
Justice: Flexible and Enforceable
Per-Source Bandwidth Allocation

Jakob Eriksson, Michalis Faloutsos, Srikanth Krishnamurthy
jeriksson,michalis,krish@cs.ucr.edu

University of California, Riverside

Abstract. The overarching goal of this work is to provide bandwidth al-
location that is robust against the behavior of greedy or malicious users.
The traditional solution, Fair Queueing, allocates capacity per source-
destination pair in accordance with the max-min fairness criterion. While
Fair Queueing, defined as above, has been successful and popular to a
large extent, it does not prevent greedy or malicious users from getting
unfair shares of capacity. In particular, it is vulnerable to end-points sim-
ply establishing multiple parallel connections to increase their allocated
capacity.
In order to overcome this limitation, we propose Justice, which allows for
robust, yet flexible bandwidth allocation in the Internet. Justice employs
weighted per source bandwidth allocation to accommodate traffic sources
with varying bandwidth requirements. We describe an efficient and scal-
able mechanism for determining, for each source s, the weight φ

(s)
k at

any given link k. We demonstrate through analysis and simulation that
Justice is flexible, efficient, scalable, and robust to all identified attacks
related to bandwidth allocation.

Keywords: Bandwidth Allocation, Per-Source Weighted Fairness
Corr. Author: Jakob Eriksson, tel (951)787-2434, fax (951)827-4643
Dept. of Computer Science, University of California, Riverside, CA 92521

1 Introduction

Currently greed and mischief pay off in terms of performance in the Internet.
Through a number of reasonably simple tricks, greedy or malicious users can
improve their own throughput at the cost of their well-behaved counterparts.
The primary goal of this work is to make the bandwidth allocation of each user
independent of the potentially malicious behavior of other users of the network.

The problem of isolating user behavior has been addressed before. In par-
ticular, Fair Queuing was introduced in RFC 890 [1], where Nagle advocated
per-source max-min bandwidth allocation. Shortly thereafter, Demers, Keshav
and Shenker, [2] brought up the fact that some sources may deserve a higher
bandwidth allocation than others, making a per-source max-min allocation im-
practical. Their proposed solution was to instead allocate bandwidth per source-
destination pair. Unfortunately, this solution makes Fair Queuing vulnerable to

users sending traffic to multiple destinations to maximize their total through-
put. An ideal bandwidth allocation scheme needs to be both flexible enough to
accommodate a wide variety of traffic sources, and enforceable so that a well-
behaved source can retain its allocation in despite the actions of malicious or
greedy sources.

We propose Justice1, a novel approach to bandwidth allocation. Justice pro-
vides a guaranteed minimum allocation to each source, at each link, independent
of the behavior of other users. With the protection of well-behaved users as its
first concern, Justice employs weighted per-source fairness at each link, and pro-
vides a mechanism for efficiently determining a unique per-source weight φ

(s)
k of

each source s, at each link k in the network.
Justice exhibits the following properties. First, it is robust: through the care-

ful computation of per-source weights, Justice ensures that greedy or malicious
sources cannot, through manipulation of the weight calculation process, affect
the bandwidth allocation to their advantage. Second, it is enforceable: the use
of per-source fairness at each link ensures that the actual bandwidth achieved
corresponds closely to the allocation assigned, independent of the behavior of
competing traffic sources. Third, it is flexible: Justice computes a unique per-
source weight for each source at each link. This provides administrators with
the flexibility to allocate extra bandwidth to sources that deserve it. Fourth
it is scalable: Administration is limited to local per-link settings, as opposed
to global per-source weights. Moreover, a router needs only keep track of the
weights of sources that are actively using a link incident on it, the weights of
inactive sources are ignored. These properties have previously been achieved in
isolation, but to the best of our knowledge, Justice is the first to provide all of
them together.

2 Background and Motivation

Much research has gone into improving bandwidth allocation in the Internet. It is
well established that FIFO-Droptail queuing, where packets are served in arrival
order, and arriving packets are dropped if they find the queue full on arrival, does
not provide an adequate level of protection. Aside from the congestion control
algorithm used in TCP [3], most of the work has been done at the router level.

Queue Management algorithms such as RED [4] with variations [5] [6] [7]
and CHOKe [8] attempt to notify and punish overly aggressive flows. These
techniques rely on having conforming TCP clients at the endpoints. Moreover,
other link-based schemes, like Weighted Round-Robin queuing, or proportional
random dropping suffer from similar problems, in particular in conjunction with
TCP congestion control, where aggressive flows can often cause TCP to back off
indefinitely [9].

An approach toward isolating user behavior which has received much atten-
tion is that of Fair Queuing [1,2,10–21]. In general, the goal of Fair Queuing is to
provide max-min fairness between flows, where a flow can be defined in several
ways, and with the implicit assumption that all flows have equal rights to net-
work resources. In the original RFC [1], Nagle proposed to provide fairness per
1 The name Justice has been used by us in previously submitted work. Please note that

although the high-level goal is similar, the proposed scheme is significantly different.

source. However, in [2], the authors find that per-source fairness is impractical,
as some hosts, such as file servers, deserve a larger allocation of bandwidth. They
suggest that this problem could be solved by providing routers with knowledge
about the deserved allocation of each source, an approach commonly referred
to as weighted per-source fairness. However, they do not provide a mechanism
to determine and distribute such knowledge. Instead, they propose to provide
max-min fairness between conversations, or source-destination pairs. However,
quoting [2]: “Allocation per source-destination pair allows a malicious source to
consume an unlimited amount of bandwidth by sending many packets all to dif-
ferent destinations.” This vulnerability of per-conversation bandwidth allocation
has yet to be successfully addressed in the literature.

Link Sharing is a related technique, which focuses on sharing bandwidth be-
tween incoming links or different classes of traffic. Examples of this are Class
Based Queuing [22], and Weighted Fair Queuing [23]. These are also referred
to as Differentiated Services policies [24]. In general, such approaches provide
protection between traffic classes or between incoming links, but are powerless
to provide protection between sources in the same class, or the same link, re-
spectively.

We conclude that current approaches are not sufficient to protect well-behaved
users from their greedy or malicious counterparts. Due to the inherent vulner-
ability of per-conversation allocation, we propose to use weighted per-source
allocation. To accommodate sources that deserve a higher allocation than oth-
ers, we provide an efficient mechanism for determining the unique weight φ

(s)
k

of source s at link k, thus solving the original problem with per-source Fair
Queuing.

Like other schemes based on Fair Queuing, we assume that the source address
in the packet header is accurate. Under certain circumstances, an attacker could
potentially falsify the source address of his packets to improve his allocation. A
countermeasure against source address falsification is described in [25].

3 Defining Justice

In this section we will describe Justice as a concept, leaving implementation
details for later. Justice constitutes a new class of source-based bandwidth allo-
cation policies, where the primary objective is to protect well-behaved sources
from their malicious or greedy counterparts. At a high level, Justice combines a
network-wide method for determining the appropriate per-source weight φ

(s)
k of

each source s at any link k, with weighted per-source fairness2 locally on each
router.

Until now, weighted per-source bandwidth allocation has not been practical,
because there has been no adequate mechanism for determining the appropriate
weight of each source at each link, or for the distribution of this knowledge.

With Justice, we propose an efficient and scalable method for determining the
weight φ

(s)
k of each source s at each link k, without the storage and administration

overhead of configuring this weight at each router. The per-source weight is
2 Weighted per-source fairness is a variation of per-flow fairness where all traffic from

a given source is treated as a single flow, and where each source may have a unique
configured weight, indicating its deserved allocation on a given link.

1 MbpsS

341 Kbps170 Kbps
256 Kbps

256 Kbps

1/31/41/2
1/2 2/33/4

a

b c d

x y z

σ (a)
x = ½

(s)
z = ½·¾·⅔ = ¼ ϕ

Fig. 1. Bandwidth allocation with Justice. The allocation of source s on link z, φ
(s)
z ,

is determined by the per-link σ settings on the routers between s and z.

computed based on a set of configured per-link weights σ
(y)
x along the path from

the source to the link in question. Figure 1 shows an example of how bandwidth is
allocated based on configured per-link weights. Here, link a has a weight σ

(a)
x = 1

2
on the outgoing link x. Similar per-link weights are configured throughout the
network. Justice defines the per-source weight φ

(s)
k of source s at link

k, as the product of the per-link weights along the path from s to k.
In this case, φ

(s)
z = 1

2 ·
3
4 ·

2
3 = 1

4 .
Note that the configured weight on each link could be changed arbitrarily,

which would then result in a different bandwidth allocation. In general, Justice is
very flexible with respect to the final allocation. For example, a naive approach
to link weight assignment would be to assign the same weight to all links. This
would result in an allocation where many users sharing a high capacity link are
disadvantaged, as compared to a small number of users sharing a low capacity
link. A more practical, but still naive, approach might be to assign weights
according to link capacity. Finally, Justice also makes more advanced traffic
engineering approaches possible, one of which we will describe in Section 5.

More formally, for each pair of links x,y incident on a router, a constant
weight σ

(x)
y is configured. We define σ

(x)
y to be the fraction of the capacity of

link y, that is to be the guaranteed minimum allocation for packets that arrive
through link x. σ

(x)
y is a value between 0 and 1, and for every outgoing link y

∑
x6=y

σ(x)
y = 1. (1)

Given a path consisting of links 0, 1, . . . , k, we define the minimum weight φ
(s)
k

of source s at link k, to be

φ
(s)
k =

k−1∏
i=0

σ
(i)
i+1 (2)

Note that σ
(x)
y describes the minimum per-link weight. Justice is work-conserving,

so should packets arriving from an incoming link use less bandwidth than what
that link’s weight entitles it to, the surplus bandwidth on the outgoing link is
distributed between the other incoming links in proportion to their respective
weights, as discussed in the following section.

4 Enforcing Justice

In this section we will discuss how Justice can be practically implemented in a
network. Enforcing Justice consists mainly of two challenges. First, an efficient
mechanism for calculating the φ

(s)
k of each active source s on a link k is required.

Second, it is necessary to ensure that each source actually gets its deserved φ
(s)
k

share of the capacity of the link. The second part can be accomplished by using
per-source Weighted Fair Queuing.

Described briefly, per-source Weighted Fair Queuing (WFQ) keeps a sepa-
rate queue for each active traffic source, and sends packets from each queue
in proportion to their respective weights. WFQ is well understood [11, 23], and
has been shown to fairly distribute bandwidth between flows according to pre-
configured weights. WFQ requires per-source state. In most routers, this is not a
concern. However, in core routers, keeping per-source state may result in higher
hardware costs. If per-source state in core routers is a concern, Justice can be
implemented in a manner analogous to core-stateless Fair Queuing [21], as we re-
port in [9]. This technique removes the need for per-source state in core routers,
but is not described here due to space constraints. We will now focus on the
efficient calculation and distribution of per-source weights.

We will now demonstrate how simple per-packet calculations can be used to
compute the current per-source weight at any given link. Let us define inr(p)
and outr(p) to mean the incoming and outgoing link of a packet p, at router r on
the path from source to destination, and let src(p) be the source of the packet.
For every incoming packet p, a router needs an efficient and secure method to
determine the share φ

(src(p))
out(p) , that the packet’s source src(p) deserves on the

outbound link, out(p). From Eq. 2, we know that the weight of source src(p) on
the r:th outbound link outr(p) is

φ
(src(p))
outr(p) =

r∏
i=0

σ
(ini(p))
outi(p) . (3)

It is easy to see that this can also be written as the recursion

φ
(src(p))
outr(p) = φ

(src(p))
outr−1(p) · σ

(inr(p))
outr(p) . (4)

1 MbpsS
1/41/31/2

1/2 3/42/3

a

b c d

x y z

packetϕ = 1(s)
packetϕ = ½(s)

packetϕ = ⅓(s)
packetϕ = ¼(s)

Fig. 2. Iterative calculation of weights along a path from left to right. φ
(s)
packet indicates

the weight of source s on the current outbound link, stored in the packet header.

This observation suggests that the sequence of per-source weights along a path
from source to destination can be computed iteratively, one hop at a time, as
shown in Figure 2. In order to do this, we store weight of the source at the
current link in the packet header. Let us call this value φpacket Upon receiving
a packet, router r can compute φ

(src(p))
outr(p) by simply multiplying φpacket by the

incoming link’s configured share of the next hop, σ
(inr(p))
outr(p) .

However, since the weight calculation now depends on receiving accurate
φpacket values from upstream routers, it is vulnerable to manipulation. A router
could conceivably set the weights in its outgoing packets to artificially high val-
ues.This could inflate the downstream allocation of traffic passing through that
router, giving those sources an unfair advantage. To address this vulnerability,
we require that incoming φpacket weights of any given link be normalized, so that∑

s∈S φ
(s)
k = 1. We call this source-weight normalization.

φ
(src(p))
outr(p) :=

φ
(src(p))
outr(p)∑

s∈S φ
(s)
outr(p)

(5)

Source-weight normalization has two major benefits. First, it effectively guards
against manipulation of the φpacket weights reported in packet headers, since
whatever weights come in, their sum will always be equal to one after the nor-
malization step, and thus will not adversely affect the allocation of sources using
other links. Second, equation 5 scales the weight of active sources proportionally
so that they add up to one. If some sources are not using their allocated share of
the link, source-weight normalization will scale the weights of all active sources
proportionally to fill any unallocated portion.

Like in core-stateless Fair Queuing [21], we assume that a value (φpacket)
can be stored in the packet header. There are several locations where the value
can be stored. The 8-bit Type-of-Service field in the IPv4 header is sufficient to
approximate Justice, as discussed in [9]. Other possibilities include the ToS and
Flow ID fields in IPv6. Finally, φpacket can be communicated at the link-layer.
This may be the best solution, as it leaves the IP header unmodified throughout
the network.

5 Analysis

Given the mechanism provided for calculating per-source weights, φ, it seems
natural to ask what is the proper configuration of link weights, σ. In this section,
we will use analysis to study the effect a given set of σ values and other factors
will have on the throughput of a flow. We will also showcase how Justice can
be used for traffic engineering. In the scenario we will discuss, a set of traffic
sources distributed across a large network need to share a single bottleneck link.
We will describe a general method for how to allocate link weights to achieve
any desired allocation on the bottleneck link.

Previous sections have discussed only the computation and distribution of
per-source weights. While these accurately describe the minimum weight of a
source at a given link, they say nothing about the actual throughput that can
be expected during end-to-end communication. Let us define Ck to be the band-
width capacity of link k, and γ

(s)
k to be the minimum achieved throughput of

source s on the path to, and including, link k. Where the identity of the source
is unambiguous, we write simply γk.

Given a source s, a path consisting of links 0, 1, . . . , i, and an initial sending
rate of R, it is clear that on the first link γ

(s)
0 = min(R,φ

(s)
0 C0), since φ

(s)
0 C0

represents the minimum guaranteed bandwidth allocation on link 0. In general,
however, γk also depends on the achieved bandwidth through the previous link,
γk−1, or

γk = min(R, γk−1, φkCk) (6)

Theorem 1. γ
(s)
k is the guaranteed minimum throughput that source s can ex-

pect to see across the sequence of links 0, 1, . . . , k.

Proof. We will proceed by induction. Assume that the first link, link 0, is exclu-
sively used by the source. 3 In the base case, γ1, there is a single source using
link 0, we have φ1 = σ

(0)
1 . Weighted Fair Queuing (WFQ) provably distributes

bandwidth according to the weights provided, so γ1 = min(R,φ1C1). For the
inductive step, assume that γk−1 holds. Accordingly, the input link k− 1 serves
a flow from source s with rate γk−1. Again, WFQ will serve the flow according
to the weight given, φk in this case. If γk−1 ≤ φkCk, then WFQ will allocate s
γk−1 of bandwidth. Else, it will allocate φkCk, which completes the induction.
QED.

In most cases, the actual throughput will be considerably higher than the guar-
anteed minimum throughput. This is because in general, not all sources will be
sending their entire σi of traffic across every link i. A characterization of the
actual throughput received cannot be presented here, due to space constraints.

5.1 Traffic Engineering with Justice

In this section, we will showcase how Justice can be used to aid network traffic
engineering. In the example below, we will discuss a scenario within a single AS,
but Justice can be used equally well for inter-AS traffic engineering.

So far, we have assumed that a network administrator will provide each router
with the necessary per-link weights. The per-link configuration regime provides a
simple, but powerful tool for specifying the relative importance of nearby traffic
sources. However, it may well be the case that the network is large, and that the
relative importance of distant traffic sources needs to be addressed as well.

As a typical example, an Internet Service Provider (ISP) may have multiple
access points, serving customers of multiple service classes, all connected to the
same back-bone network. If possible, the ISP would like to ensure that all cus-
tomers in the same service class receive approximately the same level of service,
and that the various service classes exhibit a clear difference in performance. We
will now describe a method for assigning per-link weights that provably achieves
these goals.

3 This assumption can be relaxed to include switched LANs. For shared medium phys-
ical layers, the hosts using it are considered one entity and bandwidth allocation has
to be resolved at the MAC layer.

8 12 16

4/164/125/8

3/8 12/168/12

z

4

2/4 2/4

ϕ = 3/8 · 8/12 · 12/16 = 3/16z

2 2

4

3

5

A

(A)

Fig. 3. Assignment of σ values based on prior entitlement information, shown next
to each source. The allocation of any source at the bottleneck link will be directly
proportional to its entitlement.

Let us define entitlement ηs, to be an absolute number indicating the amount
of the total network resources that source s is entitled to. We can think of ηs as
an abstract expected ”service level” of a given source. In Figure 3, every traffic
source has been marked with an integer entitlement.

For this example, let us assume that all sources have a single bottleneck link,
for example the link to the rest of the Internet. Assuming single-path routing,
we can form a tree of routing paths, rooted at the gateway. Let us define the
aggregate entitlement ηr of a router r in the tree to be

ηr =
∑
i∈C

ηi (7)

where C is the set of children of r. In Figure 3, the aggregate entitlement of each
router is indicated. The optimal value of σ

(x)
y can then be computed as

σ(x)
y =

ηn

ηp
, (8)

where x is the link between node n and its parent p, and y is the link leading
from p toward the root. Figure 3 shows the σ according to Eq. 8 next to each
link, and a sample φz for the traffic source marked ”A”. Note that the allocation
φ

(A)
z equals 3/16, which is the entitlement of source ”A”, divided by the sum of

entitlements in the entire network.

Theorem 2. If aggregate entitlements and link shares are configured in accor-
dance with Equations 7 and 8, each source s will receive a minimum guaranteed
allocation at the bottleneck link b,

φ
(s)
b =

ηs∑
i∈S ηi

, (9)

where S is the set of all traffic sources.

Proof. We will again use induction. Consider the base case, where N children
are connected to a router r, which in turn is directly connected to the bottleneck
link, b. For the base case, the set C in Eq. 7 contains all traffic sources, i.e., all

traffic sources are children of r, or C = S. Thus, if we substitute Eq. 7 into the
denominator of Eq. 8, we get

σ
(s)
b =

ηs∑
i∈S ηi

.

It remains only to compute φ
(s)
b from source s to link b which for the base case,

according to Eq. 4, equals 1 · σ(s)
b .

In the inductive step, assume that Eq. 9 holds for any tree of depth ≤ d. We
will now show that it holds for any tree T of depth d+1. Any tree of depth d+1
can be described as a root node r with j trees of depth ≤ d as its children. Let
us consider a source s which belongs to one of the children of r, the subtree Ts.

We are interested in finding φ
(s)
b , where b is the bottleneck link connected to

the root node r. According to Eq. 4, this can be written as

φ
(s)
b = φ

(s)
b′ σ

(b′)
b

where b′ is the link leading from Ts to the root node r. We know by our inductive
assumption that

φ
(s)
b′ =

ηs∑
i∈STs

ηi
,

where STs is the set of all sources in Ts. Moreover, Eqs. 7 and 8 tell us that

σ
(b′)
b =

ηTs

ηT
=

∑
i∈STs

ηi∑
i∈S ηi

,

where S is the set of all sources in T . Finally, putting it all together, we have

φ
(s)
b = φ

(s)
b′ σ

(b′)
b =

ηs∑
i∈STs

ηi
·
∑

i∈STs
ηi∑

i∈S ηi
=

ηs∑
i∈S ηi

. QED.

Although space does not permit a full discussion, we can offer an intuition on
how to use the same framework to compute σ per-link weights from entitle-
ment knowledge when there are more than one bottleneck links in the network.
The idea is to form a separate tree for each bottleneck link, and compute the
aggregate entitlements separately for each tree. Next, add up the aggregate enti-
tlements out of each tree, for every router, to form the final aggregate entitlement
values. Finally compute the σ values according to Eq. 8.

6 Simulation Results

In this section, we present a set of simulations that validate our claims about
Justice as a bandwidth allocation scheme. Since the goal of Justice is not the
same as that of, for example, per-conversation Fair Queuing, it is not possible
to do a quantitative performance comparison. Instead, the purpose of the sim-
ulations is to show the behavior of Justice under realistic conditions, and to
contrast and compare this with the behavior of previous queuing mechanisms.

We compare Justice with three other schemes, and the expected minimum
allocation according to the analysis in Section 5. In all cases, we use the same

1 M
bp

s

Gate-
way

Internet

ftp

web

.

DORMITORYSERVERS

All other links
10 Mbps

zy

x

Fig. 4. University campus simulation topology. All intra-campus links are 10 Mbps,
but the external link to the Internet is only 1 Mbps.

queuing policy on all outgoing links on all routers. The current state of the
Internet is best represented by the FIFO-Droptail policy, where packets are
served in arrival order, and packets are dropped if they find the queue full on
arrival. With per-source Fair Queuing, the router keeps a separate output queue
per source, and thus ensures that all sources get the same allocation on the
outgoing link. Per-flow Fair Queuing takes this one step further, and keeps a
separate queue for each established connection, or source-destination pair. In
our simulation setup, we assume that each established connection has a unique
remote end-point, so there is no distinction between connections and source-
destination pairs.

We used the ns-2.27 simulator together with the built in implementation of
DropTail queuing, and the CMU implementation of Worst-case Fair Weighted
Fair Queuing (WF2Q). We used the WF2Q implementation to simulate per-
source Fair Queuing, per-conversation Fair Queuing as well as Justice. For Jus-
tice, the φ values of all sources on all links were calculated using Eq. 2, and
manually configured using WF2Q settings. Our simulations were run on the
topology shown in Figure 4. All intra-campus links are of 10 Mbps capacity,
but the link to the Internet has a lower 1 Mbps capacity. The two servers each
maintain 10 simultaneous TCP connections with end-points in the external In-
ternet. The simulations stabilize quickly, and so it was sufficient to run each
simulation for 10 seconds. All transmitted packets are of the same size, 1000
bytes. All results are averaged over 10 runs with randomized starting times for
the connections. Except for the FIFO results, std. dev. was near zero.

In our first simulation scenario, results shown in Fig. 5 (a), there is between
0 and 10 dormitory traffic sources, each of which has 5 TCP connections to
the Internet. The University network administrator has decided to allocate a
minimum of 60% of the capacity on the bottleneck link to the server group,
and ensures this by setting σ

(y)
z = 0.6. In addition, the administrator of the

server group has decided to allocate 80% of his total capacity to the web server
(σ(x)

y = 0.8), and only 20% to the file server. Using Eq. 6, the expected share of
the web server at the bottleneck link is γ

(web)
z = 0.8 · 0.6 · 1Mbps = 0.48Mbps.

As expected, Justice effectively enforces the deserved allocation, in contrast with
all other schemes which fail to preserve the allocation of the web server as the
number of flows and users on the network increases.

Our second simulation scenario has dormitory users using UDP and sending
500 byte packets at a very high constant rate. In addition, the admins have

 0

 100000

 200000

 300000

 400000

 500000

 600000

 700000

 800000

 0 1 2 3 4 5 6 7 8 9 10

W
e
b

s
e
r
v
e
r

g
o
o
d
p
u
t
,

b
y
t
e
s
/
s

Number of Dormitory users

Justice
FIFO-Droptail
FQ per-source

FQ per-connection
Desired Allocation

 0

 50000

 100000

 150000

 200000

 250000

 300000

 350000

 400000

 450000

 500000

 0 1 2 3 4 5 6 7 8 9 10

W
e
b

s
e
r
v
e
r

g
o
o
d
p
u
t
,

b
y
t
e
s
/
s

Number of Dormitory users

Justice
FIFO-Droptail
FQ per-source

FQ per-connection
Desired Allocation

(a) Scenario 1 (b) Scenario 2

Fig. 5. Web server goodput under competition from dorm users. Only Justice provides
the web server with its deserved bandwidth when there are many competing flows.

set σ
(y)
z = .5 and σ

(x)
y = .5 which means the intended minimum allocation for

the web server is γ
(web)
z = 0.25Mbps. As expected, the FIFO scenario performs

very badly here, as allocation depends completely on the cooperativeness of
end-hosts. Justice again enforces the allocation configured through the per-link
weights. Note that it also enforces the 50% allocation of the dormitory when
there is a small number of users, in this case protecting dorm users against the
many flows of the web and ftp servers. Although the two Fair Queuing policies
show a performance similar to what they showed in the TCP scenario, they still
give the web server a progressively smaller share as the number of users in the
dormitory increases.

7 Conclusion

In this paper we have presented Justice, a new take on bandwidth allocation.
Justice is substantially different from previous approaches to bandwidth alloca-
tion. Justice provides a guaranteed minimum allocation to each source, at each
link, independent of the behavior of other users. Moreover, Justice is flexible
and allows network administrators to efficiently configure the deserved relative
allocation of each host.

We argue that previously defined notions of per-flow fairness, and the al-
gorithms that have been proposed to enforce them in the Internet, fall short
in terms of protecting well-behaved users against their greedy counterparts. In
contrast, if Justice is enforced in a network, users are guaranteed a certain level
of service, independent of the actions of other users in the network.

We believe that Justice brings a radically new perspective on bandwidth
allocation in the Internet. By focusing on per-source bandwidth allocation, and
enforceability, Justice lays the foundation for an Internet with more predictable
performance, better stability, and more flexibility.

References

1. John Nagle, “On packet switches with infinite storage,” In RFC 970, December
1985.

2. A. Demers, S. Keshav, and S. Shenker, “Analysis and simulation of a fair queue-
ing algorithm,” in Symposium proceedings on Communications architectures &
protocols. 1989, pp. 1–12, ACM Press.

3. V. Jacobson, “Congestion avoidance and control,” ACM Computer Communica-
tion Review, vol. 18, 4, 1988.

4. Sally Floyd and Van Jacobson, “Random early detection gateways for congestion
avoidance,” IEEE/ACM TON, vol. 1, no. 4, 1993.

5. W. Feng, D. Kandlur, D. Saha, and Kang G. Shin, “BLUE: A new class of active
queue management algorithms,” Tech. Rep. CSE-TR-387-99, 15, 1999.

6. Dong Lin and Robert Morris, “Dynamics of random early detection,” in SIG-
COMM ’97, Cannes, France, 1997.

7. Teunis J. Ott, T. V. Lakshman, and Larry H. Wong, “SRED: Stabilized RED,”
in Proceedings of INFOCOM, 1999, vol. 3.

8. Rong Pan, Balaji Prabhakar, and Konstantinos Psounis, “CHOKE, a stateless
active queue management scheme for approximating fair bandwidth allocation,”
in INFOCOM (2), 2000.

9. J. Eriksson, S. Krishnamurthy, and M. Faloutsos, “Justice: An enforceable alterna-
tive to fair bandwidth allocation,” Tech. Rep., University of California, Riverside,
2004.

10. A. K. J. Parekh and R. G. Gallager, “A generalized processor sharing approach
to flow control in integrated services networks: The single node case,” IEEE/ACM
TON, vol. 1, no. 3, 1993.

11. H. Zhang, “Wf2q: Worst-case fair weighted fair queueing,” IEEE Infocom 1996,
1996.

12. Z. Cao, Z. Wang, and E. Zegura, “Rainbow fair queuing: Fair bandwidth sharing
without per-flow state,” INFOCOM, 2000.

13. H. Zhu, A. Sang, and S.-Q. Li, “Weighted fair bandwidth sharing using scale
technique,” Computer Communications, vol. 24, 2001.

14. L. Zhang, “Virtual clock: A new traffic control algorithm for packet switching
networks,” ACM SIGCOMM 1990, pp. 19-29, 1990.

15. S. J. Golestani, “A self-clocked fair queueing scheme for broadband applications,”
IEEE Infocom 1994, 1994.

16. S. Suri, G. Varghese, and G. Chandranmenon, “Leap forward virtual clock:a new
fair queueing scheme with guaranteed delays and throughput fairness,” IEEE In-
focom 1997, 1997.

17. M. Shreedhar and G. Varghese, “Efficient fair queueing using deficit round robin,”
IEEE/ACM TON, vol. 4, no. 3, 1998.

18. D. Saha, S. Mukherjee, and S. Tripathi, “Carry-over round robin: A simple cell
scheduling mechanism for atm networks,” IEEE/ACM TON 6 (1998).

19. A. Banchs, “User fair queing: Fair allocation of bandwidth for users,” in Proceedings
of INFOCOM, 2002.

20. P. McKenney, “Stochastic fairness queuing,” 1990.
21. I. Stoica, S. Shenker, and H. Zhang, “Core-stateless fair queueing: Achieving ap-

proximately fair bandwidth allocations in high speed networks,” IEEE SIGCOMM,
1998.

22. Sally Floyd and Van Jacobson, “Link-sharing and resource management models
for packet networks,” IEEE/ACM TON, vol. 3, no. 4, 1995.

23. A. Demers, S. Keshav, and S. Shenker, “Analysis and simulation of a fair queue-
ing algorithm,” in Symposium proceedings on Communications architectures &
protocols. 1989, ACM Press.

24. S. Blake et. al., “An architecture for differentiated services,” RFC 2475, December
1998.

25. P. Ferguson and D. Senie, “Network ingress filtering: Defeating denial of service
attacks which employ ip source address spoofing.,” In RFC 2267, January 1998.

