DART: Dynamic Address RouTing for
Scalable Ad Hoc and Mesh Networks

Jakob Eriksson
jeriksson@cs.ucr.edu

Michalis Faloutsos
michalis@cs.ucr.edu

Srikanth Krishnamurthy
krish@cs.ucr.edu

University of California, Riverside

Abstract—It is well known that the current ad hoc protocol efit tremendously from the use of self-organizing networks
suites do not scale to work efficiently in networks of more than a to improve the communications and monitoring capabilities

few hundred nodes. Most current ad hoc routing architectures use 4y aijaple. Other interesting candidate scenarios are community
flat static addressing and thus, need to keep track of each node

individually, creating a massive overhead problem as the network networks n dense re&denpal areas, large scale, long-range
grows. Could dynamic addressing alleviate this problem? In this networks in developing regions, and others, where no central
paper, we argue that the use of dynamic addressing can enableadministrator exists, or where administration would prove too
scalable routing in ad hoc networks. We provide an initial design costly. Already, non-military technology and applications seem
of a routing layer based on dynamic addressing, and evaluate y, hoint towards future networks with: a) ad hoc pockets of
its performance. Each node has a unique permanent identifier -
and a transient routing address, which indicates its location in connectivity [2], b) conSL_Jmer-owned networks [3]_[4] _[5]' a”‘?'
the network at any given time. The main challenge is dynamic C) Sensor-net technologies [6]. All of these applications will
address allocation in the face of node mobility. We propose place increased scalability demands on self-organizing routing
mechanisms to implement dynamic addressing efficiently. Our protocols.
initial evaluation suggests that dynamic addressing is a promising Tne cyrrent routing protocols and architectures work well
approach for achieving scalable routing in large ad hoc and mesh .
networks. * 2 only up to a few hundred nodes. Most current research in
ad hoc networks focus more on performance and power-
consumption related issues in relatively small networks, and
|. INTRODUCTION less on scalability. We believe the main reason behind the lack
How large can an ad hoc network be? Scalability is @f scalability is that these protocols rely on flat and static
critical requirement if we want these networking technologieddressing. With scalability as a partial goal, some efforts
to reach their full potential. Ad hoc networking technologjave been made in the direction of hierarchical routing and
has advanced tremendously over the last ten years but it bhsstering [7] [8] [9]. These approaches do hold promise, but
yet to become a widely deployed technology. This is simildhey do not seem to be actively pursued. It appears to us as
to the early stages of the Internet, where very few coulfithese protocols would work well in scenarios with group
predict its explosive growth. A difference is that in the Internemobility [10], which is also a common assumption among
scalability was, from the very beginning, a design constrairetluster based routing protocols.
Ad hoc networks research seems to have downplayed théVe examine whether dynamic addressing is a feasible way
importance of scalability. In fact, current ad hoc architecturég@ achieve scalable ad hoc routing. By "scalable” we mean
do not scale well beyond a few hundred nodes. thousands up to millions of nodes in an ad hoc or mesh
The easy-to-use, self-organizing nature of ad hoc networkgtwork. With dynamic addressing, nodes change addresses as
make them attractive to a diverse set of applications. Toddlyey move, so that their addresses have a topological meaning.
these are usually limited to smaller deployments, but if wieynamic addressing simplifies routing but introduces two new
can solve the scalability problem, and provide support f@roblems: address allocation, and address lookup.
heterogeneous means of connectivity, including directionalAs a guideline, we identify a set of properties that a scalable
antennas, communication lasers, even satellites and wiraad efficient solution must have:
ad hoc and mesh-style networking is likely to see adoptione Localization of overheada local change should affect
in very large networks as well. Large-scale events such as only the immediate neighborhood, thus limiting the over-
disaster relief or rescue efforts are highly dependent on ef- all overhead incurred due to the change.
fective communication capabilities. Such efforts could ben- « Lightweight, decentralized protocolsve would like to

. avoid concentrating responsibility at any individual node,
This work was supported by the NSF CAREER grant ANIR 9985195, ; ;
DARPA award NMS N660001-00-1-8936, NSF grant 11S-0208950, TCS Inc., and we want to keep the necessary state to be maintained

DIMI matching fund DIM00-10071, DARPA award FTN F30602-01-2-0535. at €ach node as small as possible.
2This is an extended version of our earlier INFOCOM paper [1]. « Zero-configuration:we want to completely remove the

need for manual configuration beyond what can be doXewe discuss optimizations and other issues, and section XI
at the time of manufacture. concludes the paper.

« Minimal restrictions on hardwareOmnidirectional link-
layers do not scale to large networks. Localization tech-

nologies, such as GPS, may limit protocol applicability.
In most common IP-based ad hoc routing protocols [12]

In thi ine h i i . e i
'nj[is paper, we examine how dynamic adrjiressmg'can btl%] [14], addresses are used as pure identifiers. Without
building block toward a scalable ad hoc routing architecturg; . o

any structure in the address space, there are two choices:

We present a complete design including address allocatior. . : .
P P 9 g either keep routing entries for every node in the network,

routing and address lookup mechanisms, and provide thorou .
. . . resort to flooding route requests throughout the network
evaluation results for the address allocation and routing com- . . .
on connection setup. Neither of these alternatives scale well.

. : U

ponents. Qgr earlier work .[11] describes how.address loo'%&her protocols [15] [16] use geographic location information

can be efficiently handled in some more detail. . . . -
to assist in the routing, and thereby try to achieve scalability.

th F|rr]st, we drevelrop it?yn?nmﬁtia?]dgesst;ng scohe:ne,r:/v ?T']Ch rﬁ wever, this approach can be severely limiting as location
€ necessary properties mentioned above. Lur SCheme Sghdr 1 aiion is not always available and can be misleading in,

rat_es _node identity ’from node adc_ires_s, and uses the addre %ng others, non-planar networks. For a survey of ad hoc
to indicate the node’s current location in the network. Seco uting, see [17]

we study the performance of a new routing protocol, based o ihe Zone Routing Protocol (ZRP) [18] and Fisheye State

dynamic addregsmg, through analysis and smulatlons. Routing (FSR) [19], nodes are treated differently depending

In more detail, our work leads to the following results. ;. 4eir gistance from the destination. In FSR, link updates

« Our address allocation scheme uses the address sp@eepropagated more slowly the further away they travel from
efficiently on topologies of randomly and uniformly dis-their origin, with the motivation that changes far away are
tributed nodes, empirically resulting in average routingnlikely to affect local routing decisions. ZRP is a hybrid reac-
table sizes of less thahlog, n where n is the number of tive/proactive protocol, where a technique called bordercasting
nodes in the network. is used to limit the damaging effects of global broadcasts.

« We compare our protocol to reactive protocols (AODV, Some work has been done on using clustering in ad hoc net-
DSR) and a proactive protocol (DSDV). Our resultsyorks. In multilevel-clustering approaches such as Landmark
suggest that dynamic addressing and proactive routifmp], LANMAR [9], L+ [21], MMWN [7] and Hierarchical
together provide significant scalability advantages. Basggiate Routing (HSR) [8], certain nodes are elected as cluster
on simulation results, even an unoptimized version ®feads (also called Landmarks). These cluster heads in turn
DART significantly outperforms other routing protocolsselect higher level cluster heads, up to some desired level.
based on static addresses, in large and actively usgthode’s address is defined as a sequence of cluster head
networks. identifiers, one per level, allowing the size of routing tables to

Our work in perspective. We describe a new approach tde logarithmic in the size of the network, but easily resulting

routing in ad hoc networks, and compare it to the current rodft long hierarchical addresses. In HSR, for example, the
ing architectures. However, the goal is to show the potentfdierarchical address is a sequence of MAC adresses, each of
of this approach and not to provide an optimized protocanhich is 6 bytes long.

We believe that theddress equals identitgssumption used A problem with having explicit cluster heads is that routing

in current ad hoc routing protocols is most likely inheriteghrough cluster heads creates traffic bottlenecks. In Landmark,
from the wireline world, which is much more static and-ANMAR and L+, this is partially solved by allowing nearby

is explicity managed by specialist system administrétorshodes route packets instead of the cluster head, if they know a
Although much work remains to be done, we believe that tfigute to the destination. All of the above schemes have explicit
dynamic addressing approach is a viable strategy for scalagiéster heads, and all addresses are therefore relative to these,
routing in ad hoc networks. and are likely to have to change if a cluster head moves away.

The rest of the paper is structured as follows. In section Tihis reliance on cluster head nodes makes the above schemes

we describe the related work, in section 11l we give a high-lev@est suited to scenarios involving group mobility, such as troop
overview of all aspects of our proposed routing protocol. Ifiovements.
section IV, we describe the routing operation in some detail, Aréa Routing, as described by Kleinrock and Kamoun in
and in section V we show how the current routing addre§8?]. is the method most similar to the one used in today’s
of a node is found. In section VI we go into more detail ofternet. Here, nodes that are close to each other in the network
the specifics of our address allocation scheme. Section Y@Pology have similar addresses, without any explicit hierarchy
describes how routing tables are computed and maintainefinodes. Our work is, as far as we know, the first attempt to
Section VIII reports some of our simulation results, anHS€ this type of addressing in ad hoc and mesh networks.
section IX gives a brief analysis of the protocol and the relative Tribe [23] is similar to DART at a high level, in that it
overhead of reactive and proactive routing protocols. In sectigfes a two phase process for routing: first address lookup,
and then routing to the address discovered. However, the

SEven in the wireline world, mobility has started to challenge this assumH—ee'based routing strategy used in Tr'be_' bears little or no
tion, creating a need for workaround solutions such as mobile IP. resemblance to the area based approach in DART. Tree-based

IIl. RELATED WORK

routing may under many circumstances suffer from seve xSy .- Level2

' : : .) A2 NP AT

traffic concentration at nodes high up in the tree, and a hi oo “Txx Level 1
v . \ B A

> > > Level O

sensitivity to node failure. , , L~
NoGeo [24] embeds the network graph in a virtual 2 §.°% O o Ny .
dimensional coordinate space, and uses geographical forwe @ @ @ @ @ @ SRANER LI
ing techniques for routing. The approach is interesting, in th ST
it achieves the O(1) complexity of geographical routing, but
does not require actual geographical coordinates. However, Hie 1. The address tree of a 3-bit binary address space. Leaves represent
scheme will only work on certain types of graphs (typicallym”a' addresses, whereas inner nodes represent groups of addresses with a
. . " clommon prefix.
unit-disk like graphs). In addition, NoGeo has not been eval-
uated for networks with more than very low rates of mobility.
Another coordinate based routing scheme, GEM [25], em- . . .
) . and changes with node movement to reflect the node’s location
beds a sensor network graph in a polar coordinate system, . e :
) . . in the network topology. Thédentifier is a globally unique
Starting at the sink, nodes are assigned ranges based on the e
: : . _number that stays the same throughout the lifetime of the node.
distance to the sink, and angles, such that greedy routing_IS .
. . Sl For ease of presentation, we can assume for now that each
possible. GEM does tree-based routing, resulting in a hea . . .
; . .~ node has a single identiffer
concentration of traffic around the root node, and was designe R . . :
e distinguish three major functions. Firsigldress allo-

for sensor networks. It has not not evaluated for mobile ad hoct. intai i dd wwork interf
or mesh networks. cation maintains one routing address per network interface,

Dynamic Address Routing in relation to peer-to-peer in such a way that the address indicates the node’s relative

DHT’s. We have received many inquiries as to the relationsh twork location. Secondipouting delivers packets from a

between peer-to-peer distributed hashtables, such as Cho € fo a given routing addr_ess. Thimgde I(_)Okup_is a.
[26], and our work. First, let us point out that our propose istributed lookup table mapping every node identifier to its

node lookup table is in fact a special purpose distribute rrent network address. We defer all details of the address

hashtable, similar in many ways to what has already bed ocation .process t,o section VI. .
done in peer-to-peer networks. To clearly demonstrate that-€t Us first describe how we want things to work from an
Dynamic Address Routing is, with the exception of the noddPerational point of view. When a node joins the network,

lookup table, only superficially related to peer-to-peer DHT’ét, listens to the periodic routing updates of its neighboring
we will now point out a few important differences. nodes, and uses these to identify an unoccupied address. We

First of all, in peer-to-peer DHT's, there is an assumption yyill describe how this is done later. The joining node registers

any-to-any connectivity. That is, any node can reach any otH@r u'nique identifier and the newly obtaineq. address in the
node by using an underlying routing mesh. In our work, wdistributed node lookup table. Due to mobility, the address
are building the routing mesh and can only rely on immediaf82y subsequently be changed and then the lookup table needs
neighbors for communication. In essence, a node in a DHE P& updated. When a node wants to send packets to a node

can locate itself at any point in the key space and the DHT wiffown only by its identifier, it will use the lookup table to find
still be consistent, although perhaps somewhat disadvantafgurrent address. Once the destination address is known the
performance-wise. If a node in our routing protocol does nfputing function takes care of the communication. The routing

pick its address carefully, routing will not work, because thefgnction should make use of the topological meaning that our
is no underlying routing layer there to save us. routing addresses possess.

Second, DHT'’s are an application layer overlay network, We start by presenting two views of the network that we
with the consequence that a single physical link could B&€ 0 describe our approach: a) the address tree, and b) the
traversed several times when routing a packet through th@twork topology.
overlay. In our work, we work directly with the physical links, The Address Treeln this abstraction, we visualize the
and every packet traverses any given link at most once. network from the address space point of view. Addresses are

Third, in a DHT, one expects to see packets delivered inbit binary numbersa;_1,...,ao. The address space can
at mostO(log N) "virtual hops”. In network layer routing, be thought of as a binargddress treeof [+ 1 levels, as
the number of hops depends almost entirely on the underlyifigown in figure 1. The leaves of the address tree represent

topology, and thus such bounds cannot possibly be stated.actual node addresses; each inner node represertddaess
subtree a range of addresses with a common prefix. For

I1l. OVERVIEW AND DEFINITIONS presentation purposes, nodes are sorted in increasing address
In this section, we present our main ideas for dynamfrder, from left to right. We stress that the links in the tree do

address allocation and define various terms that we use. (M correspond to physical links in the network topology. The
also sketch a network architecture, which could utilize trftual physical links are represented by dotted lines connecting

new addressing scheme effectively. In fact, dynamic routidg@ves in figure 1.

and addressing form the basis for a novel networking layer,

. . . L . 4 ; o
which we describe in some detail in our earlier work [11]. We purrently use IP addresses as identifiers. Thusz the transport and
cation layers do not need to change, and the routing address is only

. li
~ In our approach, we separate the routing address and iggn at the network layer. There exist situations where we may want to map a
identity of a node. Theouting address of a node is dynamic node to more than one identifier, for example in supporting multicasting [11].

« Level 2 1 XXX \,
~

..'. . ‘e——— Level 1
: @ . 1xx
:) : 1xx r -- ’_l
P ;— Level 0
. . . 7 11x N\
Fig. 2. A network topology with node addresses assigned. Dotted enclosures / \

correspond to subtrees in the address tree. T

Fig. 3. Routing entries corresponding to figure 2. Node 100 has entries for
subtrees 0xx, 11x (null entry) and 101.

The Network TopologyThis view represents the connec-
tivity between nodes. In figure 2, the network from figure 1
is presented as a set of nodes and the physical connectisulstree exist in the network. In this case, each instance is
between them. Each solid line is an actual physical connectiamiquely identified by the min of the subset of identifiers that
wired or wireless, and the sets of nodes from each subtreebefongs to its connected subgraph. As we describe in more
the address tree are enclosed with dotted lines. detail in section VI, only the instance with the lowest identifier

Note that the set of nodes from any subtree in figure i a valid part of the network.
induces a connected subgraph in the network topology in
figure 2. This is not a coincidence, but a crucial property of
our dynamic addressing approach. Intuitively, nodes that gre Other important characteristics.
close to each other in the address space should be relativelpur addressing and routing schemes have several attractive
close in the network topology. More formally, we can statproperties. First, they can work with omnidirectional and
the following constraint. directional antennas as well as wires. Second, we do not
need to assume the existence of central servers or any other
given address prefix form a connected subgraph in the netw? g:; g#ﬁmﬁmgzgfosfh n;:%;os afjgrrg.ia?g gﬁgﬁ;ﬁg?'ﬁ?l
topology.

infrastructure and wires exist, they can, and will, be used

This constraint is fundamental to the scalability of outo improve the performance. Third, we make no assumptions
approach. Intuitively, this constraint helps us map the virtuabout mobility patterns, although high mobility will certainly
hierarchy of the address space onto the network topology. Tlhad to increased overhead, and decreased throughput. Finally,
longer the shared address prefix between two nodes, the shastece our approach was designed primarily for scalability, we

Prefix Subgraph Constraint: The set of nodes that share a

the expected distance in the network topology. do not need to limit the size of the network; most popular
Finally, let us define two new terms that will facilitate thead hoc routing protocols today implicitly impose network size
discussion in the following sections. restrictions.

A Level-k subtree of the address tree is defined by an
address prefix ofl—k) bits, as shown in figure 1. For example,
a Level-0 subtree is a single address or one leaf node in the
address tree. A Level-1 subtree had a 1)-bit prefix and can In this work, we use a form of proactive distance-vector
contain up to two leaf nodes. In figure 1, [0xx] is a Level-2outing, made scalable due to the hierarchical nature of the
subtree containing addresses [000] through [011]. Note tragdress space. Although we have chosen to use distance vector
every Levelk subtree consists of exactly two Levdl-— 1) routing, we would like to point out that many of the advantages
subtrees. of dynamic addressing can be utilized by a link-state protocol
We define the ternbevel-k sibling of a given address to be as well.
the sibling of the Level% subtree to which a given address
belongs. By drawing entire sibling subtrees as triangles, Wisting 1 Routing state kept by each node. neighbpdates
can create abstracted views of the address tree, as showRIRtains last-received routing update, and expiry time.
figure 3. Here, we show the siblings of all levels for the addressstruct NodeState
[100] as triangles: the Level-O sibling is [101], Level-1 is {

IV. ROUTING

[11x], and the Level-2 sibling is [0xx]. Note thatch address addressitfADDR _SIZE]

has exactly one Level-k sibling, and thus at mosiblings in /* routing table */

total. nexthop[ADDRSIZE]
Finally, we define thedentifier of a subtree to be the COSt[ADDR SIZE]

min of the identifiers of all nodes that have addresses from id[ADDR _SIZE]

that subtree. In cases where the prefix subgraph constraint is routelog[ADDR_SIZE][ADDR_SIZE]
temporarily violated, two disconnected instances of the address ~ neighborupdates]]

}

SWe define siblings as subtrees, or leaves, that have the same immediate
parent.

Each node keeps some routing state, as specified in Listimgs a scalability problem, in that routing updates will quickly
1. Routing state about a node’s Levesibling is stored at grow to unwieldy sizes.
positioni in each of the respective arrays. Instead, DART makes use of the structured address space
Intuitively, the routing state for a sibling contains thdo create a new kind of loop avoidance scheme. In order
information necessary to maintain a route toward a node (atoy preserve scalability, we generalize the loop freedom rule
node) in that subtree. Theidress field contains the current above. For each subtree, once a routing entry has left the
address of the node, and hitof the address is referred tosubtree, it is not allowed to re-enter. This effectively prevents
asaddress|i], wherei = 0 for the least significant bit of the loops, and can be implemented in a highly scalable manner:
address. Arraysiexthop and cost are self-explanatory. The A bit array of ADDR_SIZFE bits is kept together with the
id array contains the identifier of the subtree in question. Asuting update. Bitk of the route log indicates whether the
described earlier, the identifier of a subtree is equal to theute update arrived at the current node via the lévsibling.
lowest out of all the identifiers of the nodes that constituleoop-free operation of the protocol is ensured by blocking
that subtree. each routing entry from entering a levielsibling if bit & in
Finally, route_log[i] contains thelog of the current route its route log is set to 1. For more details, see section VII.
to the sibling at level, where bitb of log i is referenced
by the syntaxroute_logli][b]. The use of route logs for loop V. NODE Lookup
avoidance is discussed further beldw. The missing link is: how do we find the current address
Packet forwarding under DART is a matter of looking uf @ node, if we know its identifier? We propose to use a
the next hop in the routing table. In our example shown i@istributed node lookup table, which maps each identifier to an
figures 1-3, node [100] has routing entries for sibling subtre@gdress, similar to what we proposed in [11]. Here, we assume
[0xx], [11x] and [101]. To route a packet to address [000fhat all nodes take part in the lookup table, each storing a
node [100] first determines the (sibling) subtree to which tHew’ <identifier, address entries. However, this node lookup
destination address belongs ([0xx]). Practically, this is dorséheme is only one possibility among many, and more work
by identifying the most significant bit that differs between this needed to determine the best lookup scheme to deploy.
current node’s address and the destination’s address. In thi§or our proposed distributed lookup table, the question now
case, the most significant differing bit is bit number 2. Thecomes: which node stores a giveientifier, address en-
node then looks up the entry with index two in the nexthofpy? Letus call this node thenchor nodeof the identifier. The
table, and then sends the packet there. In our example, thi§g4tion is simple yet elegant, and reminiscent of consistent
the neighbor with address [011]. The process is repeated ufifishing [27].
the packet has reached the given destination address. We use a gI_O_baIIy, and a priori, known hash function that
The hierarchical technique of only keeping track of siblin kes an identifier as argument and returns an address where
subtrees rather than complete addresses has three immediiteeniry can be found. If there exists a node that occupies
benefits. One, the amount of routing state kept at each ndhis address, then that node is thechor node If there is

is drastically reduced. Two, the size of the routing updat&® node with that.address, then the node With' theT least edit
is similarly reduced. Three, it provides an efficient routingistance between its own address and the destination address,

abstraction such that routing entries for distant nodes c#ntheanchor node

remain valid despite local topology changes in the vicinity 10 Ffoute packets to amnchor nodg we use a slightly
of these nodes. modified routing algorithm: If no route can be found to a

sibling subtree indicated by a bit in the address, that bit of
) the address is ignored, and the packet is routed to the subtree
A. Loop Avoidance indicated by the next (less significant) bit. When the last bit

DART uses a novel scheme for detecting and avoidiritfs been processed, the packet has reached its destination. This
routing loops, which leverages the hierarchical nature of tieethod effectively finds the node with the address minimum
address space to improve scalability. edit distance to the address returned by the hash function.

First, let us review the general concept of loop avoidance,For example, using figure 3 for reference, let's assume a
to lay the foundation for the discussion of our loop avoidand¥de with identified D, has a current routing address of [010].
scheme. In an abstract sense, routing loop avoidance is abbhis node will periodically send an updated entry to the lookup
remembering what nodes a route update has traversed, e, namely</D;,010>. To figure out where to send the
making sure that these nodes do not accept route updates @Ry, the node uses the hash function to calculate an address,
they have already seen. As long as this requirement is satisfiégg s0:hash(ID1). If the returned address is [100], the packet
routing loops cannot occur. will simply be routed to the node with that address. However,

A simple way of implementing this is to concatenate a list df the returned address was instead [111], the packet could not
all visited nodes in the routing update, and to have nodes ché¥k routed to the node with address [111] because there is no

this list before accepting an update. However, this approagch node. In such a situation, the packet gets automatically
routed to the node with the most similar address, which in this

5\We have deliberately left typing to the implementation. However, thinkingase would be [101].
of id as an array of large integers, say 32 or 48 bits, may be instructive. The
type of thecost array depends entirely on the cost metric used. In this work, "We expect to see on average(logN) entries per node assuming a
we use a simple hop count metric. balanced address tree and uniformly distributed identifiers.

A. Improved Scalability. forms a stable framework for further dynamic addressing

We would like to stress that all node lookup operations uggséarch. Although the design has not yet been optimized for
unicast only: no broadcasting or flooding is required. Thi®aximum throughput, |ts_scalab|llty properties and predictable
maintains the advantage of proactive and distance vector baBgfformance show promise (see section VIlI).
protocols over on-demand protocols: the routing overhead—
is independent of how many connections are active. WhEf$ting 2 SelectAddress()
compared with other distance vector protocols, our scheme Neighbor— BestNeighbor()
provides improved scalability by drastically reducing the size for bit from InsertionPoint(neighbor) to Go
of the routing tables, as we described earlier. In additon, ~ address = neighbor.address _
updates due to a topology change are in most cases contained 2ddressibit] = neighbor.addresslbit]
within a lower level subtree and do not affect distant nodes> 1T ValidateAddress(address) == valithen
This is efficient in terms of routing overhead. To further retun address

improve the performance of our node lookup operations, we ~ €S€ o _
envision using the locality optimization technique described ’&e_'?hbor-'ds[b't] = OCCUPIED;
end i

in [11]. Here, each lookup entry is stored in several locations,
at increasing distance from the node in question. By startidg: €nd for

with a small, local lookup and gradually going to further away

locations, we can avoid sending lookup requests across longVhen a node joins an existing network, it uses the periodic

distances to find a node that is nearby. routing updates of its neighbors to identify and select an
unoccupied and legitimate address, as specified in Listing 2.

B. Coping with Temporary Route Failures Listing 3 BestNeighbor()

On occasion, due to link or node failure, a node will best— neighbors.first();
not have a completely accurate routing table. This could for neighbor in neighborsdo
potentially lead to lookup packets, both updates and requests, if InsertionPoint(neighbor)< InsertionPoint(best)
terminating at the wrong node. The end result of this is that then
requests cannot be promptly served. In an effort to reduce the best<— neighbor;
effect of such intermittent errors, a node can periodically check: end if
the lookup entries it stores, to see if a route to a more suitable end for
host has been found. If this should be the case, the entry is return best
forwarded in the direction of this more suitable host. Requests
are handled in a similar manner: if the request could not be|t starts out by selecting which neighbor to get an address
answered with an address, it is kept in a buffer awaiting eithgbm. As illustrated in Listing 3, the neighbor with the highest-
the arrival of the requested information, or the appearance gkge| insertion point is selected as the best neighbor.
route to a node which more closely matches the key requestedrhe insertion point is defined as the highest level for
This way, even if a request packet arrives at #mehor which no routing entry exists in a given neighbor’s routing
node before the update has reached it, the request will lgole. However, the fact that a routing entry happens to be
buffered and served as soon as the update informationuifoccupied in one neighbor’s routing table does not guarantee

available. that it represents a valid address choice. We discuss how the
validity of an address is verified in the next subsection.
C. Practical Considerations The new node picks an address out of a possibly large

set of available addresses. In our current implementation, we

Due to the possibility of network partitioning and node . . .
. . ake nodes pick an address in the largest unoccupied address
failure, it is necessary to have some sort of redundancy mecha- - e .
ock. For example, in figure 3, a joining node connecting

nism built-in. We have opted for a method of periodic refre;tgo the node with address [100] will pick an address in the

where every node periodically sends its information to i
. e 1x] subtree. There are several ways to choose among the
anchor node By doing so, the node ensures that if its anchor

: : . vailable addresses, and we have presented only one such
node should become unavailable, the lookup information wi .)
. L Mmethod. However, it has turned out that this method of address
be available once again within one refresh period. Similarl

gélection works well in simulation trials.

without a mechanism of expiry, outdated information may Under steadv-state. and discounting concurrency. the ore-
linger even after a node has left the network. Therefore, we set Y : g Y, P

: . . . sented address selection technique leads to a legitimate address
all lookup table entries to expire automatically after a perio o S : g~
. o . allocation: the joining node is by definition connected to
twice as long as the periodic refresh interval.

neighbor it got its new address from, and the new address

is taken from one of the neighbors’ empty sibling subtrees,

so the prefix subgraph constraint is satisfied. We will discuss
To assess the feasibility of dynamic addressing, we developncurrency and mobility issues below.

a suite of protocols that implement such an approach. OurLet us see an example of address allocation in action. Figure

work effectively solves the main algorithmic problems, and illustrates the address allocation procedure for a 3-bit address

VI. DYNAMIC ADDRESSALLOCATION

SCENARIO with the higher identifier. If a node encounters a route to its

A«-B own subtree, but with a lower identifier than the one it has
S-T ' T2- computed for its own subtree, it takes this to mean that it
D C is violating the prefix subgraph constraint, and selects a new

1 Bjoinsviaa address.

g' g!g::z z:gi Listing 5 ValidateAddress(addresy
o for nbr in self.neighborsdo
Fig. 4. Address tree for a small network topology. The numbers 1-3 show bit — DiffBit(nbr.addreSS, Self.address)
the order in which nodes were added to the network. if bit == -1 then
// identical address: lower id prevails
if nbr.identifier< self.identifier then
return invalid
end if
/I nbr has an entry to our subtree but with a
/I different id — constraint violated by us
else if nbr.address[bit] != self.address[bit] &&
nbr.cost[bit] '=co &&
nbr.ids[bit] < self.levelld(bit) then
return tnvalid

space. Node A starts out alone with address [000]. When nod%
B joins the network, it observes that A has a null routing
entry corresponding to the subtree [1xx], and picks the address
[100]. Similarly when C joins the network by connecting to
B, C picks the address [110]. Finally, when D joins via A’1o:
A's [1xx] routing entry is now occupied. However, the entry
corresponding to sibling [01x] is still empty, and so, D takes
the address [010].

end if
A. Determining the Validity of an Address using Network and end for
Subtree Identifiers return walid

Node mobility, concurrency, and link instability all con-

tribute to situations where the prefix subgraph constraint cany isting 5 shows how the validity of an address is verified by
be temporarily violated. To detect and address this conditiathecking it against the routing tables of all neighbors. For each
DART makes use of the unique identifier in each node. pejghbor, find the highest order bit where the current node’s
At a high level, the goal is to detect the presence of th@ygress differs from the neighbor's address. If the addresses
same address prefix in two disconnected parts of the netwogke identical, then the address is invalid if the neighbor has
The simplest case where this happens is when two networksjower identifier (line 5). Otherwise, check the neighbor’s
that were previously disconnected, are joined together bya@nounced routing table for the entry that should contain our
new link. subtree. If an entry exists, but contains a different identifier,

In this scenario, it is highly likely that the prefix subgraphy,;;, then we have detected an addressing conflict that needs
constraint is violated, since addresses in the two networks Wegepe resolved. The current address is invalid if the locally

previously chosen without knowledge of each other. Selectiggmputed identifier is larger thamd.

new addresses is a well understood process, as describeqote that Listing 4 computes identifiers for each subtree

above. However, a technique for detecting the fact that theat a node is a member of using only local routing table
prefix subgraph constraint has been violated, and determinifgormation.

what to do to return to a valid address a.”ocation, is required.Let us consider a small examp|e' to illustrate how identi-

fiers propagate through the network and are used to resolve
addressing conflicts. For ease of presentation, assume there is

Listing 4 Levelld(level)

levelld — self.identifier a network where all nodes share the address prefix "0Oxxx”".
for i from level to O do At time t, two nodes,a and b, with identifiersid, < id,
if self.id[i] < levelld then respectively, appear on opposite sides of the network. Follow-
levelld «— self.id[i] ing Listing 2, andb will each select address "1000”. This
end if is a violation of the prefix subgraph constraint, but cannot
end for yet be detected. After one period, the neighbors: afnd b,

have updated their routing tables to have top-level entry with

To determine that the prefix subgraph constraint has beeentifiersid, andid, respectively. Still, no node has detected
violated, we devise a way to compute a unique identifier f@an inconsistency, as the presenceir@ndb is not yet known
a connected set of nodes with a given address prefix. Thisoughout the network. More periods pass, and eventually
is done by computing, for all the connected nodes with sbome nodeg, will receive conflicting updates: some with,
given address prefix, the lowest node identifier among them.the top level entry, some witlid,. Node ¢ will put the
Listing 4 show’s how this is done using information from themaller of id, and id,, sayid, in its top level entry, and
routing table. In situations where the prefix subgraph constrabrbadcast its new routing table. In the next step, the nodes that
is being violated, two or more routes will be announced tgentc the entry withid,, will receive ¢'s update, and change
the same address prefix, but with different identifiers. Whenita routing table correspondingly. Eventually, thk entry will
node encounters such a situation, it simply ignores the routach all the way to node which will then determine that it

has an invalid address, and pick a new, unoccupied one. DART nodes use periodic routing updates to notify their
Merging Networks Efficiently. DART handles the merging neighbors of the current state of their routing table. If, within

of two initially separate networks as part of normal operationa. constant number of update periods, a node does not hear

In a nutshell, the nodes in the network with the highean update from a neighbor, it is removed from the list of

identifier join the other network one by cdheThe lower- neighbors, and its last update discarded. Every period, each

id network absorbs the other network slowly: the nodes ambde executes Refresh(), the function described in Listing 6.

the border will first join the other network, and then their

neighbors join them recursively. Listing 7 Routing Update Structure
Dealing with Split Networks. Here, we describe how we struct RoutingUpdate{

deal with network partitioning. Intuitively, each partition can addressit{ ADDR _SIZE]

keep its addresses, but one of the partitions will need to change cost{ADDR SIZE]

its network identifier. In this situation, there are generally id[ADDR _SIZE]

no constraint violations. This reduces to the case where the routelog[ADDR_SIZE][ADDR_SIZE]

node with the lowest identifier leaves the network. Since

the previous lowest identifier node is no longer part of the

e e popams oo e e a nages yRETES) Checks h vy f 15 et s, o

aware of the new network identifier. att_as a routing table using the mformatlon rec_el_/ed from its

neighbors, and broadcasts a routing update (Listing 7).

B. Balancing and Optimizing the Address Allocation Listing 8 PopulateRoutingTableneighbo}

In future versions of our protocol, we will include tech- update— neighbor.update
niques for optimizing the address allocation according to /* The level of the boundary the update just crossed */
certain criteria. So far, our mechanisms aim only to maintain diff_level = GetDiffLevel(address, update.address)
legitimate addresses, and they typically only need to respond /* Create entry for the neighbor's subtree */
to link breakage and link formation events. As described if neighbor.Levelld(difflevel) < ids[diff_level] then
above, we currently greedily minimize the expected size of the distance[difflevel] — 1
resulting routing table at each node. However, we may want té: /* set all bits of log diftlevel to 0 */
reallocate addresses proactively to improve: a) the balancing routelog[diff_level] — 0
of the address tree, and b) the length of the routed paths. Our /* set bit diff_level in log diff_level to 1 */
current approach does not consider the path stretch caused by routelogl[diff level][diff level] — 1
route aggregation and thus may not provide an optimal choice id[diff level] < neighbor.Levelld(difflevel)
based on the resulting path lengths. It is worth mentioning tha@: end if
even without such optimizations, our scheme performs well. /* Update our table with neighbor’s routing info */
for i:= (ADDR_LEN - 1) to (diff_level + 1) do

if update.routdog[i][diff _level] == 0 then

if id[i] > update.id[i]or

VIl. POPULATING AND MAINTAINING THE ROUTING

TABLE . -
(id[i] == update.id[i]and
While packet forwarding is a simple matter of looking up distance[i]> update.distance[i])
a next hop in a routing table, maintaining a consistent routing then
state does involve a moderate amount of sophistication. In nexthopli] < neighbor.id
addition to address allocation, loop detection and avoidancesis id[i] <« update.id[i]
crucial to correct protocol operation. In this section, we will distance[i]«— update.distance[i] + 1
discuss how the routing table is populated, and how routing I* Copy the log */
loops are avoided. routelog[i] < update.routdog]i]
/* Set the proper log bit to 1 */
Listing 6 Refresh() routelog[i][diff _level] — 1
if ValidateAddress(address) != valilen /* Clear out all lower bits (different parent tree) */
address— SelectAddress(); for i:= (diff level-1) to O do
end if 20: routelog[i][i] < O
reset(distance(], id[], routég([][]) end for
5: for neighbor in neighborsdo end if
MergeRoutingTable(neighbor.update) end if
end for end for

8|deally, we would like to use the network size as a joining criterion in order Let's see how a node updates its routing table upon receiving

to minimize the number of nodes that need to change addresses. Although . d f ighbor. Wh lati h .
we are investigating this option, the cost of determining the network size mﬂge routing update of a neighbor. When populating the routing

not be worth the effort. table (Listing 8), the entry for each level, in the received

routing update is inspected is sequence, starting at the sographical user interface for interactive experimentation. We
level. For neighbors where the address prefix differs at hititially developed our protocol using our own simulator, and
i, We create a new routing entry, with a one-hop distance.ldter wrote a "wrapper” to embed it in ns-2. Our own simulator
also has an empty route log, with the exception ofipithich runs the same address allocation and routing code that we use
represents the levélsubtree boundary that was just crossedh the ns-2 simulator, but replaces the intricacies of the mac
The subtree identifier is computed using the id array in tlend physical layers with a simple reliable message exchange,
update, using the procedure in 4. After this, the procedufeereby improving simulation times.
returns, as the remaining routing information is internal to the In ns-2, we used the standard distribution, version 2.26. We
neighbor’s subtree, and irrelevant to the current node. used the standard values for the Lucent WaveLAN physical
For nodes with the same address prefix as the current nodger, and the IEEE 802.11 MAC layer code, together with a
we go on to inspect their routing entry for levelFirst, we patch for a retry counter bug recently identified by Dan Berger
ensure that the entry is loop free. If so, then keep the routiag UC Riversid&. For all of the ns-2 simulations, we used the
entry as long as the identifier of the entry is the same or smalRandom Waypoint mobility model with up to 800 nodes and
than what is already in the routing table, and as long as themaximum speed of 5 m/s, a minimum speed of 0.5 m/s, a
distance (or some other metric of interest, see section X),n@mximum pause time of 100 seconds and a warm-up period

smaller. of 3600 second8. The duration of all the ns-2 simulations
3 was 300 second} wherein the first 60 seconds are free of
A. Loop-Freedom under mobility data traffic, allowing the initial address allocation to take place

Routing loops, by definition, occur when a packet visits thand for the network to thereby organize itself. The size of the
same node more than once. In the case of DART, no guarantgiéaulation area was chosen to keep average node degree close
can be made with respect to nodes, as routing is done bate®. For example, for a 400-node network, the size of the
on addresses, and nodes can change address while a pacl@figlation area was 2800x2800 meters. This was done in order
in flight. This is a problem in general with mobility, as path$0 maintain a mostly connected topology. Mobility parameters
often break while packets are in transit. were chosen to simulate a moderately mobile network. DART

In the static case, the route logs used in DART prevent tigenot suitable for networks with very high levels of mobility,
formation of routing loops. Let’s study the various conditiongs little route aggregation benefits are to be had when the
that can occur due to mobility, and see how these are handledtrent location of most nodes bear little relation to where

New link created. The creation of a new link (or in the these nodes were a few seconds ago.
wireless case, the detection of a new neighbor) will causeOur simulations focus on the address allocation and routing
nodes to add new entries, or replace longer routes with shorspects of our protocol, not including the node lookup layer,
routes. Neither of these cause routing loops. which is replaced by a global lookup table accessible by all

Link torn down. When a link is torn down, some entries innodes in the simulation. The choice of lookup mechanism (for
the routing tables of affected nodes may no longer be valiekample distributed, hierarchical, replicated, centralized, or
These will have to be replaced by other routes. Route logat-of-band) should be determined by network characteristics,
ensure that a node cannot accidentally accept a route that performance may vary depending on what mechanism is
it had originated. However, packets are not (in the currensed.
implementation), protected against loops by route logs. UnderHere follows a summary of our findings. DSDV, due to
rare circumstances, packets may end up following looped paitssperiodic updates and flat routing tables, experiences very
although no loop exists in the routing tables. This wouldigh overhead growth as the network grows beyond 100
require links to be created and torn down in rapid sequenemdes, but nevertheless performs well in comparison with
but is nonetheless possible. To protect against such eventstlter protocols in the size ranges studied. AODV, due to its
TTL field in the packet is decremented for each hop. Wheaeactive nature, suffers from high overhead growth both as
the TTL reaches zero, the packet is discarded. the size of the network, and the number of flows, grows.

Node address changedrinally, there is the case of nodeswhile AODV performs very well in small networks, the trend
changing address. Address changes and packet forwardinggests that it is not recommendable for larger networks.
happen at very different time scales. Nevertheless, if a noDSR, in our simulations, performed well in small networks,
was to have packets in its buffer while changing its addresmd never experienced high overhead growth, likely due to
these packets could potentially end up visiting the sanite route caching functionality. However, due to excessive
nodes more than once. This is easily addressed by simpiyting failures, DSR demonstrated unacceptable performance
dropping any packets in the queue when an address change iarger networks. Finally, DART, demonstrated its scalability
necessary. Interestingly, our simulation results do not indicaienefits in terms of no overhead growth with the number of
that loops are a significant performance issue, so in our currflotvs, and logarithmic overhead growth with network size.
implementation, such loops are handled by the TTL field. Still in development, DART did not outperform, but performed

VIIl. SIMULATION RESULTS 9Available for download at http://www.cs.ucr.edberger

_ _ _ 10 S ; .
We conduct our experiments using two simulators. One Agcglhgr?g?é’g“geiaﬁgé ?:(Eztg]e warmup period were used to avoid the speed

the ngl known r_]S-Z network simulator. Th? otheris a S'mu_la' HAlthough the de facto standard is 900 second simulations, we were forced
tor which we built to handle larger topologies, and to provide reduce this to in order to limit execution times and log file sizes.

10

2*log2(n) 1.8 . . .
30 - Simulation Results 4 Long Direction —+—
log2(n) -+ Return Trip -

17r Short Direction ----x--- 1

16

14

Path Stretch (factor)

13 b

Avg. Routing Table Size (entries)

L2y . . U

51+ e 1 11

A ‘
0 o0 1000 100 200 300 400 500 600 700 800 900 1000

Network Size (nodes) Network Size (nodes)

Fig. 5. The routing table size grows logarithmically with the size of th&ig. 6. Path stretch vs. network size. We observe a constant average path
network. stretch of 30-35%. Return-trip denotes the stretch on a path going from source,
to destination, and then back again.

on par with other protocols for the larger simulation scenarios. _ o
The trend suggests that DART would continue to scale well flom 125 to 1000 nodes in our custom-built simulator. We

scenarios beyond the capacity of our simulation environmetien sampled the path stretch between 1000 randomly selected
node pairs. Figure 6 shows the average path stretch as network

L size increasesWe see a constant 30-35% increase in the

A. Address Space Utilization average path length, due to the extensive route aggregation

To evaluate the address space utilization effectiveness of tiecessary to achieve logarithmic routing table sizesThis
heuristic address allocation scheme described in section VI, a@mes out to 3-4 hops in a 1,000 node network, or 1-2 hops in
used our custom made, high-performance simulator. We setaip00 node network. To put this in perspective, 20% of paths
a series of experiments in static topologies ranging in size framthe Internet see a stretch of more than 50% due to policy
12 nodes up to 4,000 nodes, and measured the average siz&ing [29].
of the routing tables of all the participating nodes. In these However the path stretch exhibits an interesting asymmetry;
experiments, we used 64-bit addresses and chose paramejgrgeasuring path stretch in both directions, we determined
such that the average node degree was between 6 and 8, wihielt one direction had a path stretch of 50%, whereas the other
is commonly used to ensure connectivity. direction saw a stretch of 15%. We expect to be able to use this

The routing table size indicates the number of empty sile our advantage on bi-directional connections, such as TCP,
lings, or equivalently, the number of “free” bits in a node’s adhrough the use of loose source routing, to bring down the
dress, and is thus a good metric to determine the effectiveneserage path stretch. In addition, our current work does not
of the address allocation scheme. The average routing tabjgtimize the address allocation with respect to path length.
size is also a good indicator of the overhead traffic incurred 8tich techniques are part of our future work, and outside the
each node, since empty entries can be communicated usingcape of this paper.
single bit, and thus incur essentially no extra overhead. Figure
5 shows the results of these experiments. As we can See’(gqeRoutin Overhead
average routing table size in all of our simulation runs fallS” g Lverhea
betweenlog, n and 2 log, n. All our experiments were performed for FTP as well as

Figure 5 clearly demonstrates that our current address UDP/CBR flows, to accurately capture the effects of flow
allocation heuristic results in an efficient use of the e€lasticity. In particular, simulations with elastic flows tend to
address space, which in turn results in Compact routing favor shorter connections, as TCP is better able to ramp up the
tables in the participating nodes.Due to time and hardware Send rate on faster, and less lossy, paths. For the UDP/CBR

constraints, we were unable to perform simulations with mof®ws, we varied the rate and number of flows, but kept the

than 4,000 nodes, but we expect |arger simulations Scenaﬂi@@.I offered load constant at 250 kbit/s. Flows had a Uniformly
to show the same general trend. and randomly selected start time between 50 and 180 seconds

into the simulation, and stayed active until the simulation
i ended. The ns-2 simulator was configured to use standard 1
B. Path Stretch due to Aggregation mbit/s 802.11 interfaces.

The use of routing by address prefix is a potential source ofSince we are primarily concerned with routing overhead,
routing inefficiency, since we don’t keep track of the optimake start by comparing DART routing overhead with that of
route for every destination. This effect is callpdth stretch AODV, DSDV and DSR. In the following experiment, we
and is defined as routing path length over shortest path lengtbmpare routing protocol scalability with respect to network
We created a set of static random topologies with sizes rangsige. In Figure 7 shows how the flat routing utilized in

Fig. 7. Overhead vs. Node Network Size: 100 UDP/CBR flows. Total DARFig. 9.

14000 4

——DART - -~ -AODV —+— DSR —¢ -DSDV

200 400 600 800

Network Size (nodes)

overhead grows as log n.

1400 -

——DART - - -AODV —— DSR — -DSDV

——DART - =--AODV ——DSR —¢ -DSDV

2500 4

250 -

12000
- e % 200
£ 10000 ‘ = :
s iz 5 ; -
2 4 < 150 - :
=3 T, ~ v
< 8000 —~ ::_': 7, SN e

Pg [S r i T
® 6000 - £ oo T~ ~
4 - =] O c .
P . -
o _ 3 [t
s 4000 - £ ’.//\
P
UL F 50 -
2000 / —
0 0 ;

1 10 20 50 100 250 500
Flow Count

Throughput vs. Flow Count: UDP/CBR flows, 200 Nodes.

——DART - - -AODV ——DSR —e -DSDV

11

= 2000
1200 >
- 3
< 1000 - £ 1500
= . -
a .’ 3
X 800 e : 2
s PR ~ L. 5, 1000
© . .- 3
@ 600 - . e
5 £ s00
g 400 -
° - /
e —

— — 0 l
0 /’—‘/ 1 10 20 50 100 250 500

1 10 20 50 100 250 500 Flow Count
Flow Count

Fig. 10. Throughput vs. Flow Count: FTP flows, 200 Nodes.

Fig. 8. Overhead vs. Flow Count: UDP/CBR flows, 200 Nodes. Total DART
overhead is constant with respect to flow count.

Figure 8 shows that AODV and DSR overhead has an
approximately linear relationship with flow count, whereas

DSDV causes total routing overhead to grow quadratically the overhead of DSDV and DART are unaffected by this
with network size. DART, on the other hand, maintains a Parameter, due to their proactive route establishment.The
relatively low overhead throughout the simulated range. ©Overhead of the reactive protocols overtake that of DART very
Naturally, total overhead will grow at least linearly withduickly, but even the high constant overhead of DSDV in a
network size, as each node periodically performs a locaP0 node network is exceeded by AODV as the number of
broadcast of its routing table. However, DART overhemd active flows exceeds 100.
node grows logarithmically, as suggested by the logarithmic
size routing tables reported in Fig 5. For this experimeri®. Throughput
the overhead of AODV grows approximately proportional to DART was designed with scalability in mind, and no tuning
the number of flows (50), and the size of the network. DSRas been applied to optimize for throughput. Nevertheless, we

overhead, due to aggressive route caching policy, grows air interested in comparing the relative performance of DART
rate similar to that of DART. However, as we shall see, thignd several popular routing protocols.

policy also results in frequent routing failures due to bad cacheNext, we study the throughput achieved by the four proto-
entries, and consequently dismal overall performance. cols, using a varying number of UDP/CBR and FTP flows
In our next experiment, we examine routing protocol overespectively. Figure 9 shows the proactive DSDV and
head with respect to the number of flows. Here, we usedDART remaining largely unaffected as the number of
network size of 200 nodes. flows increases. As the number of flows increases, AODV's

12

node density is kept constant, which cancels out some of this
loss. In our experiments, all protocols except DART experience

T DART - = -AODV ——DSR —¢ - DSDV throughput reduction as network size increases. Referring to

figure 7, we believe this is due to excessive overhead on
o = for AODV and DSDV, whereas DSR is experiencing a high
3 120 \.,7-(/‘\\\, level of routing failures as network size goes beyond 200.
£ 100 N \:k - In figures 11 and 12 DART shows performance similar
3 80 T, to other protocols for the smaller network sizes, but
E \ e shows a decidedly more favorable trend as network size
2 40 A - increases. AODV manages to achieve good throughput in
" 20 \ EnEE the FTP scenario, likely due to short routes getting a majority
o | R — | of the traffic. However, in the UDP scenario, where such
0 200 400 600 800 1000 adaptation is not performed, DART easily outperforms all
Network Size (Nodes) other protocols. Due to the small and constant overhead of

DART, DART is the only protocol out of the four that shows
promise for large networks.
With these throughput results, we want to demonstrate that
Fig. 11. Throughput vs. Network Size (Nodes): 100 UDP/CBR flows. dynamic addressing is a feasible and promising approach to
creating a scalable routing protocol, in that its performance
is on par with flat routing protocols, while its overhead is
significantly less than these. We would like to point out that

— DART - = *AODV ——DSR —* - DSDV while DSR and AODV have many years of optimization work
1800 . behind them, DART as presented here is in its most basic form,
oo N naturally leading to a performance disadvantage in smaller
g 1400 ;\ networks. We fully expect there to be significant opportunities
g o Y~ . for optimization of our protocol, and we outline some of these
g 1000 g R : in the following section.
2 300 A
(=] LT
3 600 A
£ 400 \ IX. OVERHEAD AND WORSTCASE ANALYSIS
= — . .
200 \ Ml Y - In this section, we analyze the performance of our address
0 ‘ ‘ ‘ ‘ | allocation scheme analytically and with qualitative arguments.
0 200 400 600 800 1000 The analysis suggests that dynamic addressing seems very

Network Size (Nodes) promising for scalability.

First, we examine two types of topologies that pose a
challenge to our address allocation scheme. We provide a
solution to the case of star-like topologies, and argue that string
topologies can be expected not to be a problem in realistic
scenarios.

Second, we compare the overhead incurred with proactive

gverhead .eaif] up 'tf] |n|;u?l pte;]rfolrJrrllDallDr}céeBa;edvantageA Sl'ghtt d and reactive ad hoc routing protocols. We develop an analytical
ecrease In througnput for the case IS expected, Ay ework and find the regime in which proactive protocols

inter-flow interference will increase with increasing number q re more efficient than their reactive counterparts in terms of

flows. For the FTP case, illustrated in Figure 10, all protoco S/ . U . .
. . T - ’ erhead. We argue that operations in this regime are typical
improve with flow count, since the likelihood that short flow? gu peratl ! IS regl yp!

will appear increases. These flows will achieve relatively hign practical, large scale, scenarios.

throughput, due to the elasticity of FTP transfers. However, it

is not clear that achieving high throughput on short, perhafls Topology and Address Allocation

one-hop, paths is a useful measure of success for a routingve examine the efficiency of dynamic addressing in terms

protocol. of the address space we need for assigning legitimate unique
Finally, we study throughput achieved under varying ne&ddresses ta nodes.

work size. Here, we choose to keep the number of connectiond.ower bound. How many bits of address do we need

at a fixed 100, and vary only the network size. This should order to give every node in a size network a unique

give us a good idea of protocol scalability with respect to negddress? The tight lower bound is obviousbg, n bits.All

work size. When connection end-points are chosen randorfigt addressing schemes can be expected to achieve this lower

and uniformly, it is natural for any protocol to see reducedound.

throughput with increasing network size, due to increasing Dynamic addressing needs a larger address space given the

average path length, and increasing routing protocol overhepdefix subgraph constraint. The constraint precludes nodes that

On the other hand, there is also a gain in spatial diversity,afe far apart from having nearby addresses in the address

Fig. 12. Throughput vs. Network Size (Nodes): 100 FTP flows.

13

space. Therefore, any arbitrary available addresses is specific to the particular order in which we choose to assign

necessarily legitimate for any new or re-locating node. addresses in the current version of our protocol. Consider a
How much larger can the address space become? Téidng of nodesig, u1,...,u,_1, placed in that order. Assume

depends on the topology of the network. We study sontleatw initiates the network, and takes address [000..0]. Then

typical and extreme topologies to obtain an intuitive feelingthe subsequently joining nodes, will get addresses [100..0],
Uniformly Random Topologies. For the case where the[110..0],[111..0]...[111..1], foru; to wu,_; respectively, ac-

network can be described as a uniformly random topologyording to our address allocation scheme.

we refer to the simulation results in section VIIl. These With I-bit addresses, the address space could potentially be

results, although clearly representing sub-optimal solutiongepleted at the most recently joined node when the network

nevertheless show an average routing table size of less tk@e isi + 1. With [= 128, the routing table can hold strings

2logy n, or O(logy n). of at least 129 nodes, and at most 256 nodes, depending on
Star-like Topologies. A star topology presents a differ-the position of the [000...0] node. One might expect that string

ent challenge for dynamic addressing. A star consists ®@fpologies of this length will be extremely uncommon.

one central node in the middle, and a large number of |n section X, we describe a patch that can enable nodes to

peripheral nodes connected to the central node without ha}bin and communicate without having a unique address, by

ing any connectivity between themselves. Due to the prefgaring an address with a neighbor.

subgraph constraint, the peripheral nodes cannot belong to

the same address subtree, unless the central node is in-

cluded. Assuming that the central node has address [000.B], The Overhead of Proactive and Reactive Routing

its neighbors will be compelled to choose addresses ”keHere, we make a comparative analysis of the communi-
[100..0],[010..0],[001..0]...[000..1]. There are oriluch ad- cation overhead of reactive protocols and proactive protocols.
dresses, and this is the limit on the number of peripheral nodggy dynamic addressing falls in the proactive routing category,
that we can support. _ _ ~ which is often criticized as power inefficient, since they
Is this a realistic scenario? We claim that for a highsychange messages even when there is no traffic. Reactive
degree node with disconnected neighbors to exist in an 802 dl;ing is widely regarded as the technique of choice for ad
network, it must have more than one network interfaces. Wg networks, but these protocols all rely on some form of
then present a solution to this specific problem. The solutig@ging to identify paths on demand. We will demonstrate that
depends to some extent on the type of network, the relaigfl yse of flooding for route establishment causes scalability
technology, and the environment of deployment. problems in large networks with many active connections.
Omnldl'recuonall antennasThe star-like t.opology. IS Not & The focus here is the communication overhead, which we
concern in a typical ad hoc network with omnidirectionalefine as the number of non-data bytes transferred. This is
antennas. In this context, it is unrealistic to have more thaRl essary to account for the size of the control packets, since
a handful of neighbors that do not hear each dthef we in some cases this increases with the size of the network. This

consider natural obstacles and other effects, the numberQsiion also captures the additional overhead of data packets
such neighbors can increase, but we need a really peculjaig rce routing

landscape for the number to become large. We start by identifying a key parameter: the arrival rate of

Multiple Network InterfacesDue to the inherent scalability connections, or the connection establishment frequency (CEF).

problems in today’s wireless MAC and physical layers, we e overhead of reactive protocols is tightly coupled with the

compelled to consider networks where wires and fixed d're&')nnection arrival rate. Each new connection requires at least

tional antennas play a role in providing additional bandwidt%.ne route search which in the reactive protocols requires a
This could, for example, involve a purely wired rOUtelflooding of the network, which usesO(n) messages in an

with several wired interfaces, a wireless base station, or 84e network. In a pro:active protocol, the number of update

wireless node with directional antennas. In these cases, ﬂngssages iQ(.n) per update period ar,1d it is independent of

node could have an arbitrary number of neighbors that Woume number of connections. Let us define one update period to

be disconnected were it not for this node. . ; " . :
The solution, which solves this problem completely, ige ourunit of time. Intuitively, if one flooding route lookup

to assign a distinct address to each network interface. fﬁeperformed per unit of time by any node in the network,

node with several interfaces can assign valid addressesr‘%gcwe routing begms to exhibit higher message overhead
tsf}an proactive routing.

its interfaces according to any criteria it wishes, and, mo . . o
: ' ' Note that the analysis here is qualitative. We attempt to
important! n balance th r r Il th .

portantly, can balance the address space across a eture the general trends of the behavior of the two ap-

. : c
interfaces. By enforcing a locally balanced address space ¥ T L)
ensures a locally optimal address allocation, thereby almggpaches. Although simplifications are inevitable, the analysis

completely eradicating the risk of running out of addres? repre-sent_ayve of the nature O.f the two approaches.
space. For simplicity, we do not consider mechanisms that do not

String topologies. A string topology is our worst case affect the asym_ptotic performancg. For example, we expept
scenario. This is not due to the prefix subtree constraint, bulﬂi?t route caching, path overhearing and local route repairs

12Thjs is easily proven with geometry. In the simple case, one can show!3We can deploy caching, expanded ring search or other techniques in an
that this number is at most 5. attempt to limit the extent of a flood, but asymptotically the cost is the same.

14

can lead to significant, but nevertheless constant factor im-When do proactive protocols incur less overhead than re-

provements. active protocols? The question is captured in the following
Reactive protocol overheadLet us define some parametersnequality.

that define the performance of the reactive protocols.

rre(n)The cost of a single route request.

cef(n)The rate of connection establishment. Proact(n) < React(n) 3)

rrr(n)The rate of repeated route requests. . -

Here, cef(n) is related to the size of the network, the tota] W& need to assign values to these quantities in order to
offered load, and the average connection duratiom(n) is identify _thfa regime in which the inequality holds. As explained
primarily related to the size of the network and node movemedPOve: it is reasonable to assume that the message overhead

and other causes of route failure. Excessive offered load cofig@ reactive route lookup isirc(n) = O(n). Accordingly,

also have an effect since it is known to cause false lifR€auality 3, skipping theO-notation, and dividing byn,
failures in wireless networks. With the above definitions, weecomes the following:

can quantify the per-time-unit routing overhedtkact(n), of

reactive protocols as follows: size(n) < cef(n) 4+ rrr(n) (4)

We already know that for hierarchical routing based on
dynamic addressingsize(n) = O(logyn), SO we arrive at
Data Packet OverheadReactive protocols with sourcethe following“:
routing can have significant data packet overhead. In source
routed protocols, such as DSR, the overhead of sending the
route with every packet dominates this equation when mobility
is low gnd traffip volume is high. The per-packet overhead When is this condition satisfied? Clearly,
grows linearly with the path length,

React(n) = O(rre(n) - cef(n) + rre(n) - rrer(n)) (1)

logon < cef(n) + rrr(n) (5)

it is true for a
sufficiently high connection establishment rate. We believe that
PackOver(n) = O(path(n)). it is true in any realistic network for sufficiently large To
see why, consider a network where all nodes have a small,
How does the average path lengtiuth(n), grow as a constant probability of establishing a connection during a unit
function of the size? This depends on both the topologf time. In this network, the connection establishment rate
and the distribution of pairs of nodes that communicate. Fpfcreases linearly with network size, whereas the size of the
asymptotic analysis, it is fair to assume that the averaggpactive routing updates grows logarithmically with network
distance between communicating pairs is a constant fractigge. According to asymptotic analysis, at some point the
of the diameter of the network. cost of establishing connections in the reactive protocol will
In a two dimensional ad hoc network with homogenousyrpass the cost of the periodic routing updates in the proactive
omnidirectional nodes, we expect that the path length will Bgotocol. The actual sizes and connection establishment rates
path(n) = O(y/n) if the nodes are uniformly distributed. Inpecessary to achieve this depend on the protocols involved and
this environment, strict source routing is probably not feasibi&in be determined through experimentation. We conclude that
for large networks. For the remainder of this discussion, Wer sufficiently large networks and/or high connection estab-
will focus on the routing message overhead only. lishment rates, proactive routing using our dynamic addressing

Proactive protocol overhead.The overhead of a proactiveapproach is likely to scale better than any purely reactive
protocol, can be described with a single parametére(n), routing protocol.

the average size of a single routing update. Hence, we have
the following formulation for the per-time-unit overhead of
proactive protocols, X. DISCUSSION

. In this section, we briefly discuss several optimization
Proact(n) = O(n - size(n)). (2) mechanisms, and implementation issues for our addressing
eproach. First, we outline ideas of how we can optimize

Depending on the approach taken, the average routing ta R . L .
size can vary significantly. the routing update frequency by making it adaptive to the

Flat addressing.Recall that some approaches for proactiv«re‘ewvork neeq.f,. Second,. we discuss .hOW We can Improve the
c?twork stability by assigning node identifiers according to

routing, such as DSDV [13], use flat addressing. The size . : i
the routing tablesize(n), increases linearly with the number&e expected behavior of the node. Third, we outline our on-

of nodesn; size(n) — O(n). Asymptotically, for a really large going efforts on security. Finally, we discuss implementation

n, nodes are so busy transmitting the routing table, that thggues ;)f our approach and discuss its interoperability with the
cannot transmit anything else. ermnet.

Dynamic addressing or hierarchical routing. As men- = , _ o ,
Hierarchical routing will invariably incur path stretch. However, our

tioned e?-rl'er In th!s SeCt'On’_ the average routing table Sigg,jation results indicate that path stretch is constant with respect to network
when using dynamic addressing(¥logn). size in our protocol.

15

A. Optimizing Routing Updates However, some nodes will likely receive routing updates

Here, we present two opportunities for improving the peftom several nodes within the same sibling subtree. A trivial
formance of our dynamic addressing scheme. optimization would be to allow nodes to use all the routing
Adaptive Routing Update Frequency.We are currently information received from their neighbors, to find the best
evaluating the merit of a locally adaptive scheme for tHaext hop. Howevgr, the |qformat|on broadcast in their routing
routing update rate. Determining the correct frequency fgPdates would still contain only one entry per level, with no
the routing updates is important for good performance. Wedification as compared to the original scheme.
fixed update frequency will not be suitable for all operational
conditions. A high frequency means good response to higly Coping with Temporary Route Failures

mobile scenario, but it could lead to waste of resources in 4 some cases. a route to the given destination address may
slqrwer mo‘é'TJg ghase% | 4c TimeW not be available, even though the network is connected, and all

riggered Up ates or Improved Lonvergence 1imeWe 5q4ress allocations are correct. Such temporary route failures
are evaluat_mg _mechan_lsms to improve the CONVErgence SPE&H pe the result of route propagation delay; when a shorter
of the routing information. Apart from the periodic uIOdate%‘Oute breaks, there is an interval of time where nodes are not

we are considering triggered updates in response to routidare of the route breakage, and a new longer route has not
changes. Such a mechanism exists in DSDV, which also u $ been established

periodic routing updates [13]. The downside is that trigger In this situation, the default action by a router that finds

updgtes incre_:ase the overhead of the protocol, and could Cai8&r without a valid path would be to drop the packet, and
detrimental ripple effects throughout the network. potentially send a "no such route” message back to the sender.
However, if such failures are common, given a certain mobility
B. Assignment of Node Identifiers and Robustness scenario, it may be a better idea to delay for some amount of
The assignment of node identifiers can have significant iine to allow the new route to be established.
pact on the performance, since the "lower-id” rule is often used

to resolve a conflict. By assigning lower identifier numbers to Coping with Destination Address Changes

more reliable nodes, we can achieve increased performancia L
o . : . h other cases, the destination address may not be routable
and stability. For example, stationary base stations are highl

reliable and less likely to move away. If we have several baggCause the node that used to be there has changed its
y Y- ddress. Here, the last router on the path is faced with a

stations with low identifiers and interconnect them by reliab & oice: i : X
. : choice; it can notify the sender that there is no route to the
means, we can ensure that the address space in an entire region

N . estination address, thereby prompting the sender to perform
maintains a balanced and stable structure, even as high-speé . . .

. i a new lookup operation. Alternatively, it can do the lookup
mobile nodes move through it.

. L o B . _pperation on its own and forward the packet to the destination
In contrast, we want to assign high identifiers to “volatile) "
n(ﬂ%ie s new address. Clearly, the source needs to be notified of

devices such as mobile phones and PDAs. These move bt?]e address change. However, in a scenario of bi-directional

quickly and frequently, and are likely to be turned off. By ommunication, such as with TCP flows, it would be more

assigning higher identifiers to these types of units, their VOlat'i?:onomical to have the destination node notify the source in

behavior will not affect the network at large. The assignme .
. I . ST .Ehe next outgoing packet, than to have the source perform a
of these identifiers can be done during manufacturing, just like

the MAC address of network interface cards. new Iookup_operapon. In addition, dr(_)pp_lng the pqcket_ may
not be desirable if low packet loss is important in higher

layers of the network stack. Finally, given the lookup table

C. Use of Routing Metrics optimizations described in the next section, there can be a

In this work, we have only made use of a hop-coursignificant cost advantage to performing a lookup operation
metric for routing. Other metrics exist that could substantialffom a node close to the intended destination, as opposed to a
improve routing performance, and nothing precludes the ugede far away from said destination. All these factors need to
of such metrics in a dynamic address routing protocol. Ite taken into consideration when deciding whether to fail easy
should be noted that DART, like any other protocol thaand drop a packet, or to buffer the packet and more reliably
uses hierarchical types of routing, cannot provide guarantdesvard them to their new destination address.
for finding the minimum cost path to any given destination.
Instead, DART finds the minimum cost path to a given subtreg, Handling Address Space Exhaustion
and once in that subtree finds the minimum path cost to the

next, lower-level, subtree. This will invariably lead to some we Vt\{"!t now pror:/ |detha s(;)(ljunon to ter_nplorarlllly e>r<]tenci d
amount of path stretch, as illustrated in Section VIII. Pa pnnectivity even when the address space IS locally exhausted.

stretch is the price we must pay for small routing tables. h.e.kgy idea is that an existing node can_act as a gateway fpr
a joining node that cannot obtain a legitimate address. This

_ N _ _ is in many ways similar to a Network Address Translation

D. Using Additional Neighbor Information (NAT) firewall. As far as the larger network is concerned, the
The routing scheme described above limits the interngateway simply has many identifiers mapped to its address.
routing table of nodes to one entry per sibling subtreén the subnet on the inside of the gateway node, a separate

16

address space is used, with plenty of space for new nodearther simulations show a constant average path stretch of

When a gateway receives a packet from the larger netwodhout 30-35%, which is reasonable when compared to what is

it looks up the “inner” address of the specified identifier, anabserved in the Internet today.

forwards it to this address in the inside network. We omit Second, using the ns-2 simulator, we compare our routing

further details due to space constraints. scheme to AODV, DSR and DSDV, and observe that our
approach achieves superior throughput, and with considerably

H. Security smaller overhead, in networks larger than 400 nodes. The trend
in simulated overhead, together with the analysis provided,

Our focus is to establish the feasibility of dynamic ad-
dressing as a way to achieve scalability in ad hoc routintg
Security is a constraint that needs to be addressed in a prac
but it extends beyond the scope of this paper. The goal .0f
our current security work is to provide the routing layer

attacker can only affect a limited portion of the network, over
limited time span. Recently, several pioneering routing security
approaches have been developed [30] [31] [32] [33] and we
are using their results to guide our effort.

strongly indicate that DART is the only feasible routing
rotocol for large networks. Finally, we describe a number
ice A .

of proposed optimizations to our protocol, which can further
improve the performance of our dynamic addressing approach.
o . N . The motivation behind this work was to challenge the status
with "sabotage resistance”. Here, sabotage resistance means.
a robustness against false route advertisements, such thagéa "he basis for ad hoc routing protocols that for massive ad

ﬁoc and mesh networks.

in ad hoc routing. We believe that dynamic addressing can

XIl. ACKNOWLEDGEMENTS

This work was supported by the NSF CAREER grant ANIR

I. Implementation and Deployment Issues

9985195, DARPA award NMS N660001-00-1-8936, NSF

rant 11S-0208950 TCS Inc., DIMI matching fund DIMOO-

We intend to develop and release a prototype implemen
tion of our protocol for Linux and Mac OS X in the near future.
For a realistic implementation of the protocol, it will be crucial
to be able to: (i) support the use of IP-based applications such

as web browsers and email readers, (i) provide a way to accelds

Internet resources, and (iii) connect several of these networks
over the Internet. 2]
We expect to solve (i) by hiding the workings of our 3
routing protocol to the application layer. Essentially, we Iel%4]
the node identifiers be IP addresses in t@*** 15
range, and wedge our routing layer between the IP and mﬁ
layers in the protocol stack, thereby hiding the dynamicall
allocated routing address from the higher layers and preserving
compatibility. Issue (ii) can be handled by Network Addresd’]
Translation on gateway nodes connected to the Internet. Fi-
nally, our plan is to solve (iii) by way of an overlay network of [8]
gateways that tunnel packets through the Internet. All of these
solutions are proven techniques, and this makes the integratifyjl
our protocol with the current Internet infrastructure a feasible
goal. [10]

XI. CONCLUSION

In this paper, we propose Dynamic Address RouTing, gy
initial design toward scalable ad hoc routing. We outline th&s3]
novel challenges involved in a dynamic addressing scheme,
and proceeded to describe efficient algorithmic solutiongg
We show how our dynamic addressing can support scalable
routing. We demonstrate, through simulation and analysis, ttﬂfg]
our approach has promising scalability properties and is a
viable alternative to current ad hoc routing protocols.

First, we qualitatively compare proactive and reactive ovei:5]
head and determine the regime in which proactive routingy
exhibits less overhead that its reactive counterpart. Large scale
simulations show that the average routing table size with!
DART grows logarithmically with the size of the network. [19]

(11]

15This is range of addresses reserved for local use in IP networks.

071, and DARPA award FTN F30602-01-2-0535.

REFERENCES

Jakob Eriksson, Michalis Faloutsos, and Srikanth Krishnamurthy, “Scal-
able ad hoc routing: The case for dynamic addressing,” IERE
InfoCom 2004.

Nicholas Negroponte, “Being wireless,
www.wired.com/wired/archive/10.10/wireless.html.

2002,

] PersonalTelco Project, “Personaltelco,” www.personaltelco.com.

“Consume.net project: Trip the loop, make your switch, consume the
net!,” www.consume.net.

“Wireless anarchy,” www.wirelessanarchy.com.

Brett Warneke, Matt Last, Brian Liebowitz, and Kristofer S. J. Pister,
“Smart dust: Communicating with a cubic-millimeter computeZdm-
puter, vol. 34, no. 1, pp. 44-51, 2001.

Ram Ramanathan and Martha Steenstrup, “Hierarchically-organized,
multihop mobile wireless networks for quality-of-service suppoMg-

bile Networks and Applicationsol. 3, no. 1, pp. 101-119, 1998.
Guangyu Pei, Mario Gerla, Xiaoyan Hong, and Ching-Chuan Chiang, “A
wireless hierarchical routing protocol with group mobility,” WCNG
1999.

G. Pei, M. Gerla, and X. Hong, “Lanmar: Landmark routing for
large scale wireless ad hoc networks with group mobility,” AGM
MobiHOC'00, 2000.

X. Hong, M. Gerla, G. Pei, and C. Chiang, “A group mobility model
for ad hoc wireless networks,” 1999.

J. Eriksson, M. Faloutsos, and S. Krishnamurthy,
peer-2-peer down the stack.,” IRTPS 2003.

C. Perkins, “Ad hoc on demand distance vector routing,” 1997.
Charles Perkins and Pravin Bhagwat, “Highly dynamic destination-
sequenced distance-vector routing (DSDV) for mobile computers,” in
ACM SIGCOMM'94 1994.

David B Johnson and David A Maltz, “Dynamic source routing in ad hoc
wireless networks,” ifMobile Computingvol. 353. Kluwer Academic
Publishers, 1996.

S. Basagni, I. Chlamtac, V. R. Syrotiuk, and B. A. Woodward,
distance routing effect algorithm for mobility (DREAM),” iIACM/IEEE
MobiCom 1998.

Y.-B. Ko and N.H. Vaidya, “Location-aided routing (LAR) in mobile
ad hoc networks,” iACM/IEEE MobiCom 1998.

Xiaoyan Hong, Kaixin Xu, and Mario Gerla, “Scalable routing protocols
for mobile ad hoc networks,IEEE NETWORKvol. 16, no. 4, 2002.

Z. Haas, “A new routing protocol for the reconfigurable wireless
networks,” 1997.

Guangyu Pei, Mario Gerla, and Tsu-Wei Chen, “Fisheye state routing:
A routing scheme for ad hoc wireless networks,”I@C (1), 2000, pp.
70-74.

“Peernet: Pushing

‘A

[20]
[21]

[22]

(23]

[24]

[25]

[26]

[27]

(28]
[29]

(30]

(31]

(32

[33]

Paul F. Tsuchiya, “The landmark hierarchy : A new hierarchy for routing
in very large networks,” ilSIGCOMM 1988, ACM.

Benjie Chen and Robert Morris, “L+: Scalable landmark routing and
address lookup for multi-hop wireless networks,” 2002.

L. Kleinrock and F. Kamoun, “Hierarchical routing for large networks:
Performance evaluation and optimizationGbmputer Networksvol. 1,
1977.

Aline C. Viana, Marcelo D. de Amorim, Serge Fdida, and Jos F.
de Rezende, “Indirect routing using distributed location information,”
ACM Mobile Networks Applications, Special Issue on Mobile and
Pervasive Computing2003.

A. Rao, S. Ratnasamy, C. Papadimitriou, S. Shenker, and I. Stoica,
“Geographic routing without location information,” iRCM MobiCom
2003.

James Newsome and Dawn Song, “Gem: graph embedding for routing
and data-centric storage in sensor networks without geographic infor-
mation,” in SenSys '03: Proceedings of the 1st international conference
on Embedded networked sensor systelew York, NY, USA, 2003,

pp. 76-88, ACM Press.

I. Stoica, R. Morris, D. Karger, M. Kaashoek, and H. Balakrishnan,
“Chord: A scalable peer-to-peer lookup service for internet applications,”
in SIGCOMM'01 ACM, 2001.

David Karger, Eric Lehman, Tom Leighton, Mathhew Levine, Daniel
Lewin, and Rina Panigrahy, “Consistent hashing and random trees:
Distributed caching protocols for relieving hot spots on the world wide
web,” in ACM Symposium on Theory of Computifday 1997, pp.
654—663.

Jungkeun Yoon, Mingyan Liu, and Brian Noble, “Random waypoint
considered harmful,” iIlINFOCOM, 2003.

H. Tangmunarunkit, R. Govindan, and S. Shenker, “Internet path
inflation due to policy routing,” .

Yih-Chun Hu, David B. Johnson, and Adrian Perrig, “Sead: Secure
efficient distance vector routing in mobile wireless ad hoc networks,” in
Fourth IEEE Workshop on Mobile Computing Systems and Applications
(WMCSA '02), June 2002, pp. 3-13.

Yih-Chun Hu, Adrian Perrig, and David B. Johnson, “Ariadne: A secure
on-demand routing protocol for ad hoc networks,” Rmoceedings of
the Eighth Annual International Conference on Mobile Computing and
Networking(MobiCom 2002), Sept. 2002.

Lidong Zhou and Zygmunt J. Haas, “Securing ad hoc networlsZE
Network vol. 13, no. 6, pp. 24-30, 1999.

Sergio Marti, T. J. Giuli, Kevin Lai, and Mary Baker, “Mitigating routing
misbehavior in mobile ad hoc networks,” Mobile Computing and
Networking 2000, pp. 255-265.

17

