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Abstract. In an earlier paper, Awerbuch presented an inno-
vative distributed algorithm for solving minimum spanning
tree (MST) problems that achieved optimal time and message
complexity through the introduction of several advanced fea-
tures. In this paper, we show that there are some cases where
his algorithm can create cycles or fail to achieve optimal time
complexity. We then show how to modify the algorithm to
avoid these problems, and demonstrate both the correctness
and optimality of the revised algorithm.

1 Introduction

Given a connected undirected graph G, with N nodes and E
weighted edges, we want to find a spanning tree for which
the combined weight of all its edges is minimized, denoted
an MST in the sequel. Furthermore, we want to use a dis-
tributed algorithm to find that MST by placing a processor
at each node and treating each edge as a bidirectional and
error-free communication channel, over which the nodes can
exchange messages among themselves. We assume that none
of the nodes has any special1 status, nor are any of them aware
of the network topology except for their adjacent edges. A
centralized solution where all information is collected in one
node would require at least a symmetry-breaking procedure to
select the central node, and also lead to excessive communi-
cation overhead. Fortunately, our task is made easier because
it is well known that the MST problem can be solved by a
“greedy” algorithm, which can generate an optimal solution
without backtracking. We assume an asynchronous2 network,

� This material is based upon work supported by the National Sci-
ence Foundation under CAREER Grant No. 9985195, and Nortel
Networks and UC CoRe fund C99-14.

1 For simplicity, we can consider that all nodes of the graph are
“awake”, but even if only one is, it can wake up the others through
the execution of the algorithm.

2 The algorithms that solve the problem in a synchronous setting
would require synchronizers in an asynchronous network and that
would make them suboptimal: the synchronizers introduce a poly-
logarithmic overhead.

and consider messages of size O(log N) bits since the set of
unique identifiers for N nodes requires Ω(log N) bits.

The problem becomes more interesting when we attempt
to minimize the number of messages and the execution time.
For the message complexity bound, we count the transmis-
sion of one message across one edge as our unit of “cost”. For
the time complexity, we count the transmission of a packet as
one unit of time. For the general graph, the distributed MST
problem requires at least Ω(E +N · log(N)) messages, and a
time complexity bounded below by Ω(N) [7]. Intuitively, the
factor Ω(E) corresponds to traversing all the edges at least
once, while the factor Ω(N · log(N)) corresponds to the “ne-
gotiations” among the nodes in deciding the MST. Regarding
the time complexity lower bound, we obtain Ω(N) by assum-
ing the worst-case of parallelism, where O(N) messages must
be exchanged sequentially to ensure network agreement. For
example, think of a line of nodes. Therefore, we call optimal
an algorithm that requires O(E + N · log(N)) messages and
O(N) time.

In [1], Awerbuch proposed an innovative three-phase dis-
tributed MST algorithm, which achieves optimal performance
in terms of both message and time complexity. We refer to
this algorithm as Awerbuch’s algorithm or AWE. The differ-
ent phases represent a tradeoff between the demands of the
initial part of the problem (involving large numbers of small
fragments, where limiting the number of messages is most crit-
ical) and the final part of the problem (involving small numbers
of large fragments, where limiting the execution time is most
critical).

The contribution of this paper is two fold. First, we show
that, in some cases, the AWE algorithm can create a cycle or
fail to achieve optimal time complexity. Second, we present
a modified version of Awerbuch’s algorithm, that avoids the
aforementioned problems.We call this algorithm the Modified
Awerbuch’s algorithm (MA). We also clarify some subtle but
critical functions of the algorithm, which for AWE were left
unspecified in [1]. We then prove that the modified algorithm
avoids these problems, and demonstrate its correctness and its
optimality. This paper is based on our earlier work in this direc-
tion [4], but it has been significantly expanded to include more
non-trivial details, more substantial proofs, and a pseudocode
version of the algorithm in the Appendix.
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Due to the nature of the work, the rest of this paper has
been structured as follows. In Sect. 2, we present the seminal
GHS algorithm [7] to establish a basic understanding of the
problem. In Sect. 3, we present the original AWE algorithm in
sufficient detail to allow us, in Sect. 4, to explain why AWE
fails to perform as expected. In Sect. 5, we describe our MA
algorithm in detail and explain how these modification solve
the problems we found withAWE. In Sect. 6, we show that the
message complexity of MA is optimal. In Sect. 7, we show
that MA terminates in linear time. In Sect. 8, we prove the
correctness of MA.

2 The GHS algorithm

In their pioneering paper [7], Gallager, Humblet and Spira in-
troduced the distributed MST problem and established a num-
ber of basic assumptions that have been widely adopted in
subsequent work. In particular, they assume that the graph is
connected and all nodes have distinct identifiers. They also
assume that the edge weights are distinct. Moreover, if the
weights are not distinct they show how to use the node id’s
to break the ties in a deterministic way, and hence to avoid
cycles [7].

More importantly, this first work [7] introduces an al-
gorithm that we call GHS, which has formed the founda-
tion for further work in the area, for example [1–3,6]. It
can be shown [7] that the message complexity of GHS is
O(E + N · log(N)), and hence optimal. However, it is well
known that its time complexity is O(N · log(N)), and hence
not optimal.

Following a slightly different angle, other research ex-
presses the time complexity as a function of the diameter
of the MST, d, the diameter of the network, δ, or the max-
imum node degree, D. Singh and Bernstein prove [11] that
the time complexity of the GHS algorithm is bounded by
O((D + d) · log(N)), which reduces to O(N · log(N)) when
d = O(N)). Garay et al. deal with the problem of minimiz-
ing the time at the expense of the message complexity [8].
Their algorithm relies on a synchronized network, and speeds
up the convergence of the decision of the nodes. Kutten and
Peleg proposed a brilliant improved version of the previ-
ous algorithm [9]. The time complexity of their algorithm is
O(
√

N · log∗(N) + δ), which is a linear function of the net-
work diameter. Note that both algorithms have non-optimal
message complexity, and their worst-case time complexity re-
duces to O(N) for the worst case of network diameter, where
δ = O(N).

2.1 Overview of GHS

GHS constructs the MST by allowing fragments (i.e., a con-
nected component of the MST) to merge in an asynchronous
distributed fashion. Throughout this process, each fragment
maintains its own spanning tree, and fragments grow in such
a way that the spanning tree of a fragment will become a
part of the MST of the graph. Each node is initially the root
of its own trivial single-node fragment, and all the edges are
Basic. Thereafter, adjacent fragments join to form larger frag-
ments by labeling their minimum weight intermediate edge as

a Branch of the MST. All other edges are labeled Rejected,
when it becomes clear that they can never become Branches.
We will use the terms Upstream and Downstream to denote
the directions toward and away from the root of the fragment,
respectively, for each Branch edge.

The new Branch is chosen by the root of one (or possibly
both) of the fragments, as the minimum outgoing edge (or
MOE) for its entire fragment. Since fragment merging is not
an atomic operation, and every tree can have only one root,
we use the term leader to denote the “central” node for a
fragment while it is merging with an adjacent fragment. All
“non-central” nodes belonging to the fragment are called or-
dinary.

To find the fragment MOE efficiently, GHS uses a se-
quence of three procedures. First, the root initiates the Search-
ing procedure, by broadcasting a request to all nodes to help
find the fragment MOE. Then all nodes execute the Testing
procedure to identify their respective local MOEs. Finally,
all nodes execute the Reporting procedure to collect the re-
sults from all Downstream nodes in their entire subtree before
passing on a single aggregate response toward the root.

Even this basic algorithm contains several subtleties,
which are described in [7]. First, each fragment has a level, L,
in addition to its unique fragment identifier, F . The fragment
levels are used to make fragment-joining less symmetric, so
that certain types of “one-sided” joins can be permitted with-
out the risk of forming cycles.

If two adjacent fragments discover that they share a com-
mon MOE and both of them wish to label that edge as a Branch,
then it is clear that the resulting “two-sided” merger (a situ-
ation we refer to as an equi-join) can be permitted, because
the combined fragment will still be a subgraph of the MST.
In an equi-join, one of the two adjacent leaders will be the
root of the new fragment through some simple tie-breaking
mechanism, such as the node with lowest id becomes the root.

Rather than reducing parallelism by delaying each join un-
til it becomes “two-sided”, GHS permits a fragment F at level
L to do a “one-sided” join along its MOE as long as the level
of the adjacent fragment is greater than L, a situation we refer
to as a submission. We say that a fragment submits to another
fragment when it sends a message declaring that it wants to
join the other fragment along that edge. Thus, an outgoing
edge leading to a lower-level fragment is not an acceptable
candidate for the fragment MOE, but it cannot be ignored
either! This delays the Testing procedure, and contributes to
non-optimal time performance, as we will see below.

All fragment levels are initialized to zero, and thereafter
at each join the higher level replaces the lower one in a sub-
mission while both sides increase their level by one for an
equi-join. Thus, the level can reach at most log(N) when the
algorithm terminates.

In the remainder of this section we provide a detailed de-
scription of the GHS algorithm. Following the structure of the
algorithm, our presentation is divided into two parts: a) finding
the fragment MOE, and b) merging of fragments. A summary
of all message types used by GHS and subsequent algorithms
is provided in Table 1.
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Table 1. The messages of the algorithms

Messages common to GHS, AWE and MA

initiate Broadcast message that signals a new searching phase for a fragment.

report The reply to the initiate message, it reports the Minimum Outgoing Edge of the subtree.
test The message explores whether an edge is going outside the fragment.
reject A negative answer to the test message (internal edge).
accept A positive answer to the test message (external edge).
changeRoot The order to authorize the leader of its role.
connect The intention to join along a particular edge (MOE of the fragment), sent by the leader.

New messages introduced by AWE, and common to MA

expInit Feedback to the root, when initiate travels too far and expires.
testDistance Probe that explores the distance from the leader to the new root.
ack Feedback to the leader, when testDistance expires.

New messages introduced by MA

MOEfound Notification that the MOE of the fragment has been found.
acceptSub Response to a connect message, when a submission is accepted.

2.2 Part I: Finding the fragment MOE

During the execution of the GHS algorithm, an ordinary node
alternates between a passive Found state, where it waits to re-
ceive further instructions from the root, and an active Finding
state, where it executes the Searching, Testing and Reporting
procedures. The rules governing each procedure are described
as follows:

GHS-0 An ordinary node remains in the Found state un-
til the start of the next active period. It is aware
that the global MST-finding algorithm is currently in
progress, and remembers: (i) its own most-recently
assigned fragment id, F ; (ii) its level, L; (iii) the sta-
tus of each of its attached edges (i.e., Basic, Branch,
or Rejected); (iv) an Upstream pointer that indicates
which Branch leads to the root; and (v) a Best Edge
pointer that indicates the next hop toward the most-
recently reported local MOE in its own subtree (i.e.,
either one of its Downstream Branches or its own
most-recently tested Basic edge). A node that re-
ceives an initiate() message will switch to the Find-
ing state.

GHS-1 The initial state for the root node is the Finding state,
from which it initiates a Searching procedure for its
entire fragment by broadcasting an initiate(F, L)
message over all its Branch edges. All ordinary
nodes in F enter the Finding state and execute the
Searching procedure when they receive a copy of the
initiate(F, L) message from their Upstream Branch
edge. To carry out the Searching procedure, each
node takes note of its current fragment id, F , and
level, L, and then relays a copy of the initiate(F, L)
message to each of its Downstream Branch edges.
Thereafter, the nodes immediately execute the Test-
ing procedure.

GHS-2 In the Finding state, each node executes the Testing
procedure to determine its local MOE. Nodes query

their Basic edges, one at a time in order of increasing
weight, by sending a test(F, L) message. Edges con-
necting nodes that belong to the same fragment are
Rejected either by a reject message or by receiving
a concurrent test message with the same fragment
id. The only other allowable response is accept, indi-
cating that the edge is indeed outgoing, and the level
of the neighboring fragment is at least L. Note that if
the neighboring node belongs to a smaller level frag-
ment, the Testing policy demands that the answer is
delayed until its level increases. Once the node has
found its first outgoing edge (or exhausted its Basic
edges), it executes the Reporting procedure.
It is interesting to examine the case where node u
of fragment (Fu, Lu) tests node w of (Fw, Lw) as-
suming Lu > Lw, so a delayed answer is required.
In this case, even though node w cannot respond to
the test(Fu, Lu) message from node u, it may de-
cide to send its own test(Fw, Lw) message over the
same edge. Clearly, node u must reply immediately
with an accept message, which terminates the Test-
ing procedure for node w. Thus, if this local MOE
for node w becomes the fragment MOE for Fw, then
Fw would submit to Fu over this same edge. Note
that node w continues to delay its response to the
earlier test message from node u, and thus node u
still “blocked" in the Testing state. Thus, u will ac-
cept the submission of Fw and send a copy of the
latest initiate message to w, which (finally!) raises
its level to Lu. At this point, node w can respond to
the original test message from u, but now w is in the
same fragment as u.A reject message is sent to node
u, and node u will go on to test its next Basic edge.
This delay in answer is crucial for the correctness of
the algorithm, namely, for avoiding cycles.

GHS-3 In the Finding state, each node executes the Report-
ing procedure to determine the best outgoing edge
located anywhere in its own subtree. The Reporting
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procedure is invoked when the local MOE is found,
or whenever a report message arrives from a child.
Finally, a node finds the minimum weight outgo-
ing edge (if any) among the local MOE and the in-
coming report messages from each of Downstream
Branches. The Reporting procedure terminates when
the node has: (i) identified the best MOE among all
these choices; (ii) stored the Best Edge pointer that
leads to that choice; and (iii) sent the resulting MOE
weight to its parent (unless it is the root) in another
report message. If no such edge exists, the Report-
ing procedure reports null. In any case, when the
Reporting procedure concludes, the node switches
to the Found state.

2.3 Part II: fragment-merging along the MOE

Once the root node has completed its Reporting procedure,
it terminates the MST algorithm if no outgoing edges were
reported. Otherwise, it initiates the task of joining with its
closest neighboring fragment via the following sequence of
steps and procedures:

GHS-4 When the root enters the Found state after completing
the Reporting procedure, it immediately executes the
ChangeRoot procedure. All other nodes remain in
the Found state unless they receive a changeRoot
message from the root, since only one node at a time
can execute the ChangeRoot procedure.
The ChangeRoot procedure causes the node to delete
its Upstream pointer, which effectively locates it as
the root of the fragment (at least temporarily). There-
after, the node retrieves the Best Edge pointer, which
it stored during the Reporting procedure. If the Best
Edge points to one of its children, say node c, then
the node sets its Upstream pointer to the Branch lead-
ing to node c, sends a changeRoot message to node
c and (re-)enters the Found state. If the Best Edge
points to one of its own Basic edges, then the node
concludes that it must be the leader (which is adja-
cent to the fragment MOE and responsible for car-
rying out the merger) and immediately invokes the
Merging procedure.

Observation 1 All nodes along the path connecting
the root to the leader node execute the ChangeRoot
procedure in sequence, resulting in a gradual reori-
entation of the Upstream pointers toward the leader.

GHS-5 In the Merging procedure, the leader node v sends a
connect(Fv, Lv) message across the MOE to notify
the adjacent node w, which is in fragment (Fw, Lw),
of its intent to merge.

Observation 2 At this point, we know that Lw ≥
Lv . During the previous Testing procedure by node
v, node w could not have replied to node v’s test
message if its level had been below Lv . Thereafter Lv

cannot change during a single iteration of the MOE-
finding procedure for Fv . However, node w’s level
could have increased because Fw executes its local

copy of the MST-finding algorithm asynchronously,
and hence may have advanced to the next iteration.

If Lw > Lv , then node w accepts the merger as a
submission by a lower level fragment, so it replies
immediately by sending an initiate(Fw, Lw) mes-
sage to node v to inform it of the new fragment id
and level. Note that it does not matter whether the
information given to node v is current (i.e., node w is
actively involved in finding its own fragment MOE)
or obsolete (i.e., node w has already completed the
Reporting procedure associated with that fragment id
and level). In the former case, the nodes in fragment
Fv will simply be included in the current iteration of
Part I for fragment Fw. In the latter case, the nodes
in fragment Fv will again carry out Part I for level
Lw, but the results will be discarded by node w —
since any result they find must be heavier than edge
(v, w), which was the previous MOE for Fv , whereas
the edge already reported by node w must be lighter
than (v, w) or else the Testing procedure at w would
still be blocked waiting for a reply from node v.
Conversely, if Lw = Lv then node v must remain
blocked in the Merging state until node w responds to
its connect message. There are two cases to consider,
based on the level-Lw MOE selected by fragment
Fw:
1. If fragment Fw selects the same edge (v, w) as

its MOE, then node w will eventually become
its leader and complete an equi-join with frag-
ment Fv by sending a connect(Fw, Lw) mes-
sage to node v. Thereafter, one of the two lead-
ers3 will become the root of the resulting level-
(Lv + 1) fragment through some simple tie-
breaking mechanism (e.g. minimum node id).

2. If fragment Fw selects a different edge as its
MOE, then node w will not respond to the
connect message from node v until it receives a
new, higher-level initiate message from its new
root and hence can accept the merger as a sub-
mission by a lower level fragment.

Observation 3 If fragment Fw selects an edge other
than (v, w) as its MOE, then node w may not respond
to node v’s connect message for a very long (i.e.,
greater than Ω(2L)) time. For example, Fw could
be the last member of a long chain of level-Lv frag-
ments, where each of them has decided to submit to
its neighbor in the chain.

3 Awerbuch’s three-phase MST algorithm

In [1], Awerbuch proposed an innovative three-phase dis-
tributed MST algorithm, which we refer to as AWE. AWE
achieves optimal performance in terms of both message and
time complexity. The different phases represent a tradeoff be-
tween the demands of the early part of the problem (involving

3 Note that equi-joins always take place between leaders of the
fragments. Each leader executes the algorithm without knowing if
the other node (toward the outgoing edge) is a leader, until it receives
a connect message from the other node.
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large numbers of small fragments, where limiting the number
of messages is most critical) and the later part of the problem
(involving small numbers of large fragments, where limiting
the execution time is most critical). The switch to the last phase
happens when fragments reach a size larger than the phase III
threshold size which is set to N∗ ≡ N

log(N) nodes.
The three phases are needed to guarantee optimal mes-

sage complexity, by restricting the availability of some newly-
defined message-intensive procedures that speed up its execu-
tion compared to GHS. These procedures reduce the amount
of time that fragments can be blocked while waiting for a
response to a test or connect message. However, the new pro-
cedures also bring with them a significant cost in terms of
additional communications. In particular, a single fragment
executing the new Leader Distance procedure (described be-
low) may generate O(N) messages in the worst case. Thus, if
large numbers of fragments (say O(N) of them) were allowed
to execute this procedure, then the total number of messages
could reach O(N2), in contrast the O(N · log(N)) message
complexity of GHS. Thus, AWE only allows a fragment to
use the new procedures after its size has reached the phase III
threshold size, which implies that the total number of active
fragments is Ω(log(N)). Consequently, even in the worst case,
where all fragments invoke the Leader Distance procedure and
generate O(N) messages, the total number of messages is still
O(E + N log(N)), which is optimal.

3.1 Phase I: node counting

The purpose of this phase is to determine N , so that a fragment-
size threshold of N∗ can be used to trigger the switch from
Phase II to Phase III. A Spanning Tree (with no minimum
weight requirement) is formed by ignoring the edge weights
and allowing each fragment to join along the edge leading to
the largest fragment. Given the Spanning Tree, the number
of nodes in the network can easily be counted. Any optimal
algorithm for building an unweighted spanning tree can be
used. In the original paper [1], an O(E+N log(N)) messages
and O(N) time algorithm is proposed.

3.2 Phase II: basic small-fragment MST algorithm

During this phase, we start to build the MST using GHS, as
described above. The only difference is that at the end of the
Reporting procedure, the root estimates the size of its fragment
to decide whether or not it is time to switch to the optimized
Phase III algorithm. The estimation of the fragment size is
done trivially in the Reporting procedure; all nodes that report
are counted.

3.3 Phase III: optimized large-fragment MST algorithm

Awerbuch’s optimizations add two new procedures to GHS in
order to limit the execution time for each iteration of Phase
III. The goal for both procedures is to promote an orderly
schedule of level increases if multiple fragments merge at the
same time to create a much larger fragment. One procedure
works outward from the root of the fragment F to force its

level to keep pace with the size log |F |. The other procedure
works inward toward the root from the leaders of distant sub-
fragments that have recently joined F .

The Root Distance Procedure, adds a timeout mechanism
to the Searching procedure. More specifically, a hop count field
is added to the initiate message. The count is initialized by the
root to 2L+1 and thereafter it is decremented by one at each
hop. Should it ever reach zero, we say that the message has
expired and require that node to send back an expInit message
to the root. Thus, when the root receives the first expInit mes-
sage for the current level, it increases the fragment level by
one and restarts the Searching procedure.

The Leader Distance4 Procedure ensures the timely level
increase of a fragment after it has submitted and before it be-
comes an active member of its new fragment. Leader Distance
can be seen as a timeout mechanism to the Merging procedure,
to limit the time between level increases for the leader that has
submitted to an adjacent fragment (GHS-5). During this time,
the fragment must continue to use its old fragment id, F , and
level, L, even though it has already decided to merge with the
adjacent fragment.

Similar to the Root Distance procedure, a testDistance
message, containing a hop count initialized to 2L+1 is sent
toward the new root. Each node along the path decrements the
hop count. If the count hits zero before the message reaches
the new root, an ack message is sent back to the fragment, trig-
gering a level increase. Otherwise, the testDistance message
is discarded when it reaches the new root and the procedure
stops. The symmetry of the two procedures is apparent.

4 Some problems in Awerbuch’s algorithm

In studying AWE, we found several places where the descrip-
tions were either incomplete or incorrectly specified. Conse-
quently, there are some cases where this algorithm can fail,
either by creating a cycle or by failing to achieve optimal time
complexity.

4.1 The phase III fragment-merging policy is incomplete

Since AWE does not specify a new fragment-joining policy
for its Phase III, we must assume that the policy was inherited
from GHS (see GHS-5). Unfortunately, the GHS fragment-
joining policy is not consistent with the detailed performance
requirements assumed in [1].

What is the execution time for the Merging procedure?
Awerbuch’s proof of optimal time complexity assumes that if
the fragment (F, L) is currently at the minimum level, then
F will complete the Merging procedure within O(2L) time
of the discovery of its fragment MOE. In particular, if node v
carries out the Merging procedure as the leader of fragment
Fv , then v is assumed to know within O(2L) time whether the
resulting merger with the adjacent fragment Fw represents an
equi-join or a submission to a larger fragment.

Unfortunately, a careful review of GHS-5 shows that the
only allowable responses to the connect(Fv, Lv)message sent
by node v to the adjacent node w in fragment Fw are:

4 Awerbuch used the name Test Distance, but we feel that our
name makes the description of the algorithm clearer.
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root
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v w

3

4

5

12

6

Fig. 1. Leader Distance fails because the path length to the root
increases: root of Fw discards arriving testDistance message from
v, but later submits to a more distant fragment via node y

• initiate(Fw, Lw), for some Lw > Lv , in which case Fw

treats the request from Fv as the submission of a lower-
level fragment, or
• connect(Fw, Lw), for Lw = Lv , in which case Fw treats

the request from Fv as an equi-join.

Moreover, using observations 2 and 3, we see that even if both
fragments Fv and Fw were at the minimum level during node
v’s Testing procedure, node w still may not respond for an
arbitrarily long time if Fw picks another edge as its fragment
MOE.

What is the exact starting time for the Leader Distance
procedure? Even though the Merging procedure can take a
long time to complete, Awerbuch never explains at what point
during this process a leader should start executing the Leader
Distance procedure. If the leader waited for a response to its
connect message before starting the Leader Distance proce-
dure, then observation 3 tells us that it may fail to increase
its level in a timely manner. Conversely, if the leader starts
the Leader Distance procedure as soon as it sends its connect
message then the algorithm may attempt to measure an unsta-
ble path length. In particular, it is possible that the path length
later increases or decreases, causing Leader Distance to ei-
ther terminate prematurely (delaying the level increase for its
sub-fragment), or overestimate the distance to the new root
(causing its sub-fragment to reach an excessively-high level).
We describe these scenarios in greater detail below.

Observation 4 Leader Distance might terminate prema-
turely, leaving a submitted sub-fragment without a level in-
crease for a very long time.

Figure 1 illustrates a situation where the path length from
node v, the leader of submitted sub-fragment Fv , to the root of
its new fragment increases dramatically during the execution
of the Leader Distance procedure. Suppose that edge (v, w) is
the fragment MOE for Fv , and that node v sends its connect
message (labeled “2”) to the adjacent node, w, in fragment Fw

after w has already sent its report message (labeled “1”) and
entered the Found state. Thus, Fv will not simply be absorbed
into the ongoing MOE-finding procedure in Fw. If we further
assume that Lv = Lw, then node w cannot send an imme-
diate reply to v’s connect message either. Thus, node v will
be blocked in the Merging state, where it begins executing the

root

FwFv

wv

y

2
4

1

4

3

5

6

Fig. 2. Leader Distance fails when the path length to the root de-
creases: testDistance message from v reverses direction and counts
part of its path twice when it encounters the changeRoot on its way
to node y

Leader Distance procedure by sending a testDistance message
(labeled “3”) through node w. Unfortunately, if Fw has not yet
competed its MOE finding procedure, then the orientation of
the Branches of Fw will carry the testDistance message to
its root node. If the testDistance message arrives at the root
with a positive counter, it will be discarded — thus terminat-
ing the Leader Distance procedure for node v. Later on, when
it receives the report message from node y (labeled “4”), the
root of Fw could decide to send a changeRoot message to y
(labeled “5”), instructing it to submit to some other fragment
F ′, which in turn has submitted to fragment F ′′, and so on.
Thus, even though the Leader Distance procedure for node v
was terminated, the distance from v to the new root could be
really large.As a result, the next level increase for fragment Fv

may take a really long time, thus violating the time optimality
proof in [1].

Observation 5 Leader Distance might allow a submitted sub-
fragment to overestimate the distance to the new root, and thus
reach an unreasonably-high level.

Figure 2 shows that a slight change to the situation in Fig.
1 can cause the path length to the new root to decrease during
the execution of the Leader Distance procedure. This time,
suppose that the transmission time for the the testDistance
message sent by node v (labeled “4”) is delayed slightly, such
that it will not reach the root of Fw until slightly after the
arrival of the report message sent by node y (labeled “3”).
In this case, just before v’s testDistance message finishes its
exploration of the path leading to the root of Fw, the root of Fw

completes its MOE finding procedure and sends a changeRoot
message to node y (labeled “5”). Because the changeRoot
message reverses the pointer to the Upstream branch at every
intermediate node, v’s testDistance message will simply turn
around and follow the changeRoot message to node y. As
a result, the length of the path through Fv explored by v’s
testDistance message can be significantly larger than the actual
distance between nodes w and y (i.e., the dashed line labeled
“6”). In the worst case, v’s testDistance message could visit
every node in Fw twice, so if |Fw| is sufficiently large, v could
use the Leader Distance procedure to increase its level beyond
log(N).
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Because of these issues, it is obvious that the Merging
procedure needs some refinement, especially its relationship
to the Leader Distance procedure.

4.2 Root Distance and Leader Distance employ inconsistent
path-length measurements

Even if the Merging procedure were modified to eliminate
the unstable path-length problem described above, it is still
possible for the leader of a submitted sub-fragment to reach
a higher level than its root because of subtle differences in
the timeout mechanisms employed by the Root Distance and
Leader Distance procedures. In particular, the Root Distance
procedure is based on adding a hop count field to the initi-
ate message, which is initialized to 2L+1 by a level-L root.
Thereafter each node that receives a copy of the initiate mes-
sage decrements the hop count by exactly one before relaying
a copy of the message to each of its children. Conversely, the
Leader Distance procedure is based on adding hop count field
to the testDistance message, which is initialized to 2L+1 by a
level-L leader. Thereafter each node that receives a copy of the
testDistance message decrements the hop count by its number
of children before relaying a (single) copy of the message to its
own parent. Thus, if the nodes along the path have an average
of at least two children, Leader Distance will terminate at a
higher level than Root Distance.

4.3 The treatment of expiring messages
is not described completely

Awerbuch’s description of the algorithm in [1] does not explain
the procedures for managing the return of expInit messages to
the root after the expiry of an initiate message, nor the return
of an ack message to the particular leader that generated an ex-
pired testDistance message. Although both types of response
message are individually generated (rather than part of a co-
ordinated broadcast/convergecast pattern) and addressed to an
individual destination, neither one can be sent using ordinary
unicast routing methods without compromising the complex-
ity of the algorithm in some way.

The main challenge is presented by the ack messages and
their routing. In the initial specification [1], each leader prop-
agates its own message, and each ack message is targeted to
reach a specific leader. The question is how does a node know
where to forward an ack to reach the right leader?

As we will see in our modified algorithm, we propose to
address these issues by requiring nodes to maintain some extra
state. The required state is within a constant factor from the
state that a node needs to keep anyway.

4.4 The Leader Distance Procedure can create cycles

As described, the Leader Distance can increase the level of a
leader too aggressively and this can create cycles. We can see
that the Leader Distance and Root Distance procedures are
exploring the same path between the leader and the root using
the same threshold for level increase. Thus, it is possible that
the leader will arrive at the same (or higher!) maximum level
before the root.

root

w

F3 to F4F2 to F3F1 to F2

44
F  , L

33
F    ,L

22
F  , LL

11 ,F

Fig. 3. The creation of a cycle

In more detail, consider the situation that results from ex-
ecuting the following sequence of four steps see Fig. 3.

1. Initially, we assume that all four fragments are in level
L and disjoint. Then, (F1, L) submits to (F2, L), (F2, L)
submits to (F3, L), and (F3, L) equi-joins with (F4, L)
forming say (F5, L + 1). In addition, we assume that the
path length, p, between F1 and the final root of F5 via F2
satisfies 2L+1 < p < 2L+2.

2. The leader of (F1, L) initiates the Leader Distance proce-
dure, which succeeds and promotes it to level (F1, L+1),
because 2L+1 < p.At the same time, the root of (F5, L+1)
initiates a Searching procedure, but notice that p is too
small for the Root Distance procedure to justify a level
increase to L + 2. Eventually, node w, which is adjacent
to the critical edge that connects to (F1, L + 1), receives
the initiate(F5, L + 1) message.

3. Node w of (F5, L + 1) sends a test message along the
critical edge. Assuming that F1 has not yet received the
initiate(F5, L+1)message, the answer will be immediate
and positive since the two fragments have equal levels and
different id’s. Node w reports this edge as its MOE. This
is an error according to the policy of the algorithm which
demands reported edges to be outgoing.

4. Fragment F1 receives the initiate message, becomes part
of F5 and participates in the Searching procedure. As we
already said, since 2L+1 < p < 2L+2, the Root Distance
procedure of F5 will not succeed and so F5 will not re-
run the finding procedure at a higher level. Instead, it will
select the minimum weight edge from among those that
have been reported. Should the critical edge turn out to be
that minimum weight edge, node w will be appointed as
the new leader — with instructions to connect along the
critical edge and thus create a cycle.

In a nutshell, node w considers the critical edge as out-
going, because F1 still has not received the final fragment
identifier, but F1 has increased its level enough on its own
to be able to answer the test message. However, the chosen
MOE leads inside the same fragment, forming a cycle.

Neither GHS nor AWE provide any provision for detect-
ing cycles in the MST, backtracking or repeating the Searching
procedure. Thus, we need to modify the Leader Distance pro-
cedure to prevent symmetry-induced failures, such as Fig. 3.
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4.5 Awerbuch’s proof of optimal time complexity fails to
handle the transition to Phase III

The proof of time complexity in Awerbuch’s analysis does not
cover the transition from Phase II to Phase III. Fundamental to
that analysis is the following “proportional depth” assumption:
no node currently at level L is more than 2L hops below an
actively-executing root or leader node. In particular, the proof
of Claim 2 from the time complexity analysis in [1] starts from
the assumption that no node belonging to fragment F can be
separated from its leader node by more than 2L hops if F was
at level L when it invoked the Phase III Merging procedure.
Although fragment-joining according to the Phase III Merging
procedure will preserve the proportional depth assumption if it
is true beforehand, the following counterexample shows that
Phase III fragments violating this assumption can be created
during the transition period between Phase II and Phase III.

To see this, let us revisit the cycle-creation example shown
in Fig. 3. This time, let us assume that the root fragment F4 is
already large enough to have switched to Phase III, whereas
each member of the chain of fragments F1, F2, and F3 is small
enough to continue with Phase II. We further assume that the
size of F4 is too small for the root to trigger an immediate
level increase due to the arrival of an expInit message or the
detection of a high node count during the Reporting procedure.

Now consider what happens if, shortly after the F4-node
adjacent to the MOE for fragment F3 sends its report message,
the sequence of fragments F3, F2, and F1 submit one after
another to F4. After each of the small fragments sends its
connect message, it receives an immediate response in the
form of an initiate(F4, L) message — which immediately
raises each small fragment to level L without including it in
the level-L Reporting procedure for F4. Therefore, the root
of F4 will complete its Searching procedure without knowing
about the submissions of this long chain of small fragments.

But in addition to the sequence of MOE edges by which
the chain of small fragments joined F4, there is one extra Basic
edge that connects a node w in F4 to the last small fragment
in the series, F1. Furthermore, suppose that this edge has the
minimum weight of any Basic edge connected to node w. In
that case, the Testing procedure at w — and hence the entire
MOE-finding algorithm for F4 — will be blocked until the
entire chain of small fragments has been absorbed by F4 and
all of the associated nodes have reached level L.

At this point, our counterexample is complete: F4 has now
become a Phase III level-L fragment whose total size, |F4|,
and maximum path length can both be arbitrarily large. More-
over, since we assume that all of the small fragments F1, F2,
. . ., are still in Phase II, none of them executes the Leader Dis-
tance procedure while waiting for the Merging procedure to
complete. Thus, the set of nodes that belong to sub-fragment
F1 must remain at level L for a very long time, i.e., until a
higher-level initiate message has traversed the entire length
of this arbitrarily large merged fragment. This contradicts the
fundamental inductive basis for Awerbuch’s time complexity
proof, namely that during Phase III, the length of time that L
remains the lowest level in the network bounded by O(2L). As
a result of this counterexample, we must develop a new time
complexity proof for the optimized Phase III algorithm.

Before leaving this example, we would like to point out
that the technical difficulties that arise when fragment-joining

occurs during the transition between Phases II and III cannot
be solved by instructing the leader of fragment Fi to adopt
the Merging algorithm for Phase III (i.e., including the Leader
Distance procedure) if the new level of the sub-fragment is
greater than log(N∗), where N∗ is the phase III threshold
size. Even though this strategy would meet our original goal
of ensuring that the proportional depth assumption holds, it
would also enable large numbers of small fragments to exe-
cute the Leader Distance algorithm, and hence increase the
message complexity of the algorithm.

5 Modified Awerbuch algorithm – phase III

In this section, we provide a detailed description of a modified
version of Awerbuch’s algorithm that we will call MA. MA
closely follows the general structure of AWE, which in turn
is based on GHS with the addition of the Root Distance and
Leader Distance procedures. However, MA includes numer-
ous changes to address the flaws in AWE that were described
earlier. In addition, our presentation clarifies certain missing
details that are needed for an implementation (see [5]). We
provide an overview of the main changes below.

First, MA extends the Root Distance procedure by allow-
ing the root to increase its level when if finds that the total
number of nodes is sufficiently high, and not just when it finds
that the maximum path length is sufficiently long. Recall that
the meaning of distance in both the Root Distance and Leader
Distance is hop count along the spanning tree of a fragment.

Next, MA introduces two new messages, MOEfound, ac-
ceptSub compared to AWE, see Table 1. We could overload
the meaning of existing messages, but we prefer to use the
new messages for clarity. Roughly speaking, the MOEfound
message is broadcast from the root to its fragment to notify all
nodes that a MOE has been found.

Another change is that a node in MA can be at three states.
The active Finding state remains as in GHS, where the node is
actively participating in the search for the fragment MOE and
has not completed its Reporting procedure. However, the pas-
sive Found state is split into two states, FoundUndecided and
FoundNotified A node goes to the FoundUndecided state af-
ter sending its report. It enters the FoundNotified state, when
it receives an notification from the root that a decision about
the MOE has been made. The importance of the new states
becomes apparent in the Merging procedure in Part II.

Finally, note a subtle dual use of the MOEfound message.
In addition to triggering the change-of-state from FoundUnde-
cided to FoundNotified for nodes outside the path connecting
the root with the leader after the completion of the Searching
procedure, it is also used by a submitted leader to announce a
level increase to the rest of its sub-fragment when the Leader
Distance procedure succeeds.

For facilitating the readers familiar with the previous algo-
rithms, we highlight our changes using the keyword NEW. In
Appendix B, we provide pseudocode with two types of actions
procedures and responses to message arrivals. To facilitate the
reading of pseudocode, we append in every step of the algo-
rithm the related procedures or response-to-message that are
related to the step.
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5.1 Part I: finding the fragment MOE

Part I remains similar to GHS, except for the addition of the
Root Distance procedure.

MA-0 An “ordinary” node is at the FoundUndecided
state after completing its Reporting procedure. The
FoundUndecided state is similar to the Found state
described in GHS-0. In particular, a FoundUnde-
cided node delays its response to all incoming con-
nect messages, unless the level of the adjacent frag-
ment is strictly below its own level.
NEW: After receiving a changeRoot or MOEfound
message, the node advances to the FoundNotified
state. A FoundNotified node responds immediately
to an incoming connect message with the same level.
The significance of this change will be apparent
when we describe the Merging procedure.
Pseudocode. Procedures: ChangeRoot(). Messages:
changeRoot, MOEfound.

MA-1 The initial state for the root node is the Finding state.
The ordinary nodes in F enter the Finding state when
they receive a copy of the initiate message from their
Upstream Branch (towards the root).
The Searching procedure is the same as GHS-1, with
the following additions. First, the initiate(F, L, H)
message includes a hop count field, H , which is ini-
tialized to 2L+1 by the root node and thereafter is
decremented by one at the arrival of the message at
every other node. Second, the Searching procedure
expires when H = 0, causing the node to abandon
the Searching procedure and execute the Root Dis-
tance procedure, which is explained below.
Pseudocode. Procedures: Initiate(). Messages:
initiate.

MA-1.5 A node participates in the Root Distance procedure
in two ways: detecting a long distance, and reporting
such a distance to the root. For the detecting part, a
node decrements the hop count field in an arriving
initiate(L) message. When the hop count hits zero,
H = 0, we say that Root Distance succeeds. Upon
success, the node sends an expInit(L) message to-
wards the root.
Let’s see how a node reacts to an expInit(L) from
one of its Downstream Branches, First, if the node is
not the root, it simply relays the expInit(L) message
to its Upstream Branch edge, and enters the Found-
Notified state, causing it to discard all subsequent
expInit(L) messages.
When the root receives an expInit message, it in-
creases its level to L + 1 and restarts the Searching
procedure.
Implementing the reporting of expInit messages.
To prove the optimality of the message complexity,
we need to argue that each node transmits only a fixed
number of expInit message per level. This argument
would not hold in the case where every expInit mes-
sage generated by one of the leaf nodes in a balanced
tree were forwarded independently back to the root.
Thus, each node maintains enough state to filter out
redundant expInit messages after relaying the first at
a given level.

Pseudocode. Procedures: Initiate(), ExpInit(). Mes-
sages: initiate, expInit.

MA-2 There are no changes to Awerbuch’s Testing proce-
dure, which is the same as GHS-2 with the addition
of the following timeout feature. During the Test-
ing procedure, each node counts the total number of
Basic edges that it has rejected. If this count for a
level-L nodes reaches 2L+1, the node abandons its
Testing procedure and sends an expInit message to
the root.

Observation 6 Responding to a timeout during the
Testing procedure by sending an expInit message
should be allowed, because this event provides
equivalent justification in comparison to Root Dis-
tance succeeding (MA-1.5) for abandoning the cur-
rent search for the fragment MOE and restarting it
at a higher fragment level. Moreover, sending the ex-
pInit message is also necessary to bound the running
time for each iteration of Part I to O(2L+1) when the
fragment very large, but with small depth and many
internal edges.

Pseudocode. Procedures: Test(). Messages:
test, reject, accept.

MA-3 The Reporting procedure is the same as GHS-3,
with the following additions.
NEW: First the report message includes a node count
field, C, in addition to the minimum MOE weight in
the given subtree. Each node sets C to one plus the
sum of the node counts reported by its children (if
any). Second, if the final value of C is at least 2L+1,
then the root raises its level to �log2(C)� and restarts
the Searching procedure, rather than advancing to the
ChangeRoot procedure in Part II.
Pseudocode. Procedures: Report(). Messages:
report, MOEfound.

5.2 Part II: fragment merging along the MOE

In this part, we present the Merging procedure, which has most
of the modifications of our MA algorithm.

MA-4 We introduce the following modification to the Chang-
eRoot procedure with respect to the GHS procedure5.
In a nutshell, we require that all nodes become aware
that their fragment has decided on its MOE.
NEW: The ChangeRoot procedure starts when the
root decides on the new MOE for the fragment at the
end of Reporting. It then sends a changeRoot mes-
sage on the path to the node with the MOE, and a
MOEfound message to all other nodes. Either mes-
sage makes nodes to switch from the FoundUndecided
to FoundNotified state.
Nodes located off the path between the root and leader
receive an MOEfound message, which they simply
broadcast to each of their downstream Branch edges,
and then switch from the FoundUndecided to Found-
Notified state.

5 Note that Awerbuch’s algorithm retains the ChangeRoot proce-
dure described in GHS-4.
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The nodes located along the path between the root and
leader receive a changeRoot message. These nodes
execute the basic ChangeRoot procedure described in
GHS-4, and in addition broadcast an MOEfound
message over the rest of their downstream Branch
edges, and then switch from the FoundUndecided to
the FoundNotified state.

Observation 7 After the ChangeRoot procedure, the
Branches of the MST of a fragment are fixed in direc-
tion.

The significance of switching to the FoundNotified
state is that the tree of the fragment has now been re-
oriented towards the leader of the fragment. Thus, the
Upstream pointers for every node in the FoundNotified
state point towards the leader (and the root of the fi-
nal fragment), and will not change again until the new
fragment is formed and a new Searching procedure
takes place. This observation avoids the malfunction-
ing of the Leader Distance procedure which existed in
AWE.
Pseudocode. Procedures: ChangeRoot(). Messages:
changeRoot, MOEfound.

MA-5 The modified algorithm uses Awerbuch’s Merging
procedure, which is based on GHS-5 augmented with
the Leader Distance procedure. However, as we dis-
cussed in Sect. 4.1, the details of Merging procedure
are not fully specified and require further refinement
before they can be used.
NEW: We assume that Merging procedure starts when
the leader node v sends a connect(Fv, Lv) message
across the MOE to notify the adjacent node w, which
is in fragment (Fw, Lw) of its intent to merge. We have
two cases6, according to the relative levels:
1. If Lw > Lv then node w replies immediately with

an acceptSub(Fw, Lw, Sw) message, where Sw is
the state of node w. We see below how a leader
reacts to an acceptSub message. If node w is in
FoundUndecided state, it will remember the edge
and send one more acceptSub message, when it
enters the FoundNotified state.

2. If Lw = Lv , node w waits until it enters the Found-
Notified state and then replies toFv .The reply from
w could be either to accept the submission of Fu

or to proceed with an equi-join. If the response
is a connect message, then the two nodes com-
plete the equi-join in constant time, and the new
root7 invokes the Searching procedure. Otherwise,
the response must be an acceptSub(Fw, Lw, Sw)
message, causing Fv to submit to Fw. The submit-
ting leader, v, will upgrade its level to match the
other fragment, Lv ← Lw, and notify all ordinary
nodes in Fv of the level increase by broadcasting
another MOEfound message.

6 Recall that the case Lw < Lv can’t happen at this stage, since
node w would have been required to delay its reply to the test message
of v.

7 New root in an equi-join is the node with maximum identifier or
some other symmetry breaking rule could be applied [7].

NEW: Leader Distance starts only when node w enters
the FoundNotified state. Thus, if the response from w
carries state FoundUndecided, then node v will wait
for w to become FoundNotified, and expect a second
acceptSub message. Clearly, we have at most two
acceptSub messages per submission, so the message
complexity is not affected.
Pseudocode. Procedures: EquiJoin(). Messages:
connect, acceptSub.

MA-6 In the Leader Distance procedure, the leader explores
iteratively the distance towards the new root, and in-
creases its level, if the distance is large. This way, lead-
ers increase their level in a timely manner, after it has
submitted and before it becomes an active member of
its new fragment. NEW: Most of this step of the algo-
rithm is significantly modified.
At the start of each iteration of the Leader Distance
procedure, the leader launches a testDistance(L, H)
message towards the root, where L is the leader’s cur-
rent level and H is the maximum hop count before the
message expires. If testDistance(L, H) expires then
the leader can increase its level. The expiration pro-
duces an ack(L) message, which is sent back to the
leader. Upon receiving the ack message, the leader in-
creases its own sub-fragment level to L+1, broadcasts
a new MOEfound message to all nodes belonging to
its sub-fragment to notify them of the level increase,
and immediately starts the next iteration of the Leader
Distance procedure.
We define the mechanisms of Leader Distance more
carefully to avoid the problems we identify in theAWE
algorithm in Sect. 4.
The Rules of Leader Distance. In the MA algorithm,
Leader Distance obeys the following rules. Assume as
above, that the leader v of fragment Fv submits to w
of fragment Fw.
Rule 1. A leader does not invoke the Leader Distance
distance, until the Upstream node, w, enters the Found-
Notified state.
Discussion for Rule 1. The idea is that Leader Distance
explores an Upstream path of FoundNotified nodes,
so the path is not going to change. As a result, Rule 1
guarantees the following property, which is critical for
the correct function of Leader Distance.

Observation 8 A leader explores with the Leader Dis-
tance a part of the path towards the root, which is not
going to change in direction or length.

With Rule 1, node v can be blocked by the absence
of a response from node w for a time that is at most
proportional to the size of Fw fragment. The reason
is that the root of a fragment completes its Reporting
at level Lw in O(2Lw). Note that the leader is also at
level Lw, since its submission was accepted, so this
delay does not affect the time optimality.

Observation 9 The delay of starting the Leader Dis-
tance procedure at a leader of level L is O(2L).

Rule 2. Leader Distance succeeds and generates an
ack message if and only if:
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• The hopcount of the testDistance message hits
zero, or
• The testDistance message arrives at a node who

has already seen a testDistance message from
another active leader who is currently at a higher
level.

Discussion for Rule 2. The second clause of Rule 2
means that if there is another active leader at a higher
level, then it is safe for any leader to reach that level.
The importance of this will become apparent below,
when we show how nodes can treat all Downstream
active leaders with the same messages ensuring mes-
sage optimality.
NEW: Before relaying the testDistance message to
its parent, a node decrements its hop count by one
(rather than its number of children, as specified in [1]).
Furthermore, the initial value for the maximum hop
count is set to2L+2, which is twice as large as the initial
value specified in [1]. These changes are designed to
handicap the ability of the Leader Distance procedure
to trigger level increases in comparison to the Root
Distance procedure, which leads to the following key
observation that we will use in the correctness section.
(Note that we implicitly use observation 8 about the
stability of the explored paths.)

Observation 10 Whenever the path from a leader to
the root of the final fragment is long enough for Leader
Distance to trigger an increase to L at the leader, it is
guaranteed that Root Distance will ultimately trigger
an increase to level L + 1 at the root.

NEW: Optimizing Leader Distance. We propose an
efficient solution in which each node serves as a “clear-
inghouse” for the coordination and sharing of Leader
Distance information among its descendants. Intu-
itively, all Leader Distance procedures passing through
a node are “merged": all descendant leaders are noti-
fied together for level increases. In fact, we use the
most aggressively increasing leader to set the pace for
all.
All nodes in the FoundNotified state maintain the fol-
lowing information in support of the Leader Distance
procedure:
• LDlevel: the highest level so far attained by a

leader in their subtree.
• minLeaderDistance: the minimum remaining

hop-count among all testDistance messages at
level LDlevel which have passed through the
node.
• An active status flag for each Downstream Branch,

which is set when the edge points to leaders with
an activated Leader Distance.

All these parameters are initialized when the node re-
ceives an initiate message and starts a new instance of
Searching: LDlevel ← 0, minLeaderDistance ←
∞, and active flags are turned off for all edges.
When a node receives a testDistance(L, H) message
from Downstream Branch b, it sets b’s active status flag
and then proceeds as follows:
1. If L < LDlevel, the node sends an

ack(LDlevel−1) message over edge b and drops

the testDistance message. (Recall that the ack(L)
message means that the level-L Leader Distance
procedure expired, so the leader can raise its level
to L + 1.)

2. If L = LDlevel, we have two cases. The
node ignores the testDistance message, if H ≥
minLeaderDistance; otherwise, the node will
set minLeaderDistance← H and forwards the
testDistance message through its Upstream Branch
edge.

3. If L > LDlevel, the node sends an ack(L −
1) message to all active Downstream Branch
edges except b to bring all other attached lead-
ers up to this new level, sets LDlevel ← L and
minLeaderDistance ← H , and forwards the
testDistance message through its Upstream Branch
edge.

Conversely, if the node receives an ack(L) message
from its Upstream Branch edge, it discards the message
if L < LDlevel; otherwise, it sets LDlevel← L + 1
and forwards a copy of the ack message to all active
Downstream Branch edges.
NEW: While a leader node remains blocked in the
Merging state, it does not forward any other testDis-
tance messages that may arrive from its children. In-
stead, the leader uses the data from any incoming test-
Distance messages to raise the level and/or reduce the
hop count that will be carried by its own waiting test-
Distance message.
Pseudocode. Procedures: LeaderDistance(). Mes-
sages: testDistance, acceptSub, ack.

Note that as a result of these new features, it is now possible
for a leader to increase its level by more than one at a single
step. In addition, all active leaders in a given subtree will share
a common set of level increases. This information-sharing can
only speed up the level increases for these leaders, while at the
same time reducing the total communications cost for Leader
Distance.

6 Message complexity of MA

In this section, we show that the message complexity of MA
algorithm is O(E + N log N), and hence optimal.

6.1 Phase I – preprocessing step

The message complexity of the first phase is bounded by
O(E + N log N). For the sake of brevity, we refer the reader
to the proof in the initial work [1].

6.2 Phase II – basic small-fragment MST algorithm

Recall that in this phase, we begin executing the GHS algo-
rithm, but we exit this phase before GHS terminates. Recall
that GHS is proven to have the optimal in message complex-
ity [7]. Thus, the message complexity of this phase is bounded
by O(E + N log N).
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For completeness, let us examine the message complexity
of a complete execution of GHS, although in our algorithm,
this phase stops early and leads to the next phase.

We can see that each edge is rejected only once (if at all)
and only two messages (two test messages or a test and a
reject message) are required. Thus, edge rejection uses O(E)
messages. Notice that test messages not leading to rejection
will be counted in the sequel.

For the other messages, we can see that if we partition the
messages generated at a single level among the nodes, then the
number of messages assigned to a node is bounded by a con-
stant. In more detail, a node can receive at most one initiate,
one MOEfound and one accept message. It can transmit at
most one successful test message, one report message and
one changeRoot or connect message. As we already said,
the maximum level is log(N) and thus the total number of the
other messages is O(N · log(N)).

6.3 Phase III: modified large-fragment MST algorithm

This phase is based on GHS, and we can apply the arguments
we used above. Recall that MA uses many messages with the
same name and functionality as GHS, such as test, reject,
connect, initiate, changeRoot. For these messages, it is easy
to show that the total number of these messages of MA are
sent only a constant time over each edge, or sent once over
each Branch for each level [7]. Below, we examine the new
messages we introduce for each part of this phase separately.

Part I: Searching and Reporting. The only significant
change here is the addition of the Root Distance procedure,
which does not increase the message complexity in compari-
son to the basic GHS algorithm. To see this, we consider two
cases. If the Root Distance proceedure does not succeed, then
there is no change in the number of messages compared to
the basic GHS algorithm. On the other hand, if Root Distance
does succeed in increasing the level, then the algorithm will
repeat Part I (Searching and Reporting) at a higher level, be-
fore advancing to Part II (fragment merging). Nevertheless,
we can easily see that every node participates in at most one
iteration of the Searching procedure at each level. Moreover,
if Root Distance succeeded because of the return of some
expInit messages to the root (as opposed to node counting
by the root), then we know that the total number of expInit
messages is bounded by the number of initiate messages in
the worst case. This is true for MA because each node for-
wards only the first expInit message it sees at each level, and
suppresses any other such messages.

Part II: Merging. The modification here is the introduc-
tion of the Leader Distance procedure. Let us discuss the prob-
lem and the solutions intuitively. A Leader Distance proce-
dure can create too many testDistance messages. To avoid
this, we restrict the number of Leader Distance procedures
that can be invoked, so that the total sum of testDistance
messages does not exceed the optimal number of messages,
namely O(N log N) (see also [1]).

The MA algorithm only allows the Leader Distance pro-
cedure to be executed in Phase III. In Phase III, the minimum
size of each fragment in Phase III is N

log(N) , therefore we have
at most log N distinct fragments in Phase III. This means that
we can have at most O(log N) Leader Distance invocations

in total. Thus, even if each procedure generated O(N) test-
Distance and/or ack messages, the total number of messages
due to this procedure would still only be O(N log N), which
is not enough to make the message complexity suboptimal.

Note that the MA algorithm broadcasts an MOEfound mes-
sage to all nodes in a fragment at most once per level, either
in combination with the changeRoot procedure at the start of
Phase II, or when the Leader Distance procedure succeeds.
Thus, each edge of the MST will carry Ω(log N) MOEfound
messages, which is within the optimal bound. Finally, the
acceptSub messages are sent at most twice per Branch edge,
for a total of Ω(N).

7 Time complexity of MA

In order to study the time complexity of the MA algorithm, we
will need the following definitions. Let Tl be the earliest time
at which the lowest level in the network is at least l . Similarly,
we let τl ≡ Tl +1−Tl be the length of time that l remains the
lowest level in the network. We also define

l ∗ ≡ �log (N∗)	 − 1
≤ �log(N)− log log(N)	 − 1
≤ log(N)

be the highest level that any fragment can reach in Phase II
before it must switch to Phase III. Recall that N∗ = N

log(N) is
the phase III threshold.

7.1 Phase I – preprocessing step

This is the counting phase, whose purpose is to find the total
number of nodes, N . In the original paper [1], an O(E +
N log N) messages and O(N) time algorithm is proposed.8

7.2 Phase II – basic small-fragment MST algorithm

In this phase, each fragment executes GHS until it reaches the
phase III threshold size N∗. It can be shown [1] that Tl ∗+1 =
O(N) via the following argument.

Starting at time Tl , the execution of the GHS algorithm
in any level-l fragment, say F , must proceed without any
blocking. In particular:

• every test message sent by a node in F will trigger an
immediate response (see GHS-2), and
• if the leader of F sends a connect message (see GHS-5)

to the fragment, F ′ say, on the other side of its MOE, it
will receive an immediate response unless both fragments
are at the same level, and F ′ has not yet completed its own
level-l iteration of the GHS algorithm.

Thus, the key observation [6] is that τl ≤ c · Sl , where c is
some positive constant that is independent of l , and Sl is the
size of the largest level-l fragment. Therefore

Tl ∗+1 ≡
l ∗∑

l =0

τl ≤ c ·
l ∗∑

l =0

Sl .

8 If we assume that one node can be authorized to initiate the
algorithm, the problem becomes simpler, the counting phase requires
only O(E) messages and O(N) time [5].
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Clearly, if Sl ≤ N∗ for all l then the time complexity result
would be obviously true. Thus, we assume that Sl > N∗ for
at least some values of l . This situation could easily happen
if a long chain of small fragments each decides to submit
to its neighbor, as described in Sect. 4.5. Hence, we define
β = {l : Sl > N∗} to be the set of levels for which the
maximum fragment size violates this “easy” upper bounding
argument.

Since fragments are always merged to form larger frag-
ments, and the root will switch to Phase III as soon as it deter-
mines that its fragment size is at least N∗, we recognize that
a given node can only count toward two elements9 from the
set β. For the first occurrence, the root of the large fragment is
not aware of its total size because the small fragments waited
to send their connect messages until the receiving node had
already sent its report message and entered the Found state.
However, since these late-merging fragments will be incor-
porated into the next Searching procedure, the fragment will
switch to Phase III at the end of the next iteration. Thus, we
have the following:

Tl ∗+1 ≤ c ·

∑

l �∈β

Sl +
∑
l ∈β

Sl




≤ c ·
(

log(N)
N

log(N)
+ 2N

)

≡ O(N)

which completes the time complexity proof for Phase II.

7.3 Phase III – modified large-fragment MST algorithm

We will now show that the time complexity for our modified
Phase III algorithm is O(N), i.e., that

log(N)∑
l =l ∗+1

τl = O(N)

Note that our proof is substantially different from the ap-
proach in [1] in order to address the problems described in
Sects. 4.1 and 4.5. To facilitate our revised proof, we will be-
gin by partitioning the nodes into four subsets:

R (t): the set of nodes that are serving as the root of some
fragment at time t,

L(t): the set of nodes that are serving as an active leader for
some sub-fragment at time t,

O(t): the set of “ordinary” nodes, which are neither a root
nor a leader at time t, and if their current level is L then
they are located at most 2L hops below the nearest root
or active leader node, and

D(t): the set of “deep” nodes, which are neither a root nor a
leader at time t, and if their current level is L then they
are located more than 2L hops below the nearest root
or active leader node.

9 This condition was incorrectly given as only one element in [1],
although a constant difference does not have a significant effect on
the proof. We believe that the cause of this discrepancy is the lack of
a precise definition in [1] for the level of a fragment that may have
been involved in mergers other than an equi-join.

This partition forms the basis for our proof, where we sepa-
rately account for the time required by each of the four subsets
to advance from one level to the next during Phase III. In par-
ticular, let τl (R ∪L ∪O) be the time required to update every
node that at time Tl is both “non-deep” and has level l , such
that: (i) their levels have been increased by at least one; and (ii)
their status as “non-deep” nodes has been restored if neces-
sary. Similarly, let τl (D) be the time required to update every
node that at time Tl is both “deep” and has level l , such that:
(i) their levels have been increased by at least one; and (ii)
they have been converted to “non-deep” nodes. Clearly

τl = max{τl (R ∪ L ∪ O), τl (D)}
≤ τl (R ∪ L ∪ O) + τl (D),

and hence the total time for Phase III is upper bounded by

log(N)∑
l =l ∗+1

τl (R ∪ L ∪ O) +
log(N)∑
l =l ∗+1

τl (D)

Thus, to prove that the time complexity for Phase III is
O(N) we will now show the following:

• Using a similar approach to [1], we show that τl (R ∪
L ∪ O) = O(2l ), which is sufficient to show that the first
summation is O(N).
• If Dl (Tl ) is the set of “deep” level-l nodes present at time

Tl , then τl (D) ≡ O(|Dl (Tl )|).
Notice that the sets Dl (Tl1) and Dl (Tl2) are mutually disjoint
across different levels, because the update time τl (D) con-
tinues until all of these “deep” nodes have been converted to
“non-deep” status, and there is no mechanism in Phase III by
which a “non-deep” node can be converted back to “deep”
status. Consequently, the second summation is also O(N).

Part 1. Calculation of τl (R ∪ L ∪ O)

Consider the evolution of the system starting from time Tl ,
the earliest time at which every node has reached level l . We
assume that l > l ∗, so that all nodes have already switched to
Phase III.

Suppose the set R (Tl ) contains some level-l root nodes.
We note that Tl is an upper bound on the starting time for
the Searching procedure for every level-l fragment. In addi-
tion, since l is the minimum level, the MOE-finding algorithm
for any node in a level-l fragment cannot be blocked. More-
over, because of the timeouts provided by the Root Distance
procedure (MA-1.5) and Awerbuch’s additions to the Testing
procedure (MA-2), the root of the level-l fragment F must
receive a response to its ongoing Searching procedure no later
than time Tl + c1 ·2l +1. At this point, the root of F must have
either:

• Restarted the MOE-finding algorithm at a higher level.
If the root of F receives an expInit message or completes
the Reporting procedure and finds that |F | ≥ 2l +1, then
it must immediately raise its level and restart the MOE-
finding algorithm.
• Found the fragment MOE. If the root completes the Re-

porting procedure and finds that |F | < 2l +1, F will at-
tempt to merge with the fragment F ′, which is adjacent to
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its MOE. Thus, we must delete the root of F from R (·) and
at the same time add newly-created level-l leader of F to
L(·). Using a further time of at most c2 ·2l , the ChangeRoot
procedure will move the leader of F to the node adjacent
to the fragment MOE, at which point this final leader will
send its connect message to the adjacent fragment, F ′. If
fragment F ′ is already at a higher level, then the leader
of F will receive a response in O(1) time. Otherwise, it
must wait for at most c3 · 2l +1 to receive a response from
an adjacent level-l fragment.10 If the response from F ′ is
another connect message, then the two leaders will com-
plete an equi-join in O(1) time, causing the two level-l
leaders for F and F ′ to be deleted from L(·); one of them
is immediately added as a level-(l +1) root to R (·), while
the other becomes an ordinary level-l node. Otherwise, the
leader of F starts executing the Leader Distance procedure
from level l .

Therefore, no later than time Tl + c4 · 2l +1 ≡ Tl + O(2L+1),
all remaining root nodes in R (·) must have reached at least
level l + 1, where c4 = c1 + c2/2 + c3.

Now suppose the set L(Tl ) contains some active level-l
leader nodes. Each of these nodes became a level-l leader ei-
ther by being a lower-level leader that was promoted to level
l as a result of the Leader Distance algorithm, or as a replace-
ment for some level-l root that found its fragment MOE. In
the former case, the node would have immediately restarted
the Leader Distance algorithm as soon as it reached the new
level, whereas in the latter case, we just showed that each of
these newly-created leader nodes starts executing the Leader
Distance procedure by time Tl + c4 · 2l +1 in the worst case.
Now consider the distance between an active leader and the
root, r, of its parent fragment:

• Distance to root is more than 2l +2 hops. In this case, the
Leader Distance clearinghouse algorithm guarantees that
the leader must increase its level to at least l +1 within an
additional delay11 of at most c5 · 2l +2.
• Distance to root is at most 2l +2 hops. In this case, the

Leader Distance clearinghouse algorithm might still be
able to trigger a level increase using leaderDistance mes-
sages originating from more distant fragments, or else
the Leader Distance algorithm could simply terminate be-
cause all testDistance messages that passed through this
leader node managed to reach the root and were dropped.

Observation 11 Since leaders do not employ an explicit
timeout function to detect the loss of their testDistance
messages, they must recognize the termination of the
Leader Distance algorithm (along with their own status
as an active leader) by the arrival of an initiate message
whose level is strictly higher than their own current level.

10 Note that the delay at this step is bounded for our modified Phase
III algorithm because the introduction of the MOEfound messages
allows us to guarantee a timely response to the connect message. As
we explained in Sect. 4.1, this same step is not valid for Awerbuch’s
original algorithm because the response time by F ′ is not bounded.

11 Note that in step MA-6 we added a new feature that leaders may
need to delay the forwarding of other leaderDistance messages while
waiting for a response to their own connect messages. However, this
effect has already been incorporated into the constant c4.

But recall that if the leader node is less than 2l +2 hops
from the root, then we can easily upper bound the time
delay until the node terminates its leader status upon the
reception of a suitable initiate message. In particular, we
just showed that the root will reach level l +1 no later than
time Tl + c4 · 2l +1. Thus, if the leader is within 2l +1 hops
from the root, it will receive a level-(l +1) initiate message
within a further delay of c6 ·2l +1. Conversely, if the leader
is more than 2l +1 hops from the root (but less than 2l +2

hops, or Leader Distance would not have terminated!),
then the root will restart the Searching procedure at level
l +2 in time c1 ·2l +2 and the level-(l +2) initiate message
will reach the leader within a further delay of c6 · 2l +2.

Therefore, if we define c7 = c4 + max{2c5, 2c6 + 2c1}, then
no later than time Tl + c7 · 2l +1 ≡ Tl + O(2L+1), every
active leader node in L(Tl ), together with any newly-created
leaders created during the update process for root nodes in
R (Tl ), must have increased its level to at least level l +1, and
possibly also been demoted from set L(·) to set O(·).

Finally, suppose the set O(Tl ) contains some ordinary
level-l nodes. By definition, none of these level-l ordinary
nodes were located more than 2l hops below the nearest root
or active leader node at the moment they reached level l . Thus,
once the corresponding active parent node raises itself beyond
level l , it will broadcast another initiate or MOEfound mes-
sage to its (nearby) descendants, raising them to the same new
level also. We consider three sub-cases in greater detail.

• Active parent succeeded in raising its own level. Sup-
pose the active parent triggered the level increase by
completing one iteration of the RootDistance procedure
(within c1·2l +1 time) or LeaderDistance procedure (within
c5 ·2l +2 time). Thereafter, all ordinary descendants of this
active parent node will receive the level increase message
within a further delay of c6 · 2l +1, without changing the
distance to their active parent, and without leaving the set
O(·).

• Location of active parent changed because of an equi-
join. Suppose the active parent was a root that found its
fragment MOE, which subsequently led to the completion
of an equi-join with another level-l fragment and its re-
placement by a level-(l + 1) root (within c4 · 2l +1 time).
Because the location of the leader could be maximally off-
set from the location of the root, the maximum distance
from an ordinary node to the new level-(l + 1) root may
double. Nevertheless, since the maximum depth limitation
also doubles with each level increase, all ordinary nodes
must remain in the set O(·) after they receive the level in-
crease message within a further delay of at most 2c6 ·2l +1.
• Location of active parent changed when Leader Dis-

tance terminated. Finally, suppose the active parent was
a leader that lost its status (within c7 · 2l +1) following the
termination of the Leader Distance procedure because of
insufficient distance separating this leader from the root.
The maximum path length from the root to the furthest
ordinary node below the terminated leader is 2l +2 + 2l ,
which is clearly less than 2l +3. Thus, in the worst case, the
root may need to restart the Searching procedure one extra
time before its level-(l +3) initiate message finally reaches
the furthest ordinary node no later than time Tl +c8 ·2l +1,
where c8 = c7+4c6+4c1. In addition, the ordinary nodes
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that previously belonged to the terminated leader now sat-
isfy the depth requirements for ordinary nodes relative to
the root.

Taking the worst of these three sub-cases, we see that no later
than time Tl + c8 · 2l +1 ≡ Tl + O(2L+1), all ordinary nodes
will have reached at least level l + 1, and none of those nodes
can ever be added to the set D(·).

Part 2. Calculation of τl (D)

Suppose the set D(Tl ) contains some deep level-l nodes. Re-
call our example in Sect. 4.5 that showed how “deep” frag-
ments can be created at any level greater than l ∗ during the
transition to Phase III, and that the existence of such frag-
ments serves as a counterexample to Awerbuch’s time com-
plexity analysis described in [1]. Our approach to handling
“deep” fragments is to recognize that a given “deep” level-l
fragment, F , can be transformed into an ordinary fragment of
(much) higher level in O(|F |) time. To see this, let us revisit
the three sub-cases we introduced for the analysis of the set
O, while replacing the ordinary sub-fragment by a deep sub-
fragment below the target active parent node. In each case, we
assume a maximum path length of p between any deep level-l
node and its active parent node, where log(p)� l .

• Active parent succeeded in raising its own level. Sup-
pose the active parent is the root of the deep fragment,
F (i.e., F must have been created during the transition to
Phase III.) Based on our previous discussion of the ordi-
nary nodes located below a terminated leader, we know
that the root will increase its own level to l + 1, l + 2,
. . . using the rootDistance procedure and hence restart its
Searching procedure at times no later than Tl + c1 · 2l +1,
Tl + c1 ·

(
2l +1 + 2l +2

)
, . . ., respectively. For all levels

up to �log(p)�, the initiate messages will expire before
reaching the furthest deep node in F . However, the initiate
message for level �log(p)�+1 will reach the furthest deep
node, within an additional time of at most c6 · 2�log(p)�+1.
Thus, in this case the length of the interruption to Phase
III for transforming F into an ordinary level-�log(p)�+ 1
fragment is at most (c1 + c6) · 2�log(p)�+1 ≡ O(|F |).
Conversely, suppose the active parent is the leader of the
deep sub-fragment, F , and that the path length from the
leader of F to the root of the entire fragment is so large
that the Leader Distance algorithm will not terminate be-
fore the leader has raised its own level to �log(p)� + 1.
Thus, the same argument holds if we replace the time of
the level updates for rootDistance by the larger update
times (because of the larger hop count) appropriate for the
leaderDistance, i.e., the time of the first level increase is no
later than Tl +c5·2l +2, the time of the second level increase
is no later than Tl +c5 ·

(
2l +2 + 2l +3

)
, and so on. By upper

bounding the geometric sum by the next term, we see that
the elapsed time until the delivery of the final MOEfound
message raises the level of the furthest deep node is at most
c6·2�log(p)�+1. Thus, the length of the interruption to Phase
III for transforming F into an ordinary level-�log(p)�+ 1
sub-fragment is at most (2c5 +c6) ·2�log(p)�+1 ≡ O(|F |).
• Location of active parent changed because of an equi-

join. In this case, the root of F does not realize it belongs

to a deep fragment, and hence carries out an equi-join with
another level-l fragment, F ′ say, without first raising the
level of its own fragment to �log(p)�+1. Using our previ-
ous result for the case where R (Tl ) contains some level-l
root nodes, we see that F will complete its equi-join no
later than time Tl + c4 · 2l +1. But log(p) > l , or F could
not have been a deep fragment. Hence, accounting for the
time to complete the equi-join introduces an additional
delay of c4 · 2p+1 in the worst case. Moreover, since the
roots of both of the participating fragments thought they
were at level l , the maximum path length to the furthest
deep node can increase by at most O(2l +1) hops as a result
of this equi-join, which will add at most one extra itera-
tion to the Root Distance procedure. Thus, in this case the
length of the interruption to Phase III for transforming F
into an ordinary level-�log(p)� + 1 fragment is at most
(c4 + 2 · c1 + 2 · c6) · 2�log(p)�+1 ≡ O(|F |).
• Location of active parent changed when Leader Dis-

tance terminated. Finally, suppose the active parent is
the leader of the deep sub-fragment, F , and that the path
length from the leader to the root is so short that the Leader
Distance procedure terminates before the leader of F has
raised its own level to �log(p)� + 1. But in this case, the
total distance from the root to the furthest deep node in F
is upper bounded by 3p. Thus, the previous analysis of the
case where the active parent is the root of F can be used
directly to show that the length of the interruption to Phase
III for transforming F into an ordinary level-�log(3p)�+1
sub-fragment is at most (c1 + c6) ·2�log(3p)�+1 ≡ O(|F |).

This completes the time complexity proof for Phase III, and
hence the entire modified Awerbuch algorithm.

8 Correctness of MA

In this section, we prove that the MA algorithm is correct.
Namely, we show that it terminates and finds the MST. Note
that the proofs are based on informal arguments, since a rigor-
ous formal proof of correctness for even the basic GHS algo-
rithm would require on the order of a hundred pages, as stated
in Lynch’s seminal book [10].

Theorem 1 The proposed MA algorithm terminates.

Proof First, we observe that as long as we have two or more
fragments with different ids, at least one will attempt to join
(e.g. send a connect message). We can prove this by contradic-
tion. First, assume only two fragments with distinct ids. There
exist at least one edge between them, and this edge must be
Basic. Eventually, the fragment with the minimum level will
test that edge. According to the algorithm, the reply will be
immediate if the other fragment is of higher level. If the other
fragment is of equal level, the delay in the reply will be lim-
ited to the running time for reporting procedure of the other
fragment.

If more than two fragments exist, then consider the
minimum-level fragment that has the minimum outgoing edge
among all fragments of the minimum level. With arguments
similar to the above, we can show that the reply to its test
message will be answered in finite time. 
�
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In addition, we must prove that the algorithm actually con-
structs a tree, which means that it does not create a cycle. In
Appendix A, we illustrate how the proposed MA algorithm
avoids creating cycles in our example of Sect. 4.4, whereAWE
fails. The following theorem shows that this property holds in
the general case.

Theorem 2 The proposed MA algorithm does not create cy-
cles.

Proof First, let us start from the GHS algorithm which is the
basis for our algorithm. It can be proved that no cycles are
created in the GHS algorithm [7] [10]. The key idea is that the
decisions are taken centrally within a single fragment, and if
multiple fragments decide to merge with each other at the same
time there exists a hierarchy of levels to control the submission
process: high-level fragments cannot submit to low-level ones.
For equal-level fragments, we either have an equi-join, or else
one fragment will wait until the other fragment increases its
level and then accepts it as a submission to a higher level
fragment.

In our algorithm, cycles might be created if the levels of
the nodes are not updated properly. For this reason, we will
examine the different mechanisms that increase the levels of a
node, while we briefly mention how levels are used to ensure
loop-freedom, which is also discussed in the original paper [7].

First, consider the Root Distance procedure. If Root Dis-
tance succeeds, the root throws away whatever information it
had about the fragment MOE and restarts the Searching pro-
cedure at a higher level. Since no decisions to merge are taken
without repeating the entire Searching procedure, it cannot
create a cycle.

Second, consider the Leader Distance procedure. The key
idea here is captured in the following Lemma. Let us first de-
fine as final initiate the initiate message of a Searching
procedure that will actually lead to identifying a MOE for
a fragment. In contrast, non-final initiate messages are fol-
lowed by a new Searching procedure from the same source at
a higher level.

Lemma 1 A node that receives a final initiate message of
level L has never been at that level before.

It is easy to prove this lemma, if we consider the rules
of the Leader Distance procedure and the observations 8 and
10. In particular, observation 10 states that a leader with the
Leader Distance procedure can only raise its sub-fragment to
a lower level than the final level that the root will reach with
the Root Distance. This is because the threshold for triggering
a level increase with the Leader Distance is the discovery of
a path length between the leader and the root that is twice as
long as the threshold for Root Distance.

Let us use proof by contradiction and assume that a cycle
is created. For this to happen, we need a node u of a fragment
Fu at level Lu to attempt to join to a node w of Fw at Lw,
which is already part of the same fragment, but is not aware
of the new identity yet.

Node u will test the edge (u, w). (Note that we are only
interested in the test message sent in response to the final
initiate message, since the results of all previous Testing
procedures will be discarded by the Root Distance procedure
without ever considering them as a candidate for a fragment

merging decision.) For w to answer this test message, we have
to have Fw �= Fu and Lw ≥ Lu. Given that Lu is the level of
the final initiate message, it should be clear that node w must
either have (i) a lower level than Lu, or (ii) the same fragment
id, Fu. However, if case (i) still applies then node w is not
allowed to send a reply (GHS-2), and must delay its response
until case (ii) applies. Therefore, the only possible response
by w to this test message from u is a reject. 
�

Finally, it is not difficult to prove that the MA algorithm
finds the minimum spanning tree. Recall that the MST problem
can be solved by a “greedy" algorithm. It is sufficient to verify
that the fragments identify and join along their MOE. The
description of the algorithm must have left no doubt that the
edge along which a connect message is sent, is indeed of
minimum weight for all the nodes that received the initiate
message and participated in the Searching procedure.

9 Conclusions

In this paper, we identified some problems with Awerbuch’s
distributed MST algorithm [1], involving both correctness and
optimality issues. We then presented a modified algorithm
(MA), which introduces several new features to solve these
problems. We also show that with these changes, our MA
algorithm satisfies the desired correctness properties, while
meetining the time and message complexity bounds required
for optimality.

This work arose from our pragmatic efforts to find a good
MST algorithm for real applications, reported in [3,5]. In
that work, apart from discussing theoretical issues, we tested
the performance of several distributed MST algorithms after
constructing detailed implementations of each one in a sim-
ulated communication network environment. Our results in-
dicate that there is still a lot of room for improvement in this
problem domain.
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A Correctness:
How MA avoids the cycle problem of Sect. 4.4

Here we show how the proposed MA algorithm avoids cycles
in the example in Fig. 3, in which AWE did create cycles.

Our modified algorithm breaks the symmetry of the two
procedures. We demand that the Leader Distance increases the
level of a submitted fragment to L + 1 only when it detects
a distance to the root to be at least 2 · 2L = 2L+2. This way
it will be guaranteed that if the Leader Distance procedure
succeeded and made it to level L + 1 then Root Distance will
ultimately increase the level of the final fragment to L+2. This
applies for all the levels and thus we guarantee that eventually
the final fragment, fragment F4 in our example, will submit
to a fragment of greater level than the level of any of its
subfragments ever was. 
�

Notice here that the modified Joining policy guarantees
also that the two procedures explore the same path.As we said,
nodes start forwarding testDistance messages after they are
decided guaranteeing that the final orientation of the fragment
is established (final until the next Searching procedure). In [1],
this problem of “path change” is not being discussed and lack
of detailed description does not allow us to know whether it
was taken under consideration.

B Pseudocode implementation

We present the pseudocode that implements the phase II and
III of our algorithm. Before the pseudocode, we present the
variables and some conventions that we use.

Messages arrive and are stored in a FIFO message queue.
Nodes respond to messages in order of arrival. One possible
response to a message is to put it at the back of the queue
effectively delaying its handling.

Here are the variables node uses:
myID: is the node id;
myLevel: is the level of the node;
myStatus: is the status of the node;
myFid: is the fragment id that a node belongs to;
inbranch: is the edge towards the root or leader;

myHops: is the number of hops I am away from the current
root;
bestEdge: is the direction or the edge where the MOE can be
found;
bestWeight: is the weight of the current MOE;
testEdge: is the adjacent edge that a node is currently testing
to see if it is my local MOE

Boolean:
IamRoot: is true when the current node is the root;
IamLeader is true when the current node is the leader;
localMOEfound: is true when a node has found the MOE
edge among its adjacent edges;
myPhaseIII is true if the fragment is in phase III;
(myPhaseIII is set by each root upon receiving the fragment
size at the end of the Reporting procedure and is communi-
cated to the leader)

A node uses a variety of counter variables:
reportCount measures how many reports from children I
expect;
sizeCount measures the size of my subtree according to the
reports I have received so far;

A node uses several variables for each adjacent edge i:
edge(i).status is the current status of the edge: Basic, Branch,
Rejected;
edge(i).active is a flag used in Leader Distance procedure (see
below)
edge(i).resendAcceptSub is a flag to resend an acceptSub msg
when the current node switches to FoundNotified state to a
node that currently it has sent an acceptSub(FoundUndecided)

We list the variables that are used to implement the Leader
Distance procedure:
edge(i).active is a flag that marks whether there are leaders
with active Leader Distance procedures
LDlevel: the maximum level of a leader in my subtree;
minLeaderDistance: the minimum number of hops that a
testDistance message of the LDlevel

Here are some conventions we use:

• Procedures start with capital letters, while messages start
with low case letters.
• The variables of a node start with lowercase letter, while

the variables of an incoming message start with capital
letters.
• Names of states start with capital letters.
• Messages carry the level, fragment id, node id, and status

of the sender node. We highlight the variables we use in
each procedure.

The pseudocode below should be seen as the essential
backbone of the algorithm. Our experience with implementing
these algorithms [5] suggests that an actual implementation
should provide safeguards and redundant checks, since de-
bugging a distributed application is many times more difficult
than a sequential procedure.

Procedure WakeUp();
. // Initialize the variables of a node
. // Executed once in the beginning for each node
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. myFid = myID; // I am my own fragment

. myLevel = 0;

. myStatus = Find;

. IamRoot = true;

. myPhaseIII = false;

. execute procedure Initiate()

.
Response to message initiate(Level, Fid, Stat, Hops) on
edge j;
. if Hops == 0 and myPhaseIII == true then
. send expInit(Level) on edge j;
. inbranch = j; myHops = Hops;
. if myLevel ≤ Level then begin
. myLevel = Level;
. myFid = Fid; myStatus = Stat;
. execute procedure Initiate(Hops)
. end
. // If my level is higher then I am a successful leader
. // and I will wait for a later initiate at a higher level
.
Procedure Initiate(Hops)
. // initialize all variables that participate in searching,
. // testing, reporting
. bestEdge = nil; bestWeight =∞;
. testEdge = nil; localMOEfound = false;
. IamLeader = false; // In case, I was leader
. reportCount = 0;
. sizeCount = 1; // sizeCount count yourself
. // Send initiate to children and initialize edge flags
. for every branch edge k and k �= j do begin
. edge(k).active = false ;
. edge(k).resendAcceptSub = false ;
. reportCount = reportCount + 1;
. send initiate(Level, Fid, Stat, Hops–1) on edge k;
. end
.
Procedure Test()
. if there are no adjacent edges in Basic state then begin
. // localMOE does not exist
. localMOEfound = true;
. execute procedure Report()
. end else if I rejected more than 2myLevel+1 edges
. in this Finding then begin
. execute procedure ExpInit(myLevel);
. end else begin
. testEdge = min weight edge in Basic state;
. send test(myLevel, myFid) on testEdge;
. end
.
Response to message expInit(L) on edge j;
. execute procedure ExpInit(L);
.
Procedure ExpInit(level L);
. // Report only the first expInit at this level to root
. // Root increases level and repeats Initiate() procedure
. if myStatus == Find and L ≥ myLevel
. and PhaseIII == true then begin
. if IamRoot == false then begin
. myStatus == FoundNotified;
. // Ignore other expInit
. send expInit(Level) on edge j;

. end else // I am root

. myLevel = myLevel + 1; // Increase level

. execute procedure Initiate(2myLevel+1)

. end

. end

.
Response to message test(Level, Fid) on edge j;
. if myFid == Fid then begin // Reject Edge
. edge(j).status = Rejected;
. if testEdge == j then // I have sent test
. // on j, so other node will reject it too
. execute procedure Test();
. else send Reject(myFid) on edge j;
. end else if Level > myLevel then
. place message at the message queue;
. else // Level ≤ myLevel and different fragment
. send accept(myLevel, myFid) on edge j;
.
Response to message accept on edge j;
. // answer to test message
. testEdge = nil; localMOEfound = true;
. if weight(j) < bestWeight then
. begin bestEdge = j; bestWeight = weight(j); end
. execute procedure Report();
.
Response to message reject on edge j;
. // A reject may come delayed over a Branch
. if edge(j).status == Basic then
. edge(j).status = Rejected;
. execute procedure Test();
.
Response to message report(Weight, Count) on j;
. reportCount = reportCount – 1;
. sizeCount = sizeCount + Count;
. if Weight < bestWeight then
. begin bestWeight = Weight; bestEdge = j; end
. execute procedure Report()
.
Procedure Report()
. if reportCount == 0 and localMOEfound == true
. then begin // Reporting is completed
. if IamRoot == false then begin
. // Forward report to root
. mystate = foundUndecided;
. send report(bestEdge, sizeCount) on inbranch;
. end else begin // Root: decide what to do
. if bestWeight ==∞ then
. halt ; // Algorithm Ends
. if sizeCount > SizeThreshold then
. myPhaseIII = true;
. if sizeCount > 2myLevel+1 then begin
. // size has triggered a level increase
. myLevel = myLevel + 1;
. execute procedure Initiate();
. end else begin
. mystate = FoundDecided;
. IamRoot = false;
. execute procedure ChangeRoot()
. end
. end
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. end

. // Note: if Reporting is not complete, do nothing

.
Procedure ChangeRoot()
. send MOEfound to all Branch edges except
. bestEdge;
. myState = FoundNotified;
. execute procedure ResendAcceptSub();
. if edge(bestEdge).state == Branch then begin
. // Forward changeroot to leader
. send changeRoot(myPhaseIII) on bestEdge;
. inbranch = bestEdge;
. // orient tree towards the leader
. end else begin
. // you are leader, your bestEdge is the MOE
. IamLeader = true;
. send connect(myLevel, myFid) on bestEdge;
. edge(bestEdge).status = Branch;
. end
.
Procedure ResendAcceptSub()
. // Send acceptSub(FoundNotified) to those nodes
. // that I had sent acceptSub(FoundUndecided)
. // Invoked whenever I switch to FoundNotified
. for every Branch edge k with edge(i).resendAcceptSub
. == true do begin
. send acceptSub(myLevel, myFid, mystate)
. on edge k;
. edge(i).resendAcceptSub = false
. end
.
Response to message changeRoot(PhaseIII) on edge i
. myPhaseIII = PhaseIII
. execute procedure ChangeRoot()
.
Procedure SendAcceptSub(edge j)
. send acceptSub(myLevel, myFid, myStatus) on edge j;
. if mystate == FoundUndecided then
. edge(j).resendAcceptSub = true
. // remember to resend acceptSub when FoundNotified
.
Response to connect(Level, Fid, NodeID) on edge j;
. // NodeID is the id of the sending node
. if L < myLevel then begin // accept submission
. if mystate == Find then begin
. // submission joins Finding procedure
. send initiate(myLevel, myFid,myStatus,
. myHops – 1 ) on edge j;
. reportCount = reportCount + 1;
. end else execute SendAcceptSub(j)
. end
. else if L == myLevel and myStatus == FoundNotified
. then begin
. if IamLeader == true and bestEdge == j then
. execute procedure EquiJoin(j, NodeID)
. else execute SendAcceptSub(j)
. end else
. // L == myLevel and myStatus is not FoundNotified
. put connect back in message queue
.

Response on acceptSub(Level, Fid, Status) from edge j;
. if mylevel < Level then begin
. //increase level of fragment
. mylevel = Level;
. for every Branch edge and k �= j do
. send MOEfound(mylevel, myFid) on edge k;
. end
. if Status == FoundNotified and myPhaseIII == true
. then execute procedure LeaderDistance()
.
Response to MOEfound(Level, Fid, Status) on edge j;
. // Message has two purposes:
. // switch to FoundNotified, increase level
. if myLevel < Level or myStatus = FoundUndecided
. then begin
. myLevel = Level;
. myStatus = FoundNotified;
. for every Branch edge and k �= j do
. send MOEfound(myLevel, myFid,
. myStatus) on k;
. end
.
Procedure LeaderDistance()
. LDlevel = myLevel;
. // Initialize max known leader level to my level
. MaxRootDistance = 2myLevel+2;
. send testDistance(myLevel, MaxRootDistance)
. on inbranch;
.
Response to testDistance(Level, RemainingDistance) on
edge j;
. edge(j).active = true;
. if RemainingDistance == 0 and Level ≥ LDlevel
. then begin
. // Message expires, and all active leaders
. // will increase their levels
. LDlevel = Level + 1; minLeaderDistance =∞;
. for every branch k with edge(k).active == true,
. k �= j do
. send acknowledgment(Level) on edge k ;
. end
. else if Level < LDlevel then
. // Higher level leader exists,
. // sender of this msg should increase its level
. send acknowledgment(LDlevel – 1) on edge j;
. else if Level == LDlevel then begin
. // Keep the distance from the furthest leader
. if RemainingDistance < minLeaderDistance then
. begin
. minLeaderDistance = RemainingDistance;
. send testDistance(Level, RemainingDistance
. – 1) on inbranch;
. end
. end
. else if Level > LDlevel then begin
. // New msg has higher level:
. // all other leaders must increase their level
. LDlevel = Level;
. minLeaderDistance = RemainingDistance;
. for every branch k with edge(k).active == true and
. k �= j do
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. send acknowledgment(Level – 1) on edge k ;

. send testDistance(Level, RemainingDistance – 1)

. on inbranch;

. end

.
Response to acknowledgment(Level) on edge j;
. if IamLeader == true and myLevel ≤ Level then begin
. myLevel = Level + 1;
. for all branches k, k �= j
. send MOEfound(myLevel) on k;

.
Procedure EquiJoin(edge j, NodeID Nid)
. // Pick the root of the new fragment
. // Break the tie between the two nodes: any method goes
. // Here use the min node id
. IamLeader = false;
. if myNodeID < NodeID then begin
. IamRoot = Yes;
. myLevel = myLevel + 1; // Increase level for equijoin
. execute procedure Initiate()
. end


