6, 0.8 and DRV
consistently maintained a high correlation coefficient. In addition to having an exponent
value closer to that of the Internet, the methods should also have a high correlation
coefficient, preferably above 97%. Even though it looks like EBFS performs equally
well as DHYB-0.6, it has a smaller correlation coefficient (below 96%). A similar trend
is seen in CRVE which follows DRVE very closely. The other methods have correlation
coefficient above 96% except CRE whose correlation coefficient drops steadily from
90% (at 25% reduction) to 61% (at 70% reduction). Even though we include EBFS,
CRVE and CRE in Figure 3 for degree exponent comparison, we exclude them from
being viable solutions at this point.

Test 4: Exponent of Degree Power Law. DHYB, DRV, and DRE are successful in this
test: their degree exponent is within 5.5% from the the exponent of the Internet instance.
Among the hybrid methods, DHYB-0.5, 0.6 and 0.8 perform well, having a value within



Reducing Large Internet Topologies for Faster Simulations 337

 0.75

 0.8

 0.85

 0.9

 0.95

 1

 0  20  40  60  80  100

E
ig

en
va

lu
e

Order

DRV
DHYB-0.5

DHYB-0.6
DHYB-0.8

I980124

Fig. 5. Spectral Analysis of 70% reduced DHYB-0.5, 0.6, 0.8, DRV, and Internet instance
I980124

Table 1. The best methods, based on average percent deviation from the target value. For average
degree, “best” is within 5% and “second best” within 5-15%. For the other two metrics, “best” is
within 3%, and “second best” within 3-5.5%

Range Average Degree Rank Exponent Degree Exponent
Best group DRVE,DHYB-0.8 DHYB-0.1,0.6,0.5,0.8 DHYB-0.1,DRE, DHYB-0.5

Second group DRV,DHYB-0.6,0.5 DRV DHYB-0.6,0.8,DRV

or close to 5% of the exponent of the Internet topologies. (Figures not included due to
space limitations.)

Test 5: Correlation Coefficient of Degree Power Law. The correlation coefficient of
the best methods namely DHYB-0.1,0.5,0.6,0.8, DRE and DRV are above 97% in all
the cases.

We evaluate the methods based on their average percent deviations from the Internet
with respect to the four metrics we examined so far. From Table 1, we conclude that
DHYB-0.8, 0.6, 0.5 and DRV are the leading methods, and from now on we will use
only those four methods in the remaining experiments.

In the following two tests, we need to generate a plot for every topology, unlike the
previous tests where we had a single value corresponding to a topology. Thus we chose
to show only the 70% reduction point; we had similar results for the other reduction
points also. We could maintain successfully the above mentioned topological properties
up to the 70% reduction point using our methods: DHYB-0.5, 0.6, 0.8 and DRV. For
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the hop-plot and spectral analysis test, we reduce the I010507 topology by 70% using
DHYB-0.5, 0.6, 0.8 and DRV. The reduced graph now has about 3290 nodes and its
performance is compared with the I980124 Internet topology having 3291 nodes.

Test 6: Spectral Analysis. DHYB-0.8 gives best results. The spectral analysis results
of DHYB-0.8, 0.6,0.5 and DRV (the selected best methods) are shown in Figure 5.
Recall that the spectral behavior of the Internet topology is consistent over time [15].
So we have reason to believe that the reduction method whose spectral behavior matches
I980124 is the best method. As we can see DHYB-0.8 follows the I980124 topology
closely, outperforming the other methods.

Considering the results of all tests above, the best of the methods we tested is
DHYB-0.8, as it maintains an average percent deviation from the target values close
to or below 6% with respect to the four topological metrics, and in several tests it out-
performs all other methods. Among the non-hybrid methods, DRV seems to the best
method maintaining an average percent deviation close to or below 5% for the power-
law metrics and within 15% for average degree.

Test 7: Robustness to Input Internet Instance. All the methods are insensitive to the
initial instance. We further investigated the stability of each method with respect to
the input Internet instance. We tested our seven reduction methods on the most recent
AS level Internet topology I030313 with 15,026 nodes and 31,200 edges. The results
were very similar to those reported for the instance I010507. Similar results were also
obtained for other Internet instances.

6 Reductive Methods versus Constructive Methods

We compare our reduction methods with existing well-known constructive generator:
Inet [16], Waxman [30], BA (Barabasi-Albert) [3], and GLP (Generalized Linear Pref-
erence) [5]. Using the same metrics as in Section 5, we compare the topologies reduced
by our best reduction methods, namely DHYB-0.8 and DRV (starting from instance
I010507) with topologies from these other topology generators. For brevity, we show
results only for two selected metrics.

Test 8: Average Degree. Inet follows closely the variations in the Internet’s average de-
gree. The behavior of Inet is not surprising as this generator predicts the average degree
using real Internet instances from the same data archive [12] that we use, and forces
this degree distribution. DHYB-0.8 is the next best method. DRV doesn’t follow the
variations in the Internet but decreases in value linearly, unlike GLP which varies hap-
hazardly with no specific pattern. The BA and Waxman generators produce topologies
with an average degree of 4 independent of the size of the graph.

Test 9: Exponent of Rank Power Law. DHYB-0.8 is the best method. The hybrid
method follows the variation of the Internet rank exponent very closely as is evident
in Figure 6. We recall from the previous section that the average percent deviation of
DHYB-0.8 with respect to this metric was within 3%. Inet maintains a constant value
for the exponent irrespective of the size of the graph. DRV has values higher than the
Internet and is the next best method. In the BA generator, both the node placement
options (random and heavily tailed) generate topologies with similar values. Similar to
the previous test, the exponent value is independent of the size for both Waxman and
BA topologies.
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Test 10: Exponent of Degree Power Law. DYB-0.8 and DRV seem to be best. Most of
the methods perform well, except for those by Waxman and BA. In particular, DHYB-
0.8 and DRV have values close to the Internet. They are followed by GLP and Inet,
which fall above and below the Internet respectively.

Test 11: Spectral Analysis. DHYB-0.8 seems to be the best. Synthetic generators like
BA and GLP have not only smaller eigenvalues compared to the Internet but also a
slope value that is very different from the AS level Internet topology [15]. Gkantsidis et
al. [15] claim that these generators fail to reproduce the strong clusters that are present
in the Internet. On the other hand, our methods DHYB-0.8 and DRV have a higher
eigenvalue and a distribution very similar to the Internet (Figure 7). The eigenvalues of
Inet doesn’t decrease gradually unlike the Internet but instead exhibits sharper trends.

Summary. We find that DHYB-0.8 is the best method followed by Inet and DRV. Inet,
however, does not generate graphs below 3000 nodes. (This could be related to the fact
that Inet uses the available instances from the RouteViews archive [12] in order to cali-
brate its intended graph metrics, and the smallest instance (collected on 15th Nov 1997)
in the archive has 3,037 nodes.) Given this restriction, we believe that DHYB-0.8 is the
best choice for small graphs (nodes < 3, 000). We used such small topologies, includ-
ing the I980124 graph reduced to 1500 nodes, to evaluate our generation techniques
in multicast simulations. We show that even using such small graphs, we can obtain
realistic simulation conclusions. (Results not included due to space limitations.)

7 Conclusion

The goal of this paper has been to propose and study methods for sampling Internet-like
graphs. We propose and evaluate the performance of three types of reduction methods
with multiple methods of each type. Our work leads to the following conclusions.
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How can I sample a real network? We conclude from our experiments that DHYB-
0.8 is the best among our methods for the Internet sampling, and that it also compares
favorably to graph generation methods proposed previously in the literature. DRV is
nearly as good, which, given DRV’s simplicty, is an interesting result in its own right.

How much can I reduce a real network? We are able to reduce a graph successfully by
approximately 70% in terms of the number of nodes. Beyond 70% we often find that
the statistical confidence coefficient is low.

Provable reduction performance. We show analytically that DRV and DRE respect an
initial power-law degree distribution.

Simulation speedup. The speedup depends on the complexity of simulations. Given a
70% reduction in size, an O(n2) or O(n3) simulation will decrease by a factor of about
11 or 37, respectively. Furthermore, smaller graphs will require less memory which can
decrease the simulation time further.
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