International Journal of Foundations of Computer Science
© World Scientific Publishing Company

THE EFFECT OF ASYMMETRY ON THE ON-LINE MULTICAST
ROUTING PROBLEM

MICHALIS FALOUTSOS*

Computer Science, University of California Riverside
Riverside, California, 92521, USA

RAJESH PANKAJ

Qualcomm Inc.,6455 Lusk Blvd
San Diego, California, 92121, USA

KENNESTH C. SEVCIK

Computer Science, University of Toronto
Toronto, Ontario, M5S 3G4, CANADA

Received (received date)
Revised (revised date)
Communicated by Editor’s name

ABSTRACT

In this paper, we study the problem of multicast routing on directed graphs. We define
the asymmetry of a graph to be the maximum ratio of weights on opposite directed
edges between a pair of nodes for all node-pairs. We examine three types of problems
according the membership behavior: (i) the static, (ii) the join-only, (iii) the join-leave
problems. We study the effect of the asymmetry on the worst case performance of two
algorithms: the Greedy and Shortest Paths algorithms. The worst case performance of
Shortest Paths is poor, but it is affected by neither the asymmetry nor the membership
behavior. In contrast, the worst case performance of Greedy is a proportional to the
asymmetry in a some cases. We prove an interesting result for the join-only problem:
the Greedy algorithm has near-optimal on-line performance.

Keywords: Multicast routing, Steiner, on-line, directed

1. Introduction

In this paper, we examine how network asymmetry and membership behavior af-
fect the performinace of algorithms for the multicast routing problem. Multicasting
involves the distribution of the same information stream from one node to many
nodes concurrently over a tree. In recent years, multicast routing has attracted
significant attention with the emergence of applications such as video-on-demand,
teleconferencing, and tele-education. Finding the minimum-cost multicast tree is

*This work was supported by the National Science Foundation under CAREER Grant No.
9985195, DARPA award N660001-00-1-8936. Email: michalis@cs.ucr.edu

equivalent to the NP-hard Steiner tree problem [7]; given a weighted graph G(V, E)
we want to find the minimum-cost tree that spans a subset of nodes, S, rooted at
anode s € S. In the rest of this paper, we will use the terms Steiner and multicast
problem interchangeably.

Directed graphs are more accurate representations of a network for practical
purposes. However, most previous work on the multicast problem focuses on undi-
rected weighted graphs. In most real networks, adjacent nodes are connected with a
pair of opposite and independent edges. The cost of an edge is an aggregate metric
of various factors such as available bandwidth, or delay. We define asymmetry, A,
of a directed graph to be the maximum ratio of the cost of opposite edges between
a pair of nodes over all adjacent node-pairs. Clearly, asymmetric graphs include
both previous graph models: undirected graphs for A = 1, and directed graphs for
A = 0o0. Consequently, our bounds include bounds on undirected graphs as special
cases.

In our work, we define the dynamic Steiner tree problem as follows. Assume
a weighted directed graph, a source node and group-members that join and leave
the tree arbitrarily. Our objective is to minimize the cost ratio of the generated
tree over the optimal tree in the worst case. which is known as the competitive
ratio of the algorithm. Note that we do not assume any knowledge of the future
membership and we do not allow rerouting the tree. We can distinguish three types
of problems. The static or off-line multicast problem assumes that all the
destinations of a session are known in the beginning of a session. The join-only
on-line problem allows destinations to join arbitrarily, but they all stay until the
end of the session. The join-leave on-line problem allows destinations to join
and leave arbitrarily. For uniformity, we define M to be the number of the join
requests plus one (one accounts for the source). Note that each problem includes
its predecessors as a special case.

We examine the worst case performance of two approximation algorithms as
function of the asymmetry. We focus on the two algorithms that are most widely
used in practice in multicast routing [15, 8, 4, 1, 17, 9]. The first algorithm, which
we call Shortest Paths, constructs the tree as the union of the shortest paths
between the source and each destination. The second algorithm, which we call
Greedy, is based on an efficient greedy heuristic for the Steiner tree problem [21];
Among all new destinations, we connect the one with the minimum cost path to
any point of the current tree.

In this paper, we examine the effect of the asymmetry of the graph and the
membership behavior on the dynamic Steiner tree problem. More specifically, we
prove the following bounds. It is easy to show that the competitive ratio of Shortest
Paths is tightly bounded by ©(M). In addition, we prove the following bounds: for
the competitive ratio of the algorithms:

e For the static problem, the approximation ratio of Greedy is tightly bounded
by © (min (A, M)).

e For the join-only, the competitive ratio of any on-line algorithm is bounded

below by: min (M, A-ﬁif‘f—l))

e For the join-only, Greedy has near-optimal on-line performance. Namely,
Greedy is log(M + 1)-competitive compared to any on-line algorithm.

e For the join-leave problem, we prove that Greedy has a competitive ratio
proportional to the asymmetry and exponential in M: max(A4,2M).

Putting things in perspective, our work is a generalization of the work of Imase
and Waxman [12] on undirected graphs. Furthermore, our results include their
results for asymmetry A = 1. Earlier versions of this work have been presented in
conferences [10, 11].

The rest of this paper is structured as follows. In section 2, we present our
model and previous work. In section 3, we discuss the static problem and prove
a tight bound for Greedy. We also show the tight bound of the Shortest Paths
algorithm for all problems. In section 4, we address the join-only problem and we
present an upper bound for Greedy. In section 4.2, we prove a lower bound for any
on-line algorithm for the join-only problem. In section 5, we discuss the join-leave
problem, and we prove a lower bound for the Greedy algorithm. In section 6, we
give an overview of all previous and new results.

2. Model and Previous Work

A common measure of the quality of an approximation algorithm is the approx-
imation ratio, which is defined as the maximum ratio of the cost of the tree of
the algorithm, T', over the optimal one, OPT. The same metric is used for on-line
approximation algorithms, and it is typically refer to as competitive ratio (CR),
CR = T/OPT where the optimal cost is the cost of the off-line optimal algorithm.

We assume a weighted directed graph G(V, E). We denote the total number
of nodes by N, and we denote by S, the set of the destinations and the source,
which we call participant nodes. We define M to be the number of the join
requests plus one for the source, s. We want to establish connections from the
source towards the destinations. We denote the weight of an edge (u,w) by the
function e(u,w) : V x V — R*. The cost of a path (tree) is the sum of the weights
of the directed edges of the path (tree). We say a node v reaches node w if there
is a directed edge or path from v to w. The distance between two nodes is denoted
by by d(u,w) : V x V — RT. Similarly, the distance between a node and a tree is
the minimum distance between the node and any node of the tree.

We quantify the asymmetry of directed graphs with the following metric.

Definition 1 The asymmetry of a graph G(V, E), A, is defined as

A= max e(v, w)
(v,w)eE \ e(w,v)
We call opposite edges the pair of edges between two nodes, i.e., for v,w € V,

(v,w) and (w,v) are opposite edges. We use the term unbounded directed graph to
refer to the special case of A = oo.

The Greedy algorithm was originally suggested by Takahashi and Matsuyama
[21] for the Steiner problem. The algorithm can be generalized in a straight-forward
way for join-leave requests that arrive on-line. A description of the algorithm in
pseudo-code is presented in Appendix 1. For leave requests, we prune the unnec-
essary parts of the tree. For join requests, we connect the node with the minimum
cost path from any point in the tree. The Shortest Paths algorithm takes the union
of the shortest paths between the source and each destination. Observe that we
route every destination independently of the other destinations. For this reason,
this algorithm can be used for any on-line problem and in any kind of graph.

Most previous work focuses on the static problem or on undirected graphs.

Undirected case. For the static undirected problem, the CR of Greedy is
bounded by 2-(1 — ﬁ) < 2 [21]. For the undirected join-only problem, Bharath-
Kumar and Jaffe [3] and later Imase and Waxman [12] proved that the CR of the
Greedy is bounded by! log(M). Westbrook and Yan [26] refined this bound to
O(log(‘é’};f,-M), where dp,,, the maximum distance among the destinations and/or
the source. For the undirected join-leave problem, Imase and Waxman [12] prove
that M is a lower bound, which we increase to 2. Several experimental studies of
this problem exist [6] [25] [24].

Directed case. For the static directed problem, Ramanathan [19] proved
that 2-A4 is an upper bound for Greedy. For A = 0o, Wong proposed a dual ascent
approximation algorithm[28]. For the same problem, Voss showed that M is an
upper bound for Greedy and the Shortest Paths [22].

Other Heuristics for the Static Problem. For the static undirected problem,
Zelikovsky has the best known approximation algorithm with a ratio of 1+1n2 [30].
For the static directed Steiner problem, Charikar et al. propose an algorithm with
an approximation ratio of i(i —1)M'/*) where i a constant [5]. Note that the above
algorithms do not address the on-line problem. Various interesting heuristics exist
for the static Steiner tree problem [14, 16, 20, 29, 23] for a survey see [27, 18].

Comments and Assumptions. We examine the worst case performance of the
algorithms. We consider deterministic algorithms only, and so our worst case is
equivalent to the case where we are so “unlucky” that our routing decisions are the
worst with respect to the future requests. Thus, in our examples, once we have
routed a destination, the on-line sequence will select the “worst” node as the next
destination. In addition, we do not consider rerouting the multicast tree, which can
help us recover from bad choices in the past [12] [13] [2].

3. The Static Problem

In this section, we study the static multicast problem on directed graphs, and
we prove upper and lower bounds on the performance of Greedy. In addition, we
prove a tight bound for the Shortest Paths algorithm.

Theorem 1 (Upper bound I) The following statements hold:
a) For the static problem, the approzimation ratio of the Greedy algorithm in

T All the logarithmic functions in this paper have a base of two.

any directed graph is no worse than

T < E’UES d(S,'U)
OPT — dmaz

<M-1

where dpqq 15 the mazimum distance of any destination from the source.

b) The same bound holds for the approrimation ratio for Greedy in the join-
only problem, and for Shortest Paths in the static, the join-only and the join-leave
problems.

PROOF.

a) The cost T of a Greedy tree is bounded above by the sum of the distances

between the root, s and all the other nodes in the tree. Therefore:

T <> d(s,v) < (M —1)-dmao
veS

The cost of the optimal tree OPT is at least as large as the largest distance from
the source to any destination d,4z, dmer < OPT, and the result follows.

b) The proof of part (a) does not make any assumption about the order in which
the destinations join. Therefore, with the same arguments, we can prove the bound
for Greedy in the join-only problem, and Shortest Paths for static, join-only, and
join-leave problems. O

Ramanathan [19] proved the following upper bound for Greedy with respect to
the asymmetry of the graph.

Theorem 2 (Upper bound II) The approzimation ratio of the Greedy algorithm in
any directed graph of asymmetry A is bounded above by
T

< 9.
OPT_2A

We combine the two upper bounds in the following corollary.

Corollary 1 The approzimation ratio of Greedy on a directed graph is

T

We prove that the above asymptotic bound is also a lower bound. We identify
a family of graphs for which the approximation ratio of Greedy coincides with this
upper bound.
Theorem 3 (Lower bound) Given the asymmetry A, and the multicast group size,
M, there exists a directed graph and o multicast group such that the approximation
ratio of the Greedy algorithm is at least

T _o(AM
OPT ~ “"\A+M

Figure 1: An example of a bad case of a directed graph for Greedy in the static
problem.

PROOQOF. Consider the graph depicted in fig. 1. The source reaches all the destina-
tions with an edge of cost ¢. There is only one non-participant node that we call
the middle node (the white node in fig. 1). This node reaches all the participants
with an edge of cost p, while the opposite edges are of cost A p. The source reaches
the middle node with a cost of ¢ — p, with p < c.

The optimal tree includes the middle node, since p < ¢:

OPT =c—p+(M-1p=c+(M—-2)p (1)

The Greedy will not use the paths through the middle node, if the weights of
the edges are as below:

c<p+Ap (2)

The cost T of the tree of Greedy is given by: T'= (M — 1)-¢ and, the approxi-
mation ratio of Greedy becomes:

T (M-1)
OPT ¢+ (M —-2)p 3)

The approximation ratio of Greedy is maximized for a large ¢ and a small p. From
eq. 2, the minimum value of p for a given cis : ¢/(A + 1) < p. Taking the limit of
the approximation ratio for p — ¢/(A + 1) completes the proof. O
Note that O(min(M, A)) = O <A1,IVI—+‘?4). Therefore, the upper and lower bounds
coincide (corollary 1 and theorem 3) and we have the following tight bound.
Corollary 2 For any A and M, there exists a directed graph of asymmetry A,
and a multicast group of size M, such that the approrimation ratio of Greedy has

complezity
T

OPT
For the Shortest Paths algorithm we can prove the following tight bound.

= O (min (M, A))

Theorem 4 For the multicast problem, the approximation ratio of the Shortest
Paths algorithm is O(M).

source source

1 1 1 1
€ € € ¢ € g £ ¢
Shortest Paths Optimal

Figure 2: A worst case example for the Shortest Paths algorithm.

PROOF. Theorem 1 proves that M is an upper bound for Shortest Paths. We
prove that it is also a lower bound. Assume a graph where the source is connected
with each destinations with an edge of unit cost (see fig. 2). Assume M — 2 edges
of small weight € between destinations, in a way that they form a path. Clearly,
Shortest Paths creates a tree of cost T'= M — 1; while the optimal tree has a cost
of OPT =1+ (M — 2)-e. Letting € — 0 concludes the proof. O
Thus, for small asymmetry (A < M) Greedy has a better approximation ratio
than Shortest Paths in the worst-case. However, the approximation ratio of Greedy
becomes similar to that of the Shortest Paths in highly asymmetric graphs.

4. The Join-Only Problem

We show that the Greedy is near-optimal compared to any on-line algorithm for
the join-only problem. We prove an upper bound for the Greedy algorithm, and
then prove a lower bound for any on-line algorithm. We show that the two bounds
differ only by a factor of log M.

4.1. The Join-Only Upper Bound

We prove that Alog M is another upper bound for Greedy in addition to the
bound of M of theorem 1. Both bounds are valid for any asymmetry value, and so
we can combine them by taking the minimum of the bounds (see corollary 3).
Theorem 5 For any weighted directed graph with asymmetry A and o multicast
group of size M, the competitive ratio of the Greedy algorithm in the join-only
problem is bounded above by:

T
— < A-
oPT = A-log M

where T is the cost of the Greedy tree and OPT the cost of the optimal one.

PROQOF. The basic steps of this proof are as follows. First, we transform the directed
graph into an undirected graph in which the weight of each edge is the minimum
of the two directed edges. Then, we apply a restricted version of the Greedy to the
undirected graph, which we define below. Intuitively, it is easier to compare the
restricted Greedy on the undirected graph with Greedy on the directed. Finally, we

source source

A 1 2
3

(a) The initial graph (b) The Greedy tree
source source
1 x/ 2 2
3
(c) The Restricted Greedy tree (d) The cost of the Restricted tree
© Destinations —— Graphedges === Pathsof edges
® Non-destination =~ —— Treeedges Of the complete graph

Figure 3: Graphs for theorem 5. Note that the directed graph has opposite edges
between nodes, but they are not shown for simplicity. When node 4 joins, after
nodes 1,2 and 3, restricted Greedy chooses edge (1,4) with weight P in the complete
undirected graph, which corresponds to a path P’ in the directed graph. In the worse
case, the directed path has a cost P’ = AP. When Greedy on the directed graph
connects node 4, it will never choose a path more expensive than P’.

prove that the Greedy tree of the directed graph is no more than A the cost of the
restricted Greedy on the undirected graph

Let G(V, E) be the directed graph. Let us create an undirected graph G, (V, E,)
as follows. For every pair of opposite directed edges in G, we create an undirected
edge in G, with the minimum weight of the pair: e, (v, w) = min (e(v,w), e(w,v)),
v,w € V. Since OPT, is the cost of the optimal tree on G, the following holds:

OPT, < OPT (4)

Let us define a variation of Greedy that we call restricted Greedy (see fig.
3). First, we create the graph G/, (V,), E!,), to be the complete undirected distance
graph of the participant nodes on G, i.e., V) = S, and the weight of the edge
(v,w) € E!, is equal to the distance of the nodes in G,. Then, we execute Greedy
on G, for the on-line problem. We call Ty, the cost of the resulting tree. Note that
T, is a tree of the complete G,, and each of its edges corresponds to a paths in G,
(see fig. 3).

For the undirected on-line problem, Imase and Waxman (in theorem 2 [12])
proved that the cost of the restricted Greedy solution, T}, is bounded as follows:

T, < log M-OPT, (5)

Intuitively, the paths that restricted Greedy considers are a subset of the the
paths that Greedy uses. If the restricted Greedy connects a destination with a path
of cost P, the Greedywill use a path of at most AP. Note that both algorithms
add the nodes in the same order in the join-only problem. For each destination, the
path that Greedy chooses can be: a) the path P; that corresponds to the undirected
path that restricted Greedy chose for the same destination, or b) a directed path of
cost less than A Py (see fig. 3). In the worst case, each directed path is at most A
times more expensive than the corresponding undirected path, and thus we have:

T < AT, (6)
We can combine equations (4), (5), (6), to conclude that:
T < AT, < A-log M-OPT, < A-log M-OPT

O
We combine the two upper bounds from theorem 1 and theorem § in the following
corollary.
Corollary 3 For any directed graph with asymmetry A and a multicast group of
size M, the competitive ratio of the join-only Greedy algorithm in the multicast
problem is no worse than

T —_—
OPT —

We can see that for small asymmetry, A < M/log M, the bound is Alog M,
while, when the asymmetry becomes larger, the bound becomes M.

O (min(M, A-log M))

root

Figure 4: The d-tree : a complete binary asymmetric tree.

= pair of opposite edges
Figure 5: The worst case example for highly asymmetric graphs. Edges from or

towards the source are of cost c¢. Elsewhere, curved edges are of cost ¢, while their
opposite edges are of cost e.

source

1 root
1,2,3: sequence of destinations

Figure 6: The worst case example for highly asymmetric graphs in the join-only
problem for any algorithm.

10

4.2. A Lower Bound for the Join-Only Problem

In this section, we prove a lower bound for any algorithm for the join-only
problem. We distinguish two cases: a) highly asymmetric (A > M), and b) less
asymmetric (A < M) graphs. In both cases, we construct the worst case graph
and an execution scenario. In highly asymmetric graphs, the worst case example is
based on an asymmetric binary tree. In less asymmetric graphs, we need a more
elaborate construction of that uses the previous binary tree as a building block.

4.2.1. Highly Asymmetric Graphs

We prove that, for highly asymmetric graphs, the worst case ratio of any on-line
algorithm is proportional to the number of destinations.

Theorem 6 Given a bound on the size of the multicast group, M, there exists an
asymmetric graph, and a sequence of join requests such that the competitive ratio
of any on-line algorithm is at least

T S 1

OPT — 2

where T is the cost of the tree of the algorithm and OPT is the optimal off-line
cost.

(M —1)

PROOQOF. Intuitively, we want to create graphs that can be “bad” for the routing
decision of any algorithm. For this, we have to ensure that the on-line algorithm
must have at least two routing choices for every destination. In addition, for either
routing choice, the arrival sequence must have the possibility to be equally bad. In
other words, we need “two identical paths” for every arriving destination, and this
suggests a binary tree configuration (see fig. 4).

Definition 2 A d-tree is a complete binary directed tree that has pairs of opposite
directed edges instead of undirected edges. The root of the d-tree is the node with
ezxactly two adjacent nodes.

Assume a d-tree with M — 1 distinct levels. We assign weight ¢ to the edges
“pointing away” from the root (curved edges), and weight € to the opposite edges
(straight edges). Let the source be a node outside the d-tree and connected to each
node of the d-tree with a pair of opposite edges of cost ¢ (see fig. 5).

The sequence of destinations. We choose the root of the d-tree as the first
destination. In each step, we choose a child of the previous destination that does not
belong to the multicast tree (see fig. 6). This way, every new destination increases
the cost of the multicast tree by ¢. In more detail, each destination can join the
multicast tree with a) a path along the d-tree, b) an edge from the source, or c) an
edge from the previous destination. Each of these choices has cost of at least ¢, and
the total cost becomes

T>(M-1)c (7)

By the definition of the sequence, each new destination is a child of the previous
destination, and therefore there exists a path from the source to the root of the
d-tree that contains all the destinations. Therefore, the optimal cost is

11

OPT =c+ (M —2)-€ < 2-¢ (8)

For the last equality, we assume € < ¢/M. Using equations (7) and (8), we
calculate the competitive ratio and complete the proof. O

In the example above, the asymmetry is at least (M). This asymmetry appears
at the edges of the d-tree : ¢/, given that we assume € < ¢/M. This is the constraint
that makes this example apply only to “highly asymmetric” graphs.

4.2.2. Less Asymmetric Graphs

As we saw in the upper bounds, the relative performance of the Greedy algorithm
improves as the asymmetry decreases. In less asymmetric graphs (A = O(M)), the
competitive ratio of Greedy is bounded above by A-log M. Two questions are of
interest: i) how tight is this upper bound (for our Greedy algorithm), and ii) can we
expect other on-line algorithms to do better? The answer to both questions is that
the competitive ratio of any on-line algorithm cannot be better than O (log(A)) =
O (log(M)) the competitive ratio of Greedy.

Theorem 7 Given the size of the multicast group, M, and a bound on the asym-
metry A = O(M), there exists a graph and a sequence of join requests such that the
competitive ratio of any on-line algorithm is at least

T log M
Ry o B I Rt - Rl
OPT (log(A + 1))

where T is the cost of the tree of the algorithm and OPT is the cost of the optimal
tree.

PROOF. The proof consists of three parts. First, we describe how we construct
a graph given the asymmetry and multicast group size. Second, we define the on-
line sequence in which nodes join. Third, we calculate a lower bound on the cost of
the tree for any algorithm.

PART I: Graph construction. We present the intuition behind the family
of graphs that we denote by Fj,. The building block of our graphs is the d-tree of
depth k as defined in section 4.2.1. The d-tree guarantees that the on-line algorithm
has two identical routing choices for each destination. We construct the graph in
a recursive manner, and we call each step a generation, g. We start from a pair
of nodes, and at each step we insert a d-tree between adjacent pair of nodes. The
depth k is a parameter, which we set to k = | A] eventually.

We introduce the layer to identify nodes with their distance from the source.
Definition 3 The layer of a node in the graph F, is equal to the length (number
of edges) of the shortest path from the source to the node.

A node of the F;, graphs is denoted by v, ,, where g is the generation, 1 is the
layer , and = an index that identifies nodes of the same layer. For example, in fig.
7, in F; we have four nodes in layer one: v1,1,1,v1,1,2,%1,1,3,V1,1,4, and two nodes in
layer two: v1,2,1,v1,2,2. In this proof, we do not need to specify values for z, and we
use it as a placeholder.

12

source =V g1 source V10,1

) T tayer
(€ & & o] Vux !
N/ \
W 7 Vi)
Vi1 3
First =V0'1’1
aF, b) Inserting a d—tree 0 F

Figure 7: The family of F, with k = 2: F; and F}

source

first
Figure 8: The family of F, with k = 2: F,. We replace the edges between nodes of

Fy with d-trees just like in Figure 7.b. The thick edges represent multiple pairs of
edges for visual clarity.

source

<

1
1,2,3: sequence of destinations

Figure 9: A worst case on-line sequence for graph F; for less asymmetric graphs in
the join-only problem for any algorithm.

13

We outline briefly the creation procedure. We start with a pair of nodes, one of
which is the source. For every generation, we insert a d-tree between every pair of
nodes of the previous generation (see fig. 7 and fig. 8). The weights of the edges
are set in such a way that the distances are preserved: all paths between the two
nodes of Fy are of equal cost. Intuitively, the downwards straight edges are light,
while the upwards curved edges are heavy.

Initial Graph. The initial graph, Fjy has two nodes, the source node, vg,0,1
and node and vg,1,; which we refer to as First (see fig. 7). There are two directed
edges between the nodes with weights:

6(710,0,1;710,1,1) = Po, e(1)0,1,1,1)0,0,1) = A-po

Creating the Next Generation F,;. Between every pair of adjacent nodes in
F,_1, we introduce a d-tree (see fig. 7 and fig. 8). Assume the pair of nodes vy_1 1,5
and vg_1,41,; of Fy_1. Node v4_1, 141, becomes the root of the new d-tree. Node
Vg—1,1,2 is connected to all the leaves of the tree. We refer to the nodes introduced in
generation g as new-nodes of the generation. All the “old” nodes can be identified
alternatively with indices of the newer generations; the new layer index of a node
is k + 1 times the old index: vy_1z = Vg i(k+1),2-

The weights of the edges between adjacent nodes are set as follows.

e(“g,l,myvg,l-}l’m) = pg (9)

e(Vgi41,0,Vg00) = Apg (10)
Po Pg—1

= = 11

Ps (k+1)9 k+1 (11)

With this construction, we guarantee the following important properties of the
F, graphs. First, the asymmetry of the graph is A. Second, the distance between
any pair of nodes is the same in each generation. As we can see in equation (11),
we replace an edge of cost p, 1 with (multiple paths of) k+1 edges of pg_1/(k+1)
cost.
Observation 1 All paths between a pair of nodes are of equal cost.
Finally, we can prove the following relationship between the number of layers and
the generation of a graph using induction on g.
Observation 2 The number of layers, I, of graph Fy is exponential in the genera-
tion index g:

I=(k+1)9+1

PART II: The on-line sequence of joining destinations. Intuitively, we
choose one node from each layer and once it is connected we choose the next node
in a way that maximizes the total tree cost. The selection process follows the worst
case sequence of Theorem 6 that used on one d-tree. The only difference is that we
do many such processes for each of the d-trees in each generation. First, we select
nodes from the first generation in the worst case sequence (see fig. 9). Then, we
repeat the process for selected d-trees of the next generation.

Given a graph F,, we choose one node from each layer along a path from the
First (first node to join) to the source. We choose the nodes in order of increasing

14

generation number, and within the same generation, in order of decreasing layer.
Note that, in each generation, we choose nodes only in d-trees that are between
destinations of the previous generation. We present the beginning of the sequence
of nodes:

V0,1,1 Vi,k,z V1,k—1,z --- V1,1, V2,m,x V2,m—1,z --- V2,1, ---
— . - Y « - >
9=0 g9=1 9=2
where we use the abbreviation m = k-(k + 1).
Given the above sequence, the total number of destinations is equal to the
number of layers. Using Observation 2, we can prove the following.
Observation 3 In a graph F, , if we select M destinations with the above se-

quence, the following holds
log M
9m = O (log(k + 1))

How do we pick nodes within each layer? Let us focus on a d-tree. We follow
the worst case sequence of Theorem 6. The root of the d-tree is connected already
since it is part of the previous generation (see fig. 9). We pick a child of the root
that has not been included in the tree as part of another path. Once this node is
joined in the tree, we pick among each children one that does not belong to the
multicast tree (see fig. 9).

After choosing nodes from all the levels of a generation, we choose nodes from
the levels of the next generation between the previous destinations. This way, it is
easy to see the following:

Observation 4 Given the above on-line sequence on graph F, there exists a path
from the source to the First node that contains all the destinations.

PART III: Calculation of the Cost. For the above on-line sequence, we
will find a lower bound, T, on the cost for any on-line algorithm on a graph
F,,.. We denote the cost of connecting the new-nodes of generation g by T,,. Given
Observations 1 and 4 there exists a path from source to First that contains all the
destinations of cost p. Therefore, the cost of the optimal solution is given by:

OPT = py (12)
We the depth of the d-tree , k, to be equal to the asymmetry:
k=|A] (13)

Given that from each layer we select a destination!, k is less than M. Combining
this with equation (13), we get an upper bound on the asymmetry of the
graph:

A<M (14)

fRecall that M is equal to the number of layers, I, and that ¥ < | (Observation 2 for g > 1),
thus, £ < M.

15

The lower bound T of the cost of any on-line algorithm is equal to the sum of
the lower bounds of the costs of each generation, T, for g =0, ..., gm:

9m
T=To+)» T, (15)

g=1

It is easy to see that Ty = pg. We will now calculate the value of Ty (cost of the
destinations added in F1), and then generalize the result for the other generations.
Consider the destination of level I, and note that [> 1, since zero level corresponds
to the source. This destination can either connect: a) to the source or b) to another
destination (see fig. 9). In the first case, the cost is (k + 1 — [)-p;, while in the
second case, the cost is A-p;. Given that k = | A| from equation 13, the minimum
cost connection is (k + 1 — 1)-p; for all layers (I > 1). Furthermore, all possible
paths are edge-disjoint, because of the way we choose our destinations. Therefore,
the sum of all these paths is a lower bound of the cost of this generation:

& k-1 K(Ek-1)
Tl—lel— p1 = 9 E+1 (16)

For the cost of generation g, it is not difficult to see that for every added d-tree,
we can calculate the cost in a similar way, and we will end up with an expression
similar to the one above only with p, instead of p;. At each step, the number of
these d-trees (that contain destinations) is equal to the number of layers of Fj_;
graph minus one. Using Observation 2, we have (k + 1)9~! such trees. Thus, the
total cost of generation g is given below:

k(k=1) _ po k(k=1)
2 T k+1 2

T, = (k+1)°"p, (17)

In the above equation, T, is constant for all the generations. For k¥ = A, the
total cost becomes:

o, logM po k(k—1)
T =T T, = . .
0+g; ¢ p0+log(k+1) E+1 2
log M
T=QlA———— - 1
(10g(A+1)> po (18)

Recall that OPT = py (eq. 12), and that T is a lower bound for any on-line
algorithm. Therefore, equation 18 completes the proof. O
Note that the two lower bounds correspond to different kinds of graphs: Q(M)

for highly asymmetric graphs (A > M) and © (A- ﬁ%) for less asymmetric ones
(A < M). The high asymmetry bound does not hold for less asymmetric graphs
and vice versa. Given this, the lower bound for any specific graph is the minimum

of the two bounds.

Corollary 4 (Lower Bound) Given the size of the multicast group, M, and the
asymmetry A, there exists a graph and a sequence of join requests such that the

16

source source

c

(a) Undirected and directed graph: (b) Directed graph: ©(A)
Q (2M).

Figure 10: Join-Leave: An example of bad case for Greedy.

competitive ratio of any on-line algorithm is

T _ . log M
orr ~© (mm (M’A log(A + 1)))

Observe that the above bound includes the previous bounds for undirected and
directed graphs as special cases. For undirected graphs, A = 1, the bound becomes
O(log M) [12]. For directed graphs, A = oo, the bound becomes O(M) [22].

Recall the upper bound from Corollary 3, O (min (M, Alog M)). The upper and
lower bound differ only by the term log(A + 1) in the second clause which refers to
the the case where A < M. Therefore, we can state the following corollary.

Corollary 5 For any weighted asymmetric graph with asymmetry A, o multicast
group of size M, for the the join-only problem, the Greedy is log(M + 1)-competitive
compared to any on-line algorithm.

Intuitively, even if we consider the best possible on-line algorithm, Greedy will be
within a logarithmic factor of the group size. For many practical applications with
limited group size, the Greedy algorithm will have guaranteed good performance.

5. The Join-Leave Problem

In this section, we study the case where participants can join and leave anytime
during the session. We find a lower bound for the Greedy algorithm. First, we im-
prove the lower bound for the undirected case [12], which applies in the directed case
as well. Then, we prove that the competitive ratio of Greedy can be proportional
to the asymmetry. Combining the two lower bounds, we conclude that Greedy can
lead to very poor multicast trees in asymmetric graphs.

First, we consider undirected graphs. Recall that we denote the number of join
requests by M — 1. The competitive ratio of the Greedy algorithm is proven to be

17

as large as M [12]. Here, we prove that the competitive ratio can be exponential in
M.

Theorem 8 Given the number of join requests, M, there exists an undirected graph
and a sequence of join-leave requests such that the competitive ratio of the Greedy

algorithm is
T

OPT
PROOF. Let us suppose that the network is a cycle of M nodes vy,, vpr_1 in that
order, and let vy = s be the source (see Fig. 10(a)). Assume that the sum of all
the weights of the cycle is C'. Assume that the weights of the edges between nodes
d; = e(vs,vi—1),i = 1,...., M — 1 decrease by half as follows: d; = 02_6, do = 04_6
and in general d; = 0276, where € is an arbitrarily small constant. The purpose of €
is to bias node v; to be closer to v;_; than the source s: d(v;_1,v;) < d(s,v;),Vi > 2.

We distinguish two phases: the joining and the leaving phase.

Joining Phase. Assume that the nodes join in order of increasing index: vy, ...,
vpr—1- In the Greedy algorithm, the first node will join to the source. Given the
way we set the weights, each new destination joins to the destination that joined
just before, e.g., v; joins to v;_1,i =1,...., M — 1.

Leaving Phase. We can assume that all destinations leave the session except
for vpr—1. So, in the Greedy tree, we have the destination vp;_1 connected to just
the source along the longest part of the cycle: T'= C — d(s,vp—1). The optimal
tree consists of the edge between the source and the last node in the tree vy;_1:
OPT = d(s,vpr—1).

By taking the ratio of the costs of the two trees we get:

T C
OPT d(s,vm—1)

=0 (2")

-1

For € = 0, we have: d(s,onr 1) =C — Y1, " di = C = XM, " €< and finally,
d(s,vp-—1) ~ 5a=t, which concludes the proof. O

The bound of theorem 8 holds even for directed graphs, since an undirected
graph corresponds to a directed graph of asymmetry A =1

Let us consider how asymmetry can create a bad case for Greedy without the
need for many destinations. Furthermore, we prove that the competitive ratio can
be proportional to the asymmetry A.
Theorem 9 Given a number of join requests, M, and an asymmetry, A, there
exists a directed graph and a sequence of join-leave requests such that the competitive
ratio of the Greedy algorithm is

T

orr = A

PROQOF. Intuitively, using the asymmetry, we do not need a large M to create the

previous worst case example. Let us consider the source and two destinations vy, ve
(see fig. 10(b)). The weights of the edges between v; and the source are ¢ both

18

ways. The weights of the edges between vs and the source are e. The asymmetry
appears only between v; and vs:

6(?]1,1}2) =p—6 6(1)2’7}1) :A'(p—(:'), p>e p7€€R+ (19)

We choose ¢ to be of lower cost than the path from the source to v; that includes
Vg:
c=A(p—e) (20)

Joining Phase. Node vy joins first and connects directly to the source (s,v;)
according to Greedy. When connecting v2, Greedy chooses edge (v1,v2), which is
less costly than (s,v2).

Leaving Phase. We remove destination v;. The cost of the Greedy tree is:

T=c+(p—€ 22T =(4+1)(p—¢ (21)

Clearly, the optimal solution is:
OPT =p (22)

For € — 0, the competitive ratio becomes:

T
OPT = A+1
O
The significance of the above theorem is that when the asymmetry is unbounded,
the competitive ratio of Greedy is also unbounded.
Both previous bounds are applicable for any asymmetry value, since both exam-
ples apply to any directed graph without any assumptions about the asymmetry.
Thus, the combined lower bound is the maximum of the two bounds.

Corollary 6 The competitive ratio of the Greedy algorithm in the on-line join-leave
problem on directed graphs is

T

OPT = Q (max(4,2M))

6. Conclusions

In this paper, we prove bounds for the worst case performance of Greedy and
Shortest Paths for the multicast routing problem. We study the effect of the asym-
metry and the membership, which have been neglected up to now. With our def-
inition of asymmetry, directed and undirected graphs can be treated in a uniform
way.

In general, the Greedy has lower upper bounds than Shortest Paths for the
static and the join-only problem. However, for the join-leave problem, the opposite
is true: the competitive ratio of Greedy is unbounded (equal to A = 00), while that
of Shortest Paths is not affected by the early departures. The reason is that Greedy
makes the best choice given an existing tree, but as destinations leave, the choice

19

Table 1. The worst case bounds of Greedy and Shortest Paths.

Undirected Directed
Static | Join ‘ Leave Static Join Leave
Sh. Paths M M M M M M
Greedy Up 2 log M - min(A, M) | min(M, A-log M) -
Greedy Low 2 logM | 2M min(A, M) | min(M, A- ﬁgf% max (4, 2M)

can turn out to be bad. On the other hand, Shortest Paths routes each destination
independently of the other destinations.

We present the bounds for the Greedy and the Shortest Paths algorithms for all
three problems in table 1. The first two columns present previously known bounds,
and the rest of the bounds are proven in this paper. Note that the previous bounds
are special cases of our bounds for A = 1, as we have already mentioned. The
bounds for the Shortest Paths are tight, while for the Greedy algorithm, we have
separate lines for the upper and lower bounds. The asymptotic bounds of the table
do not hide “big constants”: in most cases a factor of two is missing and all the
logarithmic functions have a base of two.

Several interesting observations become apparent from table 1. First, the Greedy
bounds on asymmetric graphs is a factor of A higher than that of the undirected
case in most cases. Second, the Greedy competitive ratio is bounded by M for any
(even unbounded) asymmetry in the static and join-only problem. Finally, Greedy
performs poorly in the join-leave problem: the bound can become as large as the
asymmetry or exponential in the number of joins.

Our work leads to the following general conclusions regarding the effect of asym-
metry and membership behavior.

e Asymmetry degrades the performance of Greedy by a multiplicative factor A.
Therefore, network modeling and simulation should use asymmetric graphs.

e The Greedy algorithm has near-optimal on-line performance for the join-only
problem. We show that Greedy is log(M + 1)-competitive compared to any
on-line algorithm.

e In the join-leave problem, it is the leave requests that hurt the performance
of Greedy. For this reason, we should be cautious in problem settings with
intense membership activity.

Future Work. For the join-only problem, for less asymmetric graphs, we see a
discrepancy between the lower and upper bound of the Greedy algorithm. It would
be interesting to prove a tight bound for this case.

Acknowledgments

The authors would like to thank Yossi Azar for suggesting simplifications to
the proof of Theorem 5. The authors are grateful to Panayotis Tsaparas, Allan
Borodin, and Anindo Banerjea whose criticism and keen comments improved the
paper significantly. Special thanks to Christos Faloutsos for his suggestions.

20

References

1.

10.

11.

12.

13.

14.

15.

16.

17.

18.

19.

A. Ballardie. Core Based Trees (CBT: An architecture for scalable inter-domain
multicast routing. ACM SIGCOMM, 1993.

. F. Bauer and A. Varma. ARIES: A rearrangable inexpensive edge-based on-line

Steiner algorithm. IEEE Journal of Selected Areas in Communications, 15(13):382—
397, April 1997.

K. Bharath-Kumar and J.M. Jaffe. Routing to multiple destinations in computer
networks. IEEE Trans. on Communications, 31:343-351, 1983.

. K. Carlberg and J. Crowcroft. Building shared trees using a one-to-many joining

mechanism. ACM Computer Communication Review, pages 5—11, January 1997.

. M. Charikar, C. Chekuri, T. Cheung, Z. Dai, A. Goel, S. Guha, and M. Li. Approx-

imation algorithms for directed steiner problems. ACM/SIAM Proc. of Symposium
on Discrete Algorithms (SODA), pages 192-200, January 1998.

M. Doar and I. Leslie. How bad is naive multicast routing? Proc. IEEE INFOCOM,
pages 82-89, 1993.

S. E. Dreyfus and R. A. Wagner. The Steiner problem in graphs. Networks,
1:195-207, 1972.

D. Estrin, D. Farinacci, A. Helmy, D. Thaler, S. Deering, M. Handley, V. Jacobson,
C. Liu, F. Sharma, and L. Wei. The PIM architecture for wide area multicast
routing. IEEE/ACM Transactions on Networking, 4(2):153-161, April 1997.

M. Faloutsos, A. Banerjea, and R. Pankaj. QoSMIC: a QoS Multicast Internet
protoCol. ACM SIGCOMM, Sep 2-4, Vancouver BC 1998.

M. Faloutsos, R. Pankaj, and K. C. Sevcik. Multicasting in directed graphs. 18th
Biennial Symposium on Communications, June 2-5, pages 29-32, 1996.

M. Faloutsos, R. Pankaj, and K. C. Sevcik. Bounds for the on-line multicast problem
in directed graphs. Proceedings of 4th International Colloguium on Structural Infor-
mation and Communication Complexity (SIROCCO ’97), Monte Verita’, Ascona,
Switzerland July 24-26, pages 81-98, 1997.

M. Imase and B.M. Waxman. Dynamic Steiner tree problem. SIAM Journal on
Discrete Mathematics, 4:369-384, 1991.

J. Kadirire and G. Knight. Comparison of dynamic multicast routing algorithms
for wide-area packet switched (ATM) networks. Proc. IEEE INFOCOM, pages
212-219, 1995.

L. Kou, G. Markowsky, and L. Berman. A fast algorithm for Steiner trees. Acta
Informatica, Springer-Verlag, 15:141-145, 1981.

T. Maufer and C. Semeria. Introduction to IP multicast routing. Internet-Draft:
draft-ietf-mboned-intro-multicast-02.txt, available from ftp://ftp.ietf.org/internet-
drafts/, 1997.

K. Mehlhorn. A faster approximation algorithm for the Steiner problem in graphs.
Information Processing Letters, pages 125-128, 1988.

M. Parsa and J. J. Garcia-Luna-Aceves. A protocol for scalable loop-free multicast
routing. IEEE Journal of Selected Areas in Communications, 15(13):316-331, April
1997.

J. Plesnik. Heuristics for the Steiner problem in graphs. Discrete Applied Mathe-
matics, pages 451-463, 1992.

S. Ramanathan. An algorithm for multicast tree generation in networks with asym-
metric links. Proc. IEEE INFOCOM ’96, pages 337-344, 1996.

21

20. V. J. Rayward-Smith. The computation of nearly minimal Steiner trees in
graphs. International Journal of Mathematical Education in Science and Tech-
nology, 14(1):15-23, 1983.

21. H. Takahashi and A. Matsuyama. An approximate solution for the Steiner problem
in graphs. Math. Japonica, 24(6):573-577, 1980.

22. S. Voss. Worst case performance of some heuristics for Steiner’s problem in directed
graphs. Information Processing Letters, 48:99-105, 1993.

23. L. Wang and T. Jiang. An approximation scheme for some Steiner tree problems
in the plane. Networks, 28:187-193, 1996.

24. B. M. Waxman. Routing of multipoint connections. IEEE Journal of Selected Areas
in Communications, pages 1617-1622, 1988.

25. B. M. Waxman. Performance evaluation of multipoint routing algorithms. Proc.
IEEE INFOCOM, pages 980-986, 1993.

26. J. Westbrook and D. Yan. Greedy algorithms for the on-line Steiner tree and
generalized Steiner problems. Mathematical Systems Theory, 28:451-468, 1995.

27. P. Winter. Steiner problem in networks: a survey. Networks, 17:129-167, 1987.

28. R. Wong. A dual ascent approach for Steiner tree problems on a directed graph.
Mathematical Programming, 28:271-287, 1984.

29. Y.F. Wu, P. Widmayer, and C.K. Wong. A faster approximation algorithm for the
steiner problem in graphs. Acta Informatica, 23:223-229, 1986.

30. A. Zelikovsky. Better approximation bounds for the network and euclidean steiner
tree problems. Technical Report Tech. Rep. CS-96-06, University of Virginia,
Charlottesville, 1996.

Appendix A: The Greedy Algorithm

We present a description of the Greedy algorithm. Sets of join and leave requests
arrive in an on-line fashion. In our paper, we assume that each set contains one
request in the on-line case. The static problem corresponds to the case where we
have one set of join requests.

1. START from the source.
2. REPEAT for each new set of requests (on-line)

(a) Leave requests: Prune the unwanted parts of the tree
(b) Join requests: REPEAT for all Join requests:

i. SELECT among non-accomodated requests the one whose
destination is closest to the multicast tree, dyeq -

ii. JOIN dje, to the tree with the related minimum cost path.

22

