
1

DART: Dynamic Address RouTing for
Scalable Ad Hoc and Mesh Networks

Jakob Eriksson
jeriksson@cs.ucr.edu

Michalis Faloutsos
michalis@cs.ucr.edu

Srikanth Krishnamurthy
krish@cs.ucr.edu

University of California, Riverside

Abstract— It is well known that the current ad hoc protocol
suites do not scale to work efficiently in networks of more than a
few hundred nodes. Most current ad hoc routing architectures use
flat static addressing and thus, need to keep track of each node
individually, creating a massive overhead problem as the network
grows. Could dynamic addressing alleviate this problem? In this
paper, we argue that the use of dynamic addressing can enable
scalable routing in ad hoc networks. We provide an initial design
of a routing layer based on dynamic addressing, and evaluate
its performance. Each node has a unique permanent identifier
and a transient routing address, which indicates its location in
the network at any given time. The main challenge is dynamic
address allocation in the face of node mobility. We propose
mechanisms to implement dynamic addressing efficiently. Our
initial evaluation suggests that dynamic addressing is a promising
approach for achieving scalable routing in large ad hoc and mesh
networks. 1 2

I. I NTRODUCTION

How large can an ad hoc network be? Scalability is a
critical requirement if we want these networking technologies
to reach their full potential. Ad hoc networking technology
has advanced tremendously over the last ten years but it has
yet to become a widely deployed technology. This is similar
to the early stages of the Internet, where very few could
predict its explosive growth. A difference is that in the Internet,
scalability was, from the very beginning, a design constraint.
Ad hoc networks research seems to have downplayed the
importance of scalability. In fact, current ad hoc architectures
do not scale well beyond a few hundred nodes.

The easy-to-use, self-organizing nature of ad hoc networks
make them attractive to a diverse set of applications. Today,
these are usually limited to smaller deployments, but if we
can solve the scalability problem, and provide support for
heterogeneous means of connectivity, including directional
antennas, communication lasers, even satellites and wires,
ad hoc and mesh-style networking is likely to see adoption
in very large networks as well. Large-scale events such as
disaster relief or rescue efforts are highly dependent on ef-
fective communication capabilities. Such efforts could ben-

1This work was supported by the NSF CAREER grant ANIR 9985195,
DARPA award NMS N660001-00-1-8936, NSF grant IIS-0208950, TCS Inc.,
DIMI matching fund DIM00-10071, DARPA award FTN F30602-01-2-0535.

2This is an extended version of our earlier INFOCOM paper [1].

efit tremendously from the use of self-organizing networks
to improve the communications and monitoring capabilities
available. Other interesting candidate scenarios are community
networks in dense residential areas, large scale, long-range
networks in developing regions, and others, where no central
administrator exists, or where administration would prove too
costly. Already, non-military technology and applications seem
to point towards future networks with: a) ad hoc pockets of
connectivity [2], b) consumer-owned networks [3] [4] [5], and
c) sensor-net technologies [6]. All of these applications will
place increased scalability demands on self-organizing routing
protocols.

The current routing protocols and architectures work well
only up to a few hundred nodes. Most current research in
ad hoc networks focus more on performance and power-
consumption related issues in relatively small networks, and
less on scalability. We believe the main reason behind the lack
of scalability is that these protocols rely on flat and static
addressing. With scalability as a partial goal, some efforts
have been made in the direction of hierarchical routing and
clustering [7] [8] [9]. These approaches do hold promise, but
they do not seem to be actively pursued. It appears to us as
if these protocols would work well in scenarios with group
mobility [10], which is also a common assumption among
cluster based routing protocols.

We examine whether dynamic addressing is a feasible way
to achieve scalable ad hoc routing. By ”scalable” we mean
thousands up to millions of nodes in an ad hoc or mesh
network. With dynamic addressing, nodes change addresses as
they move, so that their addresses have a topological meaning.
Dynamic addressing simplifies routing but introduces two new
problems: address allocation, and address lookup.

As a guideline, we identify a set of properties that a scalable
and efficient solution must have:
• Localization of overhead:a local change should affect

only the immediate neighborhood, thus limiting the over-
all overhead incurred due to the change.

• Lightweight, decentralized protocols:we would like to
avoid concentrating responsibility at any individual node,
and we want to keep the necessary state to be maintained
at each node as small as possible.

• Zero-configuration:we want to completely remove the

2

need for manual configuration beyond what can be done
at the time of manufacture.

• Minimal restrictions on hardware:Omnidirectional link-
layers do not scale to large networks. Localization tech-
nologies, such as GPS, may limit protocol applicability.

In this paper, we examine how dynamic addressing can be a
building block toward a scalable ad hoc routing architecture.
We present a complete design including address allocation,
routing and address lookup mechanisms, and provide thorough
evaluation results for the address allocation and routing com-
ponents. Our earlier work [11] describes how address lookup
can be efficiently handled in some more detail.

First, we develop a dynamic addressing scheme, which has
the necessary properties mentioned above. Our scheme sepa-
rates node identity from node address, and uses the address
to indicate the node’s current location in the network. Second,
we study the performance of a new routing protocol, based on
dynamic addressing, through analysis and simulations.

In more detail, our work leads to the following results.

• Our address allocation scheme uses the address space
efficiently on topologies of randomly and uniformly dis-
tributed nodes, empirically resulting in average routing
table sizes of less than2 log2 n where n is the number of
nodes in the network.

• We compare our protocol to reactive protocols (AODV,
DSR) and a proactive protocol (DSDV). Our results
suggest that dynamic addressing and proactive routing
together provide significant scalability advantages. Based
on simulation results, even an unoptimized version of
DART significantly outperforms other routing protocols
based on static addresses, in large and actively used
networks.

Our work in perspective. We describe a new approach to
routing in ad hoc networks, and compare it to the current rout-
ing architectures. However, the goal is to show the potential
of this approach and not to provide an optimized protocol.
We believe that theaddress equals identityassumption used
in current ad hoc routing protocols is most likely inherited
from the wireline world, which is much more static and
is explicitly managed by specialist system administrators3.
Although much work remains to be done, we believe that the
dynamic addressing approach is a viable strategy for scalable
routing in ad hoc networks.

The rest of the paper is structured as follows. In section II
we describe the related work, in section III we give a high-level
overview of all aspects of our proposed routing protocol. In
section IV, we describe the routing operation in some detail,
and in section V we show how the current routing address
of a node is found. In section VI we go into more detail on
the specifics of our address allocation scheme. Section VII
describes how routing tables are computed and maintained.
Section VIII reports some of our simulation results, and
section IX gives a brief analysis of the protocol and the relative
overhead of reactive and proactive routing protocols. In section

3Even in the wireline world, mobility has started to challenge this assump-
tion, creating a need for workaround solutions such as mobile IP.

X we discuss optimizations and other issues, and section XI
concludes the paper.

II. RELATED WORK

In most common IP-based ad hoc routing protocols [12]
[13] [14], addresses are used as pure identifiers. Without
any structure in the address space, there are two choices:
either keep routing entries for every node in the network,
or resort to flooding route requests throughout the network
upon connection setup. Neither of these alternatives scale well.
Other protocols [15] [16] use geographic location information
to assist in the routing, and thereby try to achieve scalability.
However, this approach can be severely limiting as location
information is not always available and can be misleading in,
among others, non-planar networks. For a survey of ad hoc
routing, see [17].

In the Zone Routing Protocol (ZRP) [18] and Fisheye State
Routing (FSR) [19], nodes are treated differently depending
on their distance from the destination. In FSR, link updates
are propagated more slowly the further away they travel from
their origin, with the motivation that changes far away are
unlikely to affect local routing decisions. ZRP is a hybrid reac-
tive/proactive protocol, where a technique called bordercasting
is used to limit the damaging effects of global broadcasts.

Some work has been done on using clustering in ad hoc net-
works. In multilevel-clustering approaches such as Landmark
[20], LANMAR [9], L+ [21], MMWN [7] and Hierarchical
State Routing (HSR) [8], certain nodes are elected as cluster
heads (also called Landmarks). These cluster heads in turn
select higher level cluster heads, up to some desired level.
A node’s address is defined as a sequence of cluster head
identifiers, one per level, allowing the size of routing tables to
be logarithmic in the size of the network, but easily resulting
in long hierarchical addresses. In HSR, for example, the
hierarchical address is a sequence of MAC adresses, each of
which is 6 bytes long.

A problem with having explicit cluster heads is that routing
through cluster heads creates traffic bottlenecks. In Landmark,
LANMAR and L+, this is partially solved by allowing nearby
nodes route packets instead of the cluster head, if they know a
route to the destination. All of the above schemes have explicit
cluster heads, and all addresses are therefore relative to these,
and are likely to have to change if a cluster head moves away.
This reliance on cluster head nodes makes the above schemes
best suited to scenarios involving group mobility, such as troop
movements.

Area Routing, as described by Kleinrock and Kamoun in
[22], is the method most similar to the one used in today’s
Internet. Here, nodes that are close to each other in the network
topology have similar addresses, without any explicit hierarchy
of nodes. Our work is, as far as we know, the first attempt to
use this type of addressing in ad hoc and mesh networks.

Tribe [23] is similar to DART at a high level, in that it
uses a two phase process for routing: first address lookup,
and then routing to the address discovered. However, the
tree-based routing strategy used in Tribe bears little or no
resemblance to the area based approach in DART. Tree-based

3

routing may under many circumstances suffer from severe
traffic concentration at nodes high up in the tree, and a high
sensitivity to node failure.

NoGeo [24] embeds the network graph in a virtual 2-
dimensional coordinate space, and uses geographical forward-
ing techniques for routing. The approach is interesting, in that
it achieves the O(1) complexity of geographical routing, but
does not require actual geographical coordinates. However, the
scheme will only work on certain types of graphs (typically
unit-disk like graphs). In addition, NoGeo has not been eval-
uated for networks with more than very low rates of mobility.

Another coordinate based routing scheme, GEM [25], em-
beds a sensor network graph in a polar coordinate system.
Starting at the sink, nodes are assigned ranges based on the
distance to the sink, and angles, such that greedy routing is
possible. GEM does tree-based routing, resulting in a heavy
concentration of traffic around the root node, and was designed
for sensor networks. It has not not evaluated for mobile ad hoc
or mesh networks.

Dynamic Address Routing in relation to peer-to-peer
DHT’s. We have received many inquiries as to the relationship
between peer-to-peer distributed hashtables, such as Chord
[26], and our work. First, let us point out that our proposed
node lookup table is in fact a special purpose distributed
hashtable, similar in many ways to what has already been
done in peer-to-peer networks. To clearly demonstrate that
Dynamic Address Routing is, with the exception of the node
lookup table, only superficially related to peer-to-peer DHT’s,
we will now point out a few important differences.

First of all, in peer-to-peer DHT’s, there is an assumption of
any-to-any connectivity. That is, any node can reach any other
node by using an underlying routing mesh. In our work, we
are building the routing mesh and can only rely on immediate
neighbors for communication. In essence, a node in a DHT
can locate itself at any point in the key space and the DHT will
still be consistent, although perhaps somewhat disadvantaged
performance-wise. If a node in our routing protocol does not
pick its address carefully, routing will not work, because there
is no underlying routing layer there to save us.

Second, DHT’s are an application layer overlay network,
with the consequence that a single physical link could be
traversed several times when routing a packet through the
overlay. In our work, we work directly with the physical links,
and every packet traverses any given link at most once.

Third, in a DHT, one expects to see packets delivered in
at mostO(log N) ”virtual hops”. In network layer routing,
the number of hops depends almost entirely on the underlying
topology, and thus such bounds cannot possibly be stated.

III. OVERVIEW AND DEFINITIONS

In this section, we present our main ideas for dynamic
address allocation and define various terms that we use. We
also sketch a network architecture, which could utilize the
new addressing scheme effectively. In fact, dynamic routing
and addressing form the basis for a novel networking layer,
which we describe in some detail in our earlier work [11].

In our approach, we separate the routing address and the
identity of a node. Therouting addressof a node is dynamic

0xx

00x 01x

1xx

10x 11x

000 001 110 111

Level 0
Level 1

Level 2

010 011 100 101

xxx

Fig. 1. The address tree of a 3-bit binary address space. Leaves represent
actual addresses, whereas inner nodes represent groups of addresses with a
common prefix.

and changes with node movement to reflect the node’s location
in the network topology. Theidentifier is a globally unique
number that stays the same throughout the lifetime of the node.
For ease of presentation, we can assume for now that each
node has a single identifier4.

We distinguish three major functions. First,address allo-
cation maintains one routing address per network interface,
in such a way that the address indicates the node’s relative
network location. Second,routing delivers packets from a
node to a given routing address. Third,node lookup is a
distributed lookup table mapping every node identifier to its
current network address. We defer all details of the address
allocation process to section VI.

Let us first describe how we want things to work from an
operational point of view. When a node joins the network,
it listens to the periodic routing updates of its neighboring
nodes, and uses these to identify an unoccupied address. We
will describe how this is done later. The joining node registers
its unique identifier and the newly obtained address in the
distributed node lookup table. Due to mobility, the address
may subsequently be changed and then the lookup table needs
to be updated. When a node wants to send packets to a node
known only by its identifier, it will use the lookup table to find
its current address. Once the destination address is known the
routing function takes care of the communication. The routing
function should make use of the topological meaning that our
routing addresses possess.

We start by presenting two views of the network that we
use to describe our approach: a) the address tree, and b) the
network topology.

The Address Tree.In this abstraction, we visualize the
network from the address space point of view. Addresses are
l bit binary numbers,al−1, . . . , a0. The address space can
be thought of as a binaryaddress treeof l + 1 levels, as
shown in figure 1. The leaves of the address tree represent
actual node addresses; each inner node represents anaddress
subtree: a range of addresses with a common prefix. For
presentation purposes, nodes are sorted in increasing address
order, from left to right. We stress that the links in the tree do
not correspond to physical links in the network topology. The
actual physical links are represented by dotted lines connecting
leaves in figure 1.

4We currently use IP addresses as identifiers. Thus, the transport and
application layers do not need to change, and the routing address is only
seen at the network layer. There exist situations where we may want to map a
node to more than one identifier, for example in supporting multicasting [11].

4

100

101

011

000 001

010 10x

00x
0xx 1xx

01x

Level 0

Level 1

Level 2

Fig. 2. A network topology with node addresses assigned. Dotted enclosures
correspond to subtrees in the address tree.

The Network Topology.This view represents the connec-
tivity between nodes. In figure 2, the network from figure 1
is presented as a set of nodes and the physical connections
between them. Each solid line is an actual physical connection,
wired or wireless, and the sets of nodes from each subtree of
the address tree are enclosed with dotted lines.

Note that the set of nodes from any subtree in figure 1
induces a connected subgraph in the network topology in
figure 2. This is not a coincidence, but a crucial property of
our dynamic addressing approach. Intuitively, nodes that are
close to each other in the address space should be relatively
close in the network topology. More formally, we can state
the following constraint.

Prefix Subgraph Constraint: The set of nodes that share a
given address prefix form a connected subgraph in the network
topology.

This constraint is fundamental to the scalability of our
approach. Intuitively, this constraint helps us map the virtual
hierarchy of the address space onto the network topology. The
longer the shared address prefix between two nodes, the shorter
the expected distance in the network topology.

Finally, let us define two new terms that will facilitate the
discussion in the following sections.

A Level-k subtree of the address tree is defined by an
address prefix of(l−k) bits, as shown in figure 1. For example,
a Level-0 subtree is a single address or one leaf node in the
address tree. A Level-1 subtree has a(l−1)-bit prefix and can
contain up to two leaf nodes. In figure 1, [0xx] is a Level-2
subtree containing addresses [000] through [011]. Note that
every Level-k subtree consists of exactly two Level-(k − 1)
subtrees.

We define the termLevel-k sibling of a given address to be
the sibling5 of the Level-k subtree to which a given address
belongs. By drawing entire sibling subtrees as triangles, we
can create abstracted views of the address tree, as shown in
figure 3. Here, we show the siblings of all levels for the address
[100] as triangles: the Level-0 sibling is [101], Level-1 is
[11x], and the Level-2 sibling is [0xx]. Note thateach address
has exactly one Level-k sibling, and thus at mostl siblings in
total.

Finally, we define theidentifier of a subtree to be the
min of the identifiers of all nodes that have addresses from
that subtree. In cases where the prefix subgraph constraint is
temporarily violated, two disconnected instances of the address

5We define siblings as subtrees, or leaves, that have the same immediate
parent.

1xx

10x

100

xxx

11x0xx
101

Fig. 3. Routing entries corresponding to figure 2. Node 100 has entries for
subtrees 0xx, 11x (null entry) and 101.

subtree exist in the network. In this case, each instance is
uniquely identified by the min of the subset of identifiers that
belongs to its connected subgraph. As we describe in more
detail in section VI, only the instance with the lowest identifier
is a valid part of the network.

A. Other important characteristics.

Our addressing and routing schemes have several attractive
properties. First, they can work with omnidirectional and
directional antennas as well as wires. Second, we do not
need to assume the existence of central servers or any other
infrastructure, nor do we need to assume any geographical
location information, such as GPS coordinates. However, if
infrastructure and wires exist, they can, and will, be used
to improve the performance. Third, we make no assumptions
about mobility patterns, although high mobility will certainly
lead to increased overhead, and decreased throughput. Finally,
since our approach was designed primarily for scalability, we
do not need to limit the size of the network; most popular
ad hoc routing protocols today implicitly impose network size
restrictions.

IV. ROUTING

In this work, we use a form of proactive distance-vector
routing, made scalable due to the hierarchical nature of the
address space. Although we have chosen to use distance vector
routing, we would like to point out that many of the advantages
of dynamic addressing can be utilized by a link-state protocol
as well.

Listing 1 Routing state kept by each node. neighborupdates
contains last-received routing update, and expiry time.

struct NodeState
{

addressbit[ADDR SIZE]
/* routing table */
nexthop[ADDRSIZE]
cost[ADDR SIZE]
id[ADDR SIZE]
route log[ADDR SIZE][ADDR SIZE]
neighborupdates[]

}

5

Each node keeps some routing state, as specified in Listing
1. Routing state about a node’s Level-i sibling is stored at
position i in each of the respective arrays.

Intuitively, the routing state for a sibling contains the
information necessary to maintain a route toward a node (any
node) in that subtree. Theaddress field contains the current
address of the node, and biti of the address is referred to
asaddress[i], wherei = 0 for the least significant bit of the
address. Arraysnexthop and cost are self-explanatory. The
id array contains the identifier of the subtree in question. As
described earlier, the identifier of a subtree is equal to the
lowest out of all the identifiers of the nodes that constitute
that subtree.

Finally, route log[i] contains thelog of the current route
to the sibling at leveli, where bit b of log i is referenced
by the syntaxroute log[i][b]. The use of route logs for loop
avoidance is discussed further below.6

Packet forwarding under DART is a matter of looking up
the next hop in the routing table. In our example shown in
figures 1-3, node [100] has routing entries for sibling subtrees
[0xx], [11x] and [101]. To route a packet to address [000],
node [100] first determines the (sibling) subtree to which the
destination address belongs ([0xx]). Practically, this is done
by identifying the most significant bit that differs between the
current node’s address and the destination’s address. In this
case, the most significant differing bit is bit number 2. The
node then looks up the entry with index two in the nexthop
table, and then sends the packet there. In our example, this is
the neighbor with address [011]. The process is repeated until
the packet has reached the given destination address.

The hierarchical technique of only keeping track of sibling
subtrees rather than complete addresses has three immediate
benefits. One, the amount of routing state kept at each node
is drastically reduced. Two, the size of the routing updates
is similarly reduced. Three, it provides an efficient routing
abstraction such that routing entries for distant nodes can
remain valid despite local topology changes in the vicinity
of these nodes.

A. Loop Avoidance

DART uses a novel scheme for detecting and avoiding
routing loops, which leverages the hierarchical nature of the
address space to improve scalability.

First, let us review the general concept of loop avoidance,
to lay the foundation for the discussion of our loop avoidance
scheme. In an abstract sense, routing loop avoidance is about
remembering what nodes a route update has traversed, and
making sure that these nodes do not accept route updates that
they have already seen. As long as this requirement is satisfied,
routing loops cannot occur.

A simple way of implementing this is to concatenate a list of
all visited nodes in the routing update, and to have nodes check
this list before accepting an update. However, this approach

6We have deliberately left typing to the implementation. However, thinking
of id as an array of large integers, say 32 or 48 bits, may be instructive. The
type of thecost array depends entirely on the cost metric used. In this work,
we use a simple hop count metric.

has a scalability problem, in that routing updates will quickly
grow to unwieldy sizes.

Instead, DART makes use of the structured address space
to create a new kind of loop avoidance scheme. In order
to preserve scalability, we generalize the loop freedom rule
above. For each subtree, once a routing entry has left the
subtree, it is not allowed to re-enter. This effectively prevents
loops, and can be implemented in a highly scalable manner:
A bit array of ADDR SIZE bits is kept together with the
routing update. Bitk of the route log indicates whether the
route update arrived at the current node via the level-k sibling.
Loop-free operation of the protocol is ensured by blocking
each routing entry from entering a level-k sibling if bit k in
its route log is set to 1. For more details, see section VII.

V. NODE LOOKUP

The missing link is: how do we find the current address
of a node, if we know its identifier? We propose to use a
distributed node lookup table, which maps each identifier to an
address, similar to what we proposed in [11]. Here, we assume
that all nodes take part in the lookup table, each storing a
few7 <identifier, address> entries. However, this node lookup
scheme is only one possibility among many, and more work
is needed to determine the best lookup scheme to deploy.

For our proposed distributed lookup table, the question now
becomes: which node stores a given<identifier, address> en-
try? Let us call this node theanchor nodeof the identifier. The
solution is simple yet elegant, and reminiscent of consistent
hashing [27].

We use a globally, and a priori, known hash function that
takes an identifier as argument and returns an address where
the entry can be found. If there exists a node that occupies
this address, then that node is theanchor node. If there is
no node with that address, then the node with the least edit
distance between its own address and the destination address,
is theanchor node.

To route packets to ananchor node, we use a slightly
modified routing algorithm: If no route can be found to a
sibling subtree indicated by a bit in the address, that bit of
the address is ignored, and the packet is routed to the subtree
indicated by the next (less significant) bit. When the last bit
has been processed, the packet has reached its destination. This
method effectively finds the node with the address minimum
edit distance to the address returned by the hash function.

For example, using figure 3 for reference, let’s assume a
node with identifierID1 has a current routing address of [010].
This node will periodically send an updated entry to the lookup
table, namely<ID1, 010>. To figure out where to send the
entry, the node uses the hash function to calculate an address,
like so:hash(ID1). If the returned address is [100], the packet
will simply be routed to the node with that address. However,
if the returned address was instead [111], the packet could not
be routed to the node with address [111] because there is no
such node. In such a situation, the packet gets automatically
routed to the node with the most similar address, which in this
case would be [101].

7We expect to see on averageO(logN) entries per node assuming a
balanced address tree and uniformly distributed identifiers.

6

A. Improved Scalability.

We would like to stress that all node lookup operations use
unicast only: no broadcasting or flooding is required. This
maintains the advantage of proactive and distance vector based
protocols over on-demand protocols: the routing overhead
is independent of how many connections are active. When
compared with other distance vector protocols, our scheme
provides improved scalability by drastically reducing the size
of the routing tables, as we described earlier. In addition,
updates due to a topology change are in most cases contained
within a lower level subtree and do not affect distant nodes.
This is efficient in terms of routing overhead. To further
improve the performance of our node lookup operations, we
envision using the locality optimization technique described
in [11]. Here, each lookup entry is stored in several locations,
at increasing distance from the node in question. By starting
with a small, local lookup and gradually going to further away
locations, we can avoid sending lookup requests across long
distances to find a node that is nearby.

B. Coping with Temporary Route Failures

On occasion, due to link or node failure, a node will
not have a completely accurate routing table. This could
potentially lead to lookup packets, both updates and requests,
terminating at the wrong node. The end result of this is that
requests cannot be promptly served. In an effort to reduce the
effect of such intermittent errors, a node can periodically check
the lookup entries it stores, to see if a route to a more suitable
host has been found. If this should be the case, the entry is
forwarded in the direction of this more suitable host. Requests
are handled in a similar manner: if the request could not be
answered with an address, it is kept in a buffer awaiting either
the arrival of the requested information, or the appearance of a
route to a node which more closely matches the key requested.

This way, even if a request packet arrives at theanchor
node before the update has reached it, the request will be
buffered and served as soon as the update information is
available.

C. Practical Considerations

Due to the possibility of network partitioning and node
failure, it is necessary to have some sort of redundancy mecha-
nism built-in. We have opted for a method of periodic refresh,
where every node periodically sends its information to its
anchor node. By doing so, the node ensures that if its anchor
node should become unavailable, the lookup information will
be available once again within one refresh period. Similarly,
without a mechanism of expiry, outdated information may
linger even after a node has left the network. Therefore, we set
all lookup table entries to expire automatically after a period
twice as long as the periodic refresh interval.

VI. DYNAMIC ADDRESSALLOCATION

To assess the feasibility of dynamic addressing, we develop
a suite of protocols that implement such an approach. Our
work effectively solves the main algorithmic problems, and

forms a stable framework for further dynamic addressing
research. Although the design has not yet been optimized for
maximum throughput, its scalability properties and predictable
performance show promise (see section VIII).

Listing 2 SelectAddress()
neighbor← BestNeighbor()
for bit from InsertionPoint(neighbor) to 0do

address = neighbor.address
address[bit] != neighbor.address[bit]

5: if ValidateAddress(address) == validthen
return address

else
neighbor.ids[bit] = OCCUPIED;

end if
10: end for

When a node joins an existing network, it uses the periodic
routing updates of its neighbors to identify and select an
unoccupied and legitimate address, as specified in Listing 2.

Listing 3 BestNeighbor()
best← neighbors.first();
for neighbor in neighborsdo

if InsertionPoint(neighbor)< InsertionPoint(best)
then

best← neighbor;
5: end if

end for
return best

It starts out by selecting which neighbor to get an address
from. As illustrated in Listing 3, the neighbor with the highest-
level insertion point is selected as the best neighbor.

The insertion point is defined as the highest level for
which no routing entry exists in a given neighbor’s routing
table. However, the fact that a routing entry happens to be
unoccupied in one neighbor’s routing table does not guarantee
that it represents a valid address choice. We discuss how the
validity of an address is verified in the next subsection.

The new node picks an address out of a possibly large
set of available addresses. In our current implementation, we
make nodes pick an address in the largest unoccupied address
block. For example, in figure 3, a joining node connecting
to the node with address [100] will pick an address in the
[11x] subtree. There are several ways to choose among the
available addresses, and we have presented only one such
method. However, it has turned out that this method of address
selection works well in simulation trials.

Under steady-state, and discounting concurrency, the pre-
sented address selection technique leads to a legitimate address
allocation: the joining node is by definition connected to
neighbor it got its new address from, and the new address
is taken from one of the neighbors’ empty sibling subtrees,
so the prefix subgraph constraint is satisfied. We will discuss
concurrency and mobility issues below.

Let us see an example of address allocation in action. Figure
4 illustrates the address allocation procedure for a 3-bit address

7

0xx

00x 01x

1xx

10x 11x

000 100
A.

010 110
D. B. C.

A B

CD

1.
2.3.

1.

2.3.

1. B joins via A
2. C joins via B
3. D joins via A

SCENARIOxxx

Fig. 4. Address tree for a small network topology. The numbers 1-3 show
the order in which nodes were added to the network.

space. Node A starts out alone with address [000]. When node
B joins the network, it observes that A has a null routing
entry corresponding to the subtree [1xx], and picks the address
[100]. Similarly when C joins the network by connecting to
B, C picks the address [110]. Finally, when D joins via A,
A’s [1xx] routing entry is now occupied. However, the entry
corresponding to sibling [01x] is still empty, and so, D takes
the address [010].

A. Determining the Validity of an Address using Network and
Subtree Identifiers

Node mobility, concurrency, and link instability all con-
tribute to situations where the prefix subgraph constraint can
be temporarily violated. To detect and address this condition,
DART makes use of the unique identifier in each node.

At a high level, the goal is to detect the presence of the
same address prefix in two disconnected parts of the network.
The simplest case where this happens is when two networks,
that were previously disconnected, are joined together by a
new link.

In this scenario, it is highly likely that the prefix subgraph
constraint is violated, since addresses in the two networks were
previously chosen without knowledge of each other. Selecting
new addresses is a well understood process, as described
above. However, a technique for detecting the fact that the
prefix subgraph constraint has been violated, and determining
what to do to return to a valid address allocation, is required.

Listing 4 LevelId(level)
levelId← self.identifier
for i from level to 0 do

if self.id[i] < levelId then
levelId← self.id[i]

end if
end for

To determine that the prefix subgraph constraint has been
violated, we devise a way to compute a unique identifier for
a connected set of nodes with a given address prefix. This
is done by computing, for all the connected nodes with a
given address prefix, the lowest node identifier among them.
Listing 4 show’s how this is done using information from the
routing table. In situations where the prefix subgraph constraint
is being violated, two or more routes will be announced to
the same address prefix, but with different identifiers. When a
node encounters such a situation, it simply ignores the route

with the higher identifier. If a node encounters a route to its
own subtree, but with a lower identifier than the one it has
computed for its own subtree, it takes this to mean that it
is violating the prefix subgraph constraint, and selects a new
address.

Listing 5 ValidateAddress(address)
for nbr in self.neighborsdo

bit → DiffBit(nbr.address, self.address)
if bit == -1 then

// identical address: lower id prevails
5: if nbr.identifier< self.identifier then

return invalid
end if
// nbr has an entry to our subtree but with a
// different id→ constraint violated by us

10: else if nbr.address[bit] != self.address[bit] &&
nbr.cost[bit] !=∞ &&
nbr.ids[bit] < self.levelId(bit) then

return invalid
end if

end for
return valid

Listing 5 shows how the validity of an address is verified by
checking it against the routing tables of all neighbors. For each
neighbor, find the highest order bit where the current node’s
address differs from the neighbor’s address. If the addresses
are identical, then the address is invalid if the neighbor has
a lower identifier (line 5). Otherwise, check the neighbor’s
announced routing table for the entry that should contain our
subtree. If an entry exists, but contains a different identifier,
nid, then we have detected an addressing conflict that needs
to be resolved. The current address is invalid if the locally
computed identifier is larger thannid.

Note that Listing 4 computes identifiers for each subtree
that a node is a member of using only local routing table
information.

Let us consider a small example, to illustrate how identi-
fiers propagate through the network and are used to resolve
addressing conflicts. For ease of presentation, assume there is
a network where all nodes share the address prefix ”0xxx”.
At time t, two nodes,a and b, with identifiers ida < idb

respectively, appear on opposite sides of the network. Follow-
ing Listing 2, a and b will each select address ”1000”. This
is a violation of the prefix subgraph constraint, but cannot
yet be detected. After one period, the neighbors ofa and b,
have updated their routing tables to have top-level entry with
identifiersida andidb respectively. Still, no node has detected
an inconsistency, as the presence ofa andb is not yet known
throughout the network. More periods pass, and eventually
some node,c, will receive conflicting updates: some withida

in the top level entry, some withidb. Node c will put the
smaller of ida and idb, say ida in its top level entry, and
broadcast its new routing table. In the next step, the nodes that
sentc the entry withidb, will receive c’s update, and change
its routing table correspondingly. Eventually, theida entry will
reach all the way to nodeb, which will then determine that it

8

has an invalid address, and pick a new, unoccupied one.
Merging Networks Efficiently . DART handles the merging

of two initially separate networks as part of normal operations.
In a nutshell, the nodes in the network with the higher
identifier join the other network one by one8. The lower-
id network absorbs the other network slowly: the nodes at
the border will first join the other network, and then their
neighbors join them recursively.

Dealing with Split Networks. Here, we describe how we
deal with network partitioning. Intuitively, each partition can
keep its addresses, but one of the partitions will need to change
its network identifier. In this situation, there are generally
no constraint violations. This reduces to the case where the
node with the lowest identifier leaves the network. Since
the previous lowest identifier node is no longer part of the
network, the routing update from the new lowest identifier
node can propagate through the network until all nodes are
aware of the new network identifier.

B. Balancing and Optimizing the Address Allocation

In future versions of our protocol, we will include tech-
niques for optimizing the address allocation according to
certain criteria. So far, our mechanisms aim only to maintain
legitimate addresses, and they typically only need to respond
to link breakage and link formation events. As described
above, we currently greedily minimize the expected size of the
resulting routing table at each node. However, we may want to
reallocate addresses proactively to improve: a) the balancing
of the address tree, and b) the length of the routed paths. Our
current approach does not consider the path stretch caused by
route aggregation and thus may not provide an optimal choice
based on the resulting path lengths. It is worth mentioning that
even without such optimizations, our scheme performs well.

VII. POPULATING AND MAINTAINING THE ROUTING

TABLE

While packet forwarding is a simple matter of looking up
a next hop in a routing table, maintaining a consistent routing
state does involve a moderate amount of sophistication. In
addition to address allocation, loop detection and avoidance is
crucial to correct protocol operation. In this section, we will
discuss how the routing table is populated, and how routing
loops are avoided.

Listing 6 Refresh()
if ValidateAddress(address) != validthen

address← SelectAddress();
end if
reset(distance[], id[], routelog[][])

5: for neighbor in neighborsdo
MergeRoutingTable(neighbor.update)

end for

8Ideally, we would like to use the network size as a joining criterion in order
to minimize the number of nodes that need to change addresses. Although
we are investigating this option, the cost of determining the network size may
not be worth the effort.

DART nodes use periodic routing updates to notify their
neighbors of the current state of their routing table. If, within
a constant number of update periods, a node does not hear
an update from a neighbor, it is removed from the list of
neighbors, and its last update discarded. Every period, each
node executes Refresh(), the function described in Listing 6.

Listing 7 Routing Update Structure
struct RoutingUpdate{

addressbit[ADDR SIZE]
cost[ADDR SIZE]
id[ADDR SIZE]
route log[ADDR SIZE][ADDR SIZE]

}

Refresh() checks the validity of its current address, popu-
lates a routing table using the information received from its
neighbors, and broadcasts a routing update (Listing 7).

Listing 8 PopulateRoutingTable(neighbor)
update← neighbor.update
/* The level of the boundary the update just crossed */
diff level = GetDiffLevel(address, update.address)
/* Create entry for the neighbor’s subtree */
if neighbor.LevelId(difflevel) ≤ ids[diff level] then

distance[difflevel]← 1
5: /* set all bits of log diff level to 0 */

route log[diff level]← 0
/* set bit diff level in log diff level to 1 */
route log[diff level][diff level]← 1
id[diff level]← neighbor.LevelId(difflevel)

10: end if
/* Update our table with neighbor’s routing info */
for i := (ADDR LEN - 1) to (diff level + 1) do

if update.routelog[i][diff level] == 0 then
if id[i] > update.id[i]or

(id[i] == update.id[i]and
distance[i]> update.distance[i])

then
next hop[i] ← neighbor.id

15: id[i] ← update.id[i]
distance[i]← update.distance[i] + 1
/* Copy the log */
route log[i] ← update.routelog[i]
/* Set the proper log bit to 1 */
route log[i][diff level]← 1
/* Clear out all lower bits (different parent tree) */
for i := (diff level-1) to 0 do

20: route log[i][i] ← 0
end for

end if
end if

end for

Let’s see how a node updates its routing table upon receiving
the routing update of a neighbor. When populating the routing
table (Listing 8), the entry for each level,i, in the received

9

routing update is inspected is sequence, starting at the top
level. For neighbors where the address prefix differs at bit
i, we create a new routing entry, with a one-hop distance. It
also has an empty route log, with the exception of biti, which
represents the level-i subtree boundary that was just crossed.
The subtree identifier is computed using the id array in the
update, using the procedure in 4. After this, the procedure
returns, as the remaining routing information is internal to the
neighbor’s subtree, and irrelevant to the current node.

For nodes with the same address prefix as the current node,
we go on to inspect their routing entry for leveli. First, we
ensure that the entry is loop free. If so, then keep the routing
entry as long as the identifier of the entry is the same or smaller
than what is already in the routing table, and as long as the
distance (or some other metric of interest, see section X), is
smaller.

A. Loop-Freedom under mobility

Routing loops, by definition, occur when a packet visits the
same node more than once. In the case of DART, no guarantees
can be made with respect to nodes, as routing is done based
on addresses, and nodes can change address while a packet is
in flight. This is a problem in general with mobility, as paths
often break while packets are in transit.

In the static case, the route logs used in DART prevent the
formation of routing loops. Let’s study the various conditions
that can occur due to mobility, and see how these are handled.

New link created. The creation of a new link (or in the
wireless case, the detection of a new neighbor) will cause
nodes to add new entries, or replace longer routes with shorter
routes. Neither of these cause routing loops.

Link torn down. When a link is torn down, some entries in
the routing tables of affected nodes may no longer be valid.
These will have to be replaced by other routes. Route logs
ensure that a node cannot accidentally accept a route that
it had originated. However, packets are not (in the current
implementation), protected against loops by route logs. Under
rare circumstances, packets may end up following looped paths
although no loop exists in the routing tables. This would
require links to be created and torn down in rapid sequence,
but is nonetheless possible. To protect against such events, a
TTL field in the packet is decremented for each hop. When
the TTL reaches zero, the packet is discarded.

Node address changed.Finally, there is the case of nodes
changing address. Address changes and packet forwarding
happen at very different time scales. Nevertheless, if a node
was to have packets in its buffer while changing its address,
these packets could potentially end up visiting the same
nodes more than once. This is easily addressed by simply
dropping any packets in the queue when an address change is
necessary. Interestingly, our simulation results do not indicate
that loops are a significant performance issue, so in our current
implementation, such loops are handled by the TTL field.

VIII. S IMULATION RESULTS

We conduct our experiments using two simulators. One is
the well known ns-2 network simulator. The other is a simula-
tor which we built to handle larger topologies, and to provide

a graphical user interface for interactive experimentation. We
initially developed our protocol using our own simulator, and
later wrote a ”wrapper” to embed it in ns-2. Our own simulator
runs the same address allocation and routing code that we use
in the ns-2 simulator, but replaces the intricacies of the mac
and physical layers with a simple reliable message exchange,
thereby improving simulation times.

In ns-2, we used the standard distribution, version 2.26. We
used the standard values for the Lucent WaveLAN physical
layer, and the IEEE 802.11 MAC layer code, together with a
patch for a retry counter bug recently identified by Dan Berger
at UC Riverside9. For all of the ns-2 simulations, we used the
Random Waypoint mobility model with up to 800 nodes and
a maximum speed of 5 m/s, a minimum speed of 0.5 m/s, a
maximum pause time of 100 seconds and a warm-up period
of 3600 seconds10. The duration of all the ns-2 simulations
was 300 seconds11, wherein the first 60 seconds are free of
data traffic, allowing the initial address allocation to take place
and for the network to thereby organize itself. The size of the
simulation area was chosen to keep average node degree close
to 9. For example, for a 400-node network, the size of the
simulation area was 2800x2800 meters. This was done in order
to maintain a mostly connected topology. Mobility parameters
were chosen to simulate a moderately mobile network. DART
is not suitable for networks with very high levels of mobility,
as little route aggregation benefits are to be had when the
current location of most nodes bear little relation to where
these nodes were a few seconds ago.

Our simulations focus on the address allocation and routing
aspects of our protocol, not including the node lookup layer,
which is replaced by a global lookup table accessible by all
nodes in the simulation. The choice of lookup mechanism (for
example distributed, hierarchical, replicated, centralized, or
out-of-band) should be determined by network characteristics,
and performance may vary depending on what mechanism is
used.

Here follows a summary of our findings. DSDV, due to
its periodic updates and flat routing tables, experiences very
high overhead growth as the network grows beyond 100
nodes, but nevertheless performs well in comparison with
other protocols in the size ranges studied. AODV, due to its
reactive nature, suffers from high overhead growth both as
the size of the network, and the number of flows, grows.
While AODV performs very well in small networks, the trend
suggests that it is not recommendable for larger networks.
DSR, in our simulations, performed well in small networks,
and never experienced high overhead growth, likely due to
its route caching functionality. However, due to excessive
routing failures, DSR demonstrated unacceptable performance
in larger networks. Finally, DART, demonstrated its scalability
benefits in terms of no overhead growth with the number of
flows, and logarithmic overhead growth with network size.
Still in development, DART did not outperform, but performed

9Available for download at http://www.cs.ucr.edu/d̃berger
10The minimum speed and the warmup period were used to avoid the speed

decay problem identified in [28]
11Although the de facto standard is 900 second simulations, we were forced

to reduce this to in order to limit execution times and log file sizes.

10

0

5

10

15

20

25

30

10 100 1000

A
vg

. R
ou

tin
g

T
ab

le
 S

iz
e

(e
nt

rie
s)

Network Size (nodes)

2*log2(n)
Simulation Results

log2(n)

Fig. 5. The routing table size grows logarithmically with the size of the
network.

on par with other protocols for the larger simulation scenarios.
The trend suggests that DART would continue to scale well in
scenarios beyond the capacity of our simulation environment.

A. Address Space Utilization

To evaluate the address space utilization effectiveness of the
heuristic address allocation scheme described in section VI, we
used our custom made, high-performance simulator. We set up
a series of experiments in static topologies ranging in size from
12 nodes up to 4,000 nodes, and measured the average size
of the routing tables of all the participating nodes. In these
experiments, we used 64-bit addresses and chose parameters
such that the average node degree was between 6 and 8, which
is commonly used to ensure connectivity.

The routing table size indicates the number of empty sib-
lings, or equivalently, the number of “free” bits in a node’s ad-
dress, and is thus a good metric to determine the effectiveness
of the address allocation scheme. The average routing table
size is also a good indicator of the overhead traffic incurred at
each node, since empty entries can be communicated using a
single bit, and thus incur essentially no extra overhead. Figure
5 shows the results of these experiments. As we can see, the
average routing table size in all of our simulation runs falls
betweenlog2 n and2 log2 n.

Figure 5 clearly demonstrates that our current address
allocation heuristic results in an efficient use of the
address space, which in turn results in compact routing
tables in the participating nodes.Due to time and hardware
constraints, we were unable to perform simulations with more
than 4,000 nodes, but we expect larger simulations scenarios
to show the same general trend.

B. Path Stretch due to Aggregation

The use of routing by address prefix is a potential source of
routing inefficiency, since we don’t keep track of the optimal
route for every destination. This effect is calledpath stretch,
and is defined as routing path length over shortest path length.
We created a set of static random topologies with sizes ranging

1

1.1

1.2

1.3

1.4

1.5

1.6

1.7

1.8

100 200 300 400 500 600 700 800 900 1000

P
at

h
S

tr
et

ch
 (

fa
ct

or
)

Network Size (nodes)

Long Direction
Return Trip

Short Direction

Fig. 6. Path stretch vs. network size. We observe a constant average path
stretch of 30-35%. Return-trip denotes the stretch on a path going from source,
to destination, and then back again.

from 125 to 1000 nodes in our custom-built simulator. We
then sampled the path stretch between 1000 randomly selected
node pairs. Figure 6 shows the average path stretch as network
size increases.We see a constant 30-35% increase in the
average path length, due to the extensive route aggregation
necessary to achieve logarithmic routing table sizes.This
comes out to 3-4 hops in a 1,000 node network, or 1-2 hops in
a 100 node network. To put this in perspective, 20% of paths
in the Internet see a stretch of more than 50% due to policy
routing [29].

However the path stretch exhibits an interesting asymmetry;
by measuring path stretch in both directions, we determined
that one direction had a path stretch of 50%, whereas the other
direction saw a stretch of 15%. We expect to be able to use this
to our advantage on bi-directional connections, such as TCP,
through the use of loose source routing, to bring down the
average path stretch. In addition, our current work does not
optimize the address allocation with respect to path length.
Such techniques are part of our future work, and outside the
scope of this paper.

C. Routing Overhead

All our experiments were performed for FTP as well as
UDP/CBR flows, to accurately capture the effects of flow
elasticity. In particular, simulations with elastic flows tend to
favor shorter connections, as TCP is better able to ramp up the
send rate on faster, and less lossy, paths. For the UDP/CBR
flows, we varied the rate and number of flows, but kept the
total offered load constant at 250 kbit/s. Flows had a uniformly
and randomly selected start time between 50 and 180 seconds
into the simulation, and stayed active until the simulation
ended. The ns-2 simulator was configured to use standard 1
mbit/s 802.11 interfaces.

Since we are primarily concerned with routing overhead,
we start by comparing DART routing overhead with that of
AODV, DSDV and DSR. In the following experiment, we
compare routing protocol scalability with respect to network
size. In Figure 7 shows how the flat routing utilized in

11

0

2000

4000

6000

8000

10000

12000

14000

200 400 600 800

Network Size (nodes)

O
v
e
rh

e
a
d

 (
k
b

it
/

s)
DART AODV DSR DSDV

Fig. 7. Overhead vs. Node Network Size: 100 UDP/CBR flows. Total DART
overhead grows asn log n.

0

200

400

600

800

1000

1200

1400

1 10 20 50 100 250 500

Flow Count

O
v
e
rh

e
a
d

 (
k
b

it
/

s)

DART AODV DSR DSDV

Fig. 8. Overhead vs. Flow Count: UDP/CBR flows, 200 Nodes. Total DART
overhead is constant with respect to flow count.

DSDV causes total routing overhead to grow quadratically
with network size. DART, on the other hand, maintains a
relatively low overhead throughout the simulated range.
Naturally, total overhead will grow at least linearly with
network size, as each node periodically performs a local
broadcast of its routing table. However, DART overheadper
node grows logarithmically, as suggested by the logarithmic
size routing tables reported in Fig 5. For this experiment,
the overhead of AODV grows approximately proportional to
the number of flows (50), and the size of the network. DSR
overhead, due to aggressive route caching policy, grows at a
rate similar to that of DART. However, as we shall see, this
policy also results in frequent routing failures due to bad cache
entries, and consequently dismal overall performance.

In our next experiment, we examine routing protocol over-
head with respect to the number of flows. Here, we used a
network size of 200 nodes.

0

50

100

150

200

250

1 10 20 50 100 250 500

Flow Count

T
h

ro
u

g
h

p
u

t
(k

b
it

/
s)

DART AODV DSR DSDV

Fig. 9. Throughput vs. Flow Count: UDP/CBR flows, 200 Nodes.

0

500

1000

1500

2000

2500

1 10 20 50 100 250 500

Flow Count

T
h

ro
u

g
h

p
u

t
(k

b
it

/
s)

DART AODV DSR DSDV

Fig. 10. Throughput vs. Flow Count: FTP flows, 200 Nodes.

Figure 8 shows that AODV and DSR overhead has an
approximately linear relationship with flow count, whereas
the overhead of DSDV and DART are unaffected by this
parameter, due to their proactive route establishment.The
overhead of the reactive protocols overtake that of DART very
quickly, but even the high constant overhead of DSDV in a
200 node network is exceeded by AODV as the number of
active flows exceeds 100.

D. Throughput

DART was designed with scalability in mind, and no tuning
has been applied to optimize for throughput. Nevertheless, we
are interested in comparing the relative performance of DART
and several popular routing protocols.

Next, we study the throughput achieved by the four proto-
cols, using a varying number of UDP/CBR and FTP flows
respectively. Figure 9 shows the proactive DSDV and
DART remaining largely unaffected as the number of
flows increases. As the number of flows increases, AODV’s

12

0

20

40

60

80

100

120

140

160

0 200 400 600 800 1000

Network Size (Nodes)

T
h

ro
u

g
h

p
u

t
(k

b
it

/
s)

DART AODV DSR DSDV

Fig. 11. Throughput vs. Network Size (Nodes): 100 UDP/CBR flows.

0

200

400

600

800

1000

1200

1400

1600

1800

0 200 400 600 800 1000

Network Size (Nodes)

T
h

ro
u

g
h

p
u

t
(k

b
it

/
s)

DART AODV DSR DSDV

Fig. 12. Throughput vs. Network Size (Nodes): 100 FTP flows.

overhead eats up its initial performance advantage.A slight
decrease in throughput for the UDP/CBR case is expected, as
inter-flow interference will increase with increasing number of
flows. For the FTP case, illustrated in Figure 10, all protocols
improve with flow count, since the likelihood that short flows
will appear increases. These flows will achieve relatively high
throughput, due to the elasticity of FTP transfers. However, it
is not clear that achieving high throughput on short, perhaps
one-hop, paths is a useful measure of success for a routing
protocol.

Finally, we study throughput achieved under varying net-
work size. Here, we choose to keep the number of connections
at a fixed 100, and vary only the network size. This should
give us a good idea of protocol scalability with respect to net-
work size. When connection end-points are chosen randomly
and uniformly, it is natural for any protocol to see reduced
throughput with increasing network size, due to increasing
average path length, and increasing routing protocol overhead.
On the other hand, there is also a gain in spatial diversity, if

node density is kept constant, which cancels out some of this
loss. In our experiments, all protocols except DART experience
throughput reduction as network size increases. Referring to
figure 7, we believe this is due to excessive overhead on
for AODV and DSDV, whereas DSR is experiencing a high
level of routing failures as network size goes beyond 200.
In figures 11 and 12 DART shows performance similar
to other protocols for the smaller network sizes, but
shows a decidedly more favorable trend as network size
increases. AODV manages to achieve good throughput in
the FTP scenario, likely due to short routes getting a majority
of the traffic. However, in the UDP scenario, where such
adaptation is not performed, DART easily outperforms all
other protocols. Due to the small and constant overhead of
DART, DART is the only protocol out of the four that shows
promise for large networks.

With these throughput results, we want to demonstrate that
dynamic addressing is a feasible and promising approach to
creating a scalable routing protocol, in that its performance
is on par with flat routing protocols, while its overhead is
significantly less than these. We would like to point out that
while DSR and AODV have many years of optimization work
behind them, DART as presented here is in its most basic form,
naturally leading to a performance disadvantage in smaller
networks. We fully expect there to be significant opportunities
for optimization of our protocol, and we outline some of these
in the following section.

IX. OVERHEAD AND WORSTCASE ANALYSIS

In this section, we analyze the performance of our address
allocation scheme analytically and with qualitative arguments.
The analysis suggests that dynamic addressing seems very
promising for scalability.

First, we examine two types of topologies that pose a
challenge to our address allocation scheme. We provide a
solution to the case of star-like topologies, and argue that string
topologies can be expected not to be a problem in realistic
scenarios.

Second, we compare the overhead incurred with proactive
and reactive ad hoc routing protocols. We develop an analytical
framework and find the regime in which proactive protocols
are more efficient than their reactive counterparts in terms of
overhead. We argue that operations in this regime are typical
in practical, large scale, scenarios.

A. Topology and Address Allocation

We examine the efficiency of dynamic addressing in terms
of the address space we need for assigning legitimate unique
addresses ton nodes.

Lower bound. How many bits of address do we need
in order to give every node in a sizen network a unique
address? The tight lower bound is obviouslylog2 n bits.All
flat addressing schemes can be expected to achieve this lower
bound.

Dynamic addressing needs a larger address space given the
prefix subgraph constraint. The constraint precludes nodes that
are far apart from having nearby addresses in the address

13

space. Therefore, any arbitrary available addresses is not
necessarily legitimate for any new or re-locating node.

How much larger can the address space become? This
depends on the topology of the network. We study some
typical and extreme topologies to obtain an intuitive feeling.

Uniformly Random Topologies. For the case where the
network can be described as a uniformly random topology,
we refer to the simulation results in section VIII. These
results, although clearly representing sub-optimal solutions,
nevertheless show an average routing table size of less than
2 log2 n, or O(log2 n).

Star-like Topologies. A star topology presents a differ-
ent challenge for dynamic addressing. A star consists of
one central node in the middle, and a large number of
peripheral nodes connected to the central node without hav-
ing any connectivity between themselves. Due to the prefix
subgraph constraint, the peripheral nodes cannot belong to
the same address subtree, unless the central node is in-
cluded. Assuming that the central node has address [000..0],
its neighbors will be compelled to choose addresses like
[100..0],[010..0],[001..0]...[000..1]. There are onlyl such ad-
dresses, and this is the limit on the number of peripheral nodes
that we can support.

Is this a realistic scenario? We claim that for a high-
degree node with disconnected neighbors to exist in an 802.11
network, it must have more than one network interfaces. We
then present a solution to this specific problem. The solution
depends to some extent on the type of network, the related
technology, and the environment of deployment.

Omnidirectional antennas.The star-like topology is not a
concern in a typical ad hoc network with omnidirectional
antennas. In this context, it is unrealistic to have more than
a handful of neighbors that do not hear each other12. If we
consider natural obstacles and other effects, the number of
such neighbors can increase, but we need a really peculiar
landscape for the number to become large.

Multiple Network Interfaces.Due to the inherent scalability
problems in today’s wireless MAC and physical layers, we are
compelled to consider networks where wires and fixed direc-
tional antennas play a role in providing additional bandwidth.

This could, for example, involve a purely wired router
with several wired interfaces, a wireless base station, or a
wireless node with directional antennas. In these cases, the
node could have an arbitrary number of neighbors that would
be disconnected were it not for this node.

The solution, which solves this problem completely, is
to assign a distinct address to each network interface. The
node with several interfaces can assign valid addresses to
its interfaces according to any criteria it wishes, and, most
importantly, can balance the address space across all the
interfaces. By enforcing a locally balanced address space, it
ensures a locally optimal address allocation, thereby almost
completely eradicating the risk of running out of address
space.

String topologies. A string topology is our worst case
scenario. This is not due to the prefix subtree constraint, but is

12This is easily proven with geometry. In the simple case, one can show
that this number is at most 5.

specific to the particular order in which we choose to assign
addresses in the current version of our protocol. Consider a
string of nodesu0, u1, . . . , un−1, placed in that order. Assume
thatu0 initiates the network, and takes address [000..0]. Then
the subsequently joining nodes, will get addresses [100..0],
[110..0],[111..0]...[111..1], foru1 to un−1 respectively, ac-
cording to our address allocation scheme.

With l-bit addresses, the address space could potentially be
depleted at the most recently joined node when the network
size isl + 1. With l = 128, the routing table can hold strings
of at least 129 nodes, and at most 256 nodes, depending on
the position of the [000...0] node. One might expect that string
topologies of this length will be extremely uncommon.

In section X, we describe a patch that can enable nodes to
join and communicate without having a unique address, by
sharing an address with a neighbor.

B. The Overhead of Proactive and Reactive Routing

Here, we make a comparative analysis of the communi-
cation overhead of reactive protocols and proactive protocols.
Our dynamic addressing falls in the proactive routing category,
which is often criticized as power inefficient, since they
exchange messages even when there is no traffic. Reactive
routing is widely regarded as the technique of choice for ad
hoc networks, but these protocols all rely on some form of
flooding to identify paths on demand. We will demonstrate that
the use of flooding for route establishment causes scalability
problems in large networks with many active connections.

The focus here is the communication overhead, which we
define as the number of non-data bytes transferred. This is
necessary to account for the size of the control packets, since
in some cases this increases with the size of the network. This
definition also captures the additional overhead of data packets
in source routing.

We start by identifying a key parameter: the arrival rate of
connections, or the connection establishment frequency (CEF).
The overhead of reactive protocols is tightly coupled with the
connection arrival rate. Each new connection requires at least
one route search which in the reactive protocols requires a
flooding of the network13, which usesO(n) messages in ann
node network. In a proactive protocol, the number of update
messages isO(n) per update period and it is independent of
the number of connections. Let us define one update period to
be ourunit of time . Intuitively, if one flooding route lookup
is performed per unit of time by any node in the network,
reactive routing begins to exhibit higher message overhead
than proactive routing.

Note that the analysis here is qualitative. We attempt to
capture the general trends of the behavior of the two ap-
proaches. Although simplifications are inevitable, the analysis
is representative of the nature of the two approaches.

For simplicity, we do not consider mechanisms that do not
affect the asymptotic performance. For example, we expect
that route caching, path overhearing and local route repairs

13We can deploy caching, expanded ring search or other techniques in an
attempt to limit the extent of a flood, but asymptotically the cost is the same.

14

can lead to significant, but nevertheless constant factor im-
provements.

Reactive protocol overhead.Let us define some parameters
that define the performance of the reactive protocols.

rrc(n)The cost of a single route request.
cef(n)The rate of connection establishment.
rrr(n)The rate of repeated route requests.

Here,cef(n) is related to the size of the network, the total
offered load, and the average connection duration.rrr(n) is
primarily related to the size of the network and node movement
and other causes of route failure. Excessive offered load could
also have an effect since it is known to cause false link
failures in wireless networks. With the above definitions, we
can quantify the per-time-unit routing overhead,React(n), of
reactive protocols as follows:

React(n) = O(rrc(n) · cef(n) + rrc(n) · rrr(n)) (1)

Data Packet Overhead.Reactive protocols with source
routing can have significant data packet overhead. In source
routed protocols, such as DSR, the overhead of sending the
route with every packet dominates this equation when mobility
is low and traffic volume is high. The per-packet overhead
grows linearly with the path length,

PackOver(n) = O(path(n)).

How does the average path length,path(n), grow as a
function of the size? This depends on both the topology
and the distribution of pairs of nodes that communicate. For
asymptotic analysis, it is fair to assume that the average
distance between communicating pairs is a constant fraction
of the diameter of the network.

In a two dimensional ad hoc network with homogenous
omnidirectional nodes, we expect that the path length will be
path(n) = O(

√
n) if the nodes are uniformly distributed. In

this environment, strict source routing is probably not feasible
for large networks. For the remainder of this discussion, we
will focus on the routing message overhead only.

Proactive protocol overhead.The overhead of a proactive
protocol, can be described with a single parameter,size(n),
the average size of a single routing update. Hence, we have
the following formulation for the per-time-unit overhead of
proactive protocols,

Proact(n) = O(n · size(n)). (2)

Depending on the approach taken, the average routing table
size can vary significantly.

Flat addressing.Recall that some approaches for proactive
routing, such as DSDV [13], use flat addressing. The size of
the routing table,size(n), increases linearly with the number
of nodesn; size(n) = O(n). Asymptotically, for a really large
n, nodes are so busy transmitting the routing table, that they
cannot transmit anything else.

Dynamic addressing or hierarchical routing. As men-
tioned earlier in this section, the average routing table size
when using dynamic addressing isO(log n).

When do proactive protocols incur less overhead than re-
active protocols? The question is captured in the following
inequality.

Proact(n) ≤ React(n) (3)

We need to assign values to these quantities in order to
identify the regime in which the inequality holds. As explained
above, it is reasonable to assume that the message overhead
of a reactive route lookup is:rrc(n) = O(n). Accordingly,
inequality 3, skipping theO-notation, and dividing byn,
becomes the following:

size(n) ≤ cef(n) + rrr(n) (4)

We already know that for hierarchical routing based on
dynamic addressing,size(n) = O(log2 n), so we arrive at
the following14:

log2 n ≤ cef(n) + rrr(n) (5)

When is this condition satisfied? Clearly, it is true for a
sufficiently high connection establishment rate. We believe that
it is true in any realistic network for sufficiently largen. To
see why, consider a network where all nodes have a small,
constant probability of establishing a connection during a unit
of time. In this network, the connection establishment rate
increases linearly with network size, whereas the size of the
proactive routing updates grows logarithmically with network
size. According to asymptotic analysis, at some point the
cost of establishing connections in the reactive protocol will
surpass the cost of the periodic routing updates in the proactive
protocol. The actual sizes and connection establishment rates
necessary to achieve this depend on the protocols involved and
can be determined through experimentation. We conclude that
for sufficiently large networks and/or high connection estab-
lishment rates, proactive routing using our dynamic addressing
approach is likely to scale better than any purely reactive
routing protocol.

X. D ISCUSSION

In this section, we briefly discuss several optimization
mechanisms, and implementation issues for our addressing
approach. First, we outline ideas of how we can optimize
the routing update frequency by making it adaptive to the
network needs. Second, we discuss how we can improve the
network stability by assigning node identifiers according to
the expected behavior of the node. Third, we outline our on-
going efforts on security. Finally, we discuss implementation
issues of our approach and discuss its interoperability with the
Internet.

14Hierarchical routing will invariably incur path stretch. However, our
simulation results indicate that path stretch is constant with respect to network
size in our protocol.

15

A. Optimizing Routing Updates

Here, we present two opportunities for improving the per-
formance of our dynamic addressing scheme.

Adaptive Routing Update Frequency. We are currently
evaluating the merit of a locally adaptive scheme for the
routing update rate. Determining the correct frequency for
the routing updates is important for good performance. A
fixed update frequency will not be suitable for all operational
conditions. A high frequency means good response to highly
mobile scenario, but it could lead to waste of resources in a
slower moving phase.

Triggered Updates for Improved Convergence Time.We
are evaluating mechanisms to improve the convergence speed
of the routing information. Apart from the periodic updates,
we are considering triggered updates in response to routing
changes. Such a mechanism exists in DSDV, which also uses
periodic routing updates [13]. The downside is that triggered
updates increase the overhead of the protocol, and could cause
detrimental ripple effects throughout the network.

B. Assignment of Node Identifiers and Robustness

The assignment of node identifiers can have significant im-
pact on the performance, since the ”lower-id” rule is often used
to resolve a conflict. By assigning lower identifier numbers to
more reliable nodes, we can achieve increased performance
and stability. For example, stationary base stations are highly
reliable and less likely to move away. If we have several base
stations with low identifiers and interconnect them by reliable
means, we can ensure that the address space in an entire region
maintains a balanced and stable structure, even as high-speed
mobile nodes move through it.

In contrast, we want to assign high identifiers to “volatile”
devices such as mobile phones and PDAs. These move both
quickly and frequently, and are likely to be turned off. By
assigning higher identifiers to these types of units, their volatile
behavior will not affect the network at large. The assignment
of these identifiers can be done during manufacturing, just like
the MAC address of network interface cards.

C. Use of Routing Metrics

In this work, we have only made use of a hop-count
metric for routing. Other metrics exist that could substantially
improve routing performance, and nothing precludes the use
of such metrics in a dynamic address routing protocol. It
should be noted that DART, like any other protocol that
uses hierarchical types of routing, cannot provide guarantees
for finding the minimum cost path to any given destination.
Instead, DART finds the minimum cost path to a given subtree,
and once in that subtree finds the minimum path cost to the
next, lower-level, subtree. This will invariably lead to some
amount of path stretch, as illustrated in Section VIII. Path
stretch is the price we must pay for small routing tables.

D. Using Additional Neighbor Information

The routing scheme described above limits the internal
routing table of nodes to one entry per sibling subtree.

However, some nodes will likely receive routing updates
from several nodes within the same sibling subtree. A trivial
optimization would be to allow nodes to use all the routing
information received from their neighbors, to find the best
next hop. However, the information broadcast in their routing
updates would still contain only one entry per level, with no
modification as compared to the original scheme.

E. Coping with Temporary Route Failures

In some cases, a route to the given destination address may
not be available, even though the network is connected, and all
address allocations are correct. Such temporary route failures
can be the result of route propagation delay; when a shorter
route breaks, there is an interval of time where nodes are not
aware of the route breakage, and a new longer route has not
yet been established.

In this situation, the default action by a router that finds
itself without a valid path would be to drop the packet, and
potentially send a ”no such route” message back to the sender.
However, if such failures are common, given a certain mobility
scenario, it may be a better idea to delay for some amount of
time to allow the new route to be established.

F. Coping with Destination Address Changes

In other cases, the destination address may not be routable
because the node that used to be there has changed its
address. Here, the last router on the path is faced with a
choice; it can notify the sender that there is no route to the
destination address, thereby prompting the sender to perform
a new lookup operation. Alternatively, it can do the lookup
operation on its own and forward the packet to the destination
node’s new address. Clearly, the source needs to be notified of
the address change. However, in a scenario of bi-directional
communication, such as with TCP flows, it would be more
economical to have the destination node notify the source in
the next outgoing packet, than to have the source perform a
new lookup operation. In addition, dropping the packet may
not be desirable if low packet loss is important in higher
layers of the network stack. Finally, given the lookup table
optimizations described in the next section, there can be a
significant cost advantage to performing a lookup operation
from a node close to the intended destination, as opposed to a
node far away from said destination. All these factors need to
be taken into consideration when deciding whether to fail easy
and drop a packet, or to buffer the packet and more reliably
forward them to their new destination address.

G. Handling Address Space Exhaustion

We will now provide a solution to temporarily extend
connectivity even when the address space is locally exhausted.
The key idea is that an existing node can act as a gateway for
a joining node that cannot obtain a legitimate address. This
is in many ways similar to a Network Address Translation
(NAT) firewall. As far as the larger network is concerned, the
gateway simply has many identifiers mapped to its address.
In the subnet on the inside of the gateway node, a separate

16

address space is used, with plenty of space for new nodes.
When a gateway receives a packet from the larger network,
it looks up the “inner” address of the specified identifier, and
forwards it to this address in the inside network. We omit
further details due to space constraints.

H. Security

Our focus is to establish the feasibility of dynamic ad-
dressing as a way to achieve scalability in ad hoc routing.
Security is a constraint that needs to be addressed in a practice,
but it extends beyond the scope of this paper. The goal of
our current security work is to provide the routing layer
with ”sabotage resistance”. Here, sabotage resistance means
a robustness against false route advertisements, such that an
attacker can only affect a limited portion of the network, over a
limited time span. Recently, several pioneering routing security
approaches have been developed [30] [31] [32] [33] and we
are using their results to guide our effort.

I. Implementation and Deployment Issues

We intend to develop and release a prototype implementa-
tion of our protocol for Linux and Mac OS X in the near future.
For a realistic implementation of the protocol, it will be crucial
to be able to: (i) support the use of IP-based applications such
as web browsers and email readers, (ii) provide a way to access
Internet resources, and (iii) connect several of these networks
over the Internet.

We expect to solve (i) by hiding the workings of our
routing protocol to the application layer. Essentially, we let
the node identifiers be IP addresses in the10.*.*.* 15

range, and wedge our routing layer between the IP and mac
layers in the protocol stack, thereby hiding the dynamically
allocated routing address from the higher layers and preserving
compatibility. Issue (ii) can be handled by Network Address
Translation on gateway nodes connected to the Internet. Fi-
nally, our plan is to solve (iii) by way of an overlay network of
gateways that tunnel packets through the Internet. All of these
solutions are proven techniques, and this makes the integration
our protocol with the current Internet infrastructure a feasible
goal.

XI. CONCLUSION

In this paper, we propose Dynamic Address RouTing, an
initial design toward scalable ad hoc routing. We outline the
novel challenges involved in a dynamic addressing scheme,
and proceeded to describe efficient algorithmic solutions.
We show how our dynamic addressing can support scalable
routing. We demonstrate, through simulation and analysis, that
our approach has promising scalability properties and is a
viable alternative to current ad hoc routing protocols.

First, we qualitatively compare proactive and reactive over-
head and determine the regime in which proactive routing
exhibits less overhead that its reactive counterpart. Large scale
simulations show that the average routing table size with
DART grows logarithmically with the size of the network.

15This is range of addresses reserved for local use in IP networks.

Further simulations show a constant average path stretch of
about 30-35%, which is reasonable when compared to what is
observed in the Internet today.

Second, using the ns-2 simulator, we compare our routing
scheme to AODV, DSR and DSDV, and observe that our
approach achieves superior throughput, and with considerably
smaller overhead, in networks larger than 400 nodes. The trend
in simulated overhead, together with the analysis provided,
strongly indicate that DART is the only feasible routing
protocol for large networks. Finally, we describe a number
of proposed optimizations to our protocol, which can further
improve the performance of our dynamic addressing approach.

The motivation behind this work was to challenge the status
quo in ad hoc routing. We believe that dynamic addressing can
be the basis for ad hoc routing protocols that for massive ad
hoc and mesh networks.

XII. A CKNOWLEDGEMENTS

This work was supported by the NSF CAREER grant ANIR
9985195, DARPA award NMS N660001-00-1-8936, NSF
grant IIS-0208950 TCS Inc., DIMI matching fund DIM00-
10071, and DARPA award FTN F30602-01-2-0535.

REFERENCES

[1] Jakob Eriksson, Michalis Faloutsos, and Srikanth Krishnamurthy, “Scal-
able ad hoc routing: The case for dynamic addressing,” inIEEE
InfoCom, 2004.

[2] Nicholas Negroponte, “Being wireless, 2002,”
www.wired.com/wired/archive/10.10/wireless.html.

[3] PersonalTelco Project, “Personaltelco,” www.personaltelco.com.
[4] “Consume.net project: Trip the loop, make your switch, consume the

net!,” www.consume.net.
[5] “Wireless anarchy,” www.wirelessanarchy.com.
[6] Brett Warneke, Matt Last, Brian Liebowitz, and Kristofer S. J. Pister,

“Smart dust: Communicating with a cubic-millimeter computer,”Com-
puter, vol. 34, no. 1, pp. 44–51, 2001.

[7] Ram Ramanathan and Martha Steenstrup, “Hierarchically-organized,
multihop mobile wireless networks for quality-of-service support,”Mo-
bile Networks and Applications, vol. 3, no. 1, pp. 101–119, 1998.

[8] Guangyu Pei, Mario Gerla, Xiaoyan Hong, and Ching-Chuan Chiang, “A
wireless hierarchical routing protocol with group mobility,” inWCNC,
1999.

[9] G. Pei, M. Gerla, and X. Hong, “Lanmar: Landmark routing for
large scale wireless ad hoc networks with group mobility,” inACM
MobiHOC’00, 2000.

[10] X. Hong, M. Gerla, G. Pei, and C. Chiang, “A group mobility model
for ad hoc wireless networks,” 1999.

[11] J. Eriksson, M. Faloutsos, and S. Krishnamurthy, “Peernet: Pushing
peer-2-peer down the stack.,” inIPTPS, 2003.

[12] C. Perkins, “Ad hoc on demand distance vector routing,” 1997.
[13] Charles Perkins and Pravin Bhagwat, “Highly dynamic destination-

sequenced distance-vector routing (DSDV) for mobile computers,” in
ACM SIGCOMM’94, 1994.

[14] David B Johnson and David A Maltz, “Dynamic source routing in ad hoc
wireless networks,” inMobile Computing, vol. 353. Kluwer Academic
Publishers, 1996.

[15] S. Basagni, I. Chlamtac, V. R. Syrotiuk, and B. A. Woodward, “A
distance routing effect algorithm for mobility (DREAM),” inACM/IEEE
MobiCom, 1998.

[16] Y.-B. Ko and N.H. Vaidya, “Location-aided routing (LAR) in mobile
ad hoc networks,” inACM/IEEE MobiCom, 1998.

[17] Xiaoyan Hong, Kaixin Xu, and Mario Gerla, “Scalable routing protocols
for mobile ad hoc networks,”IEEE NETWORK, vol. 16, no. 4, 2002.

[18] Z. Haas, “A new routing protocol for the reconfigurable wireless
networks,” 1997.

[19] Guangyu Pei, Mario Gerla, and Tsu-Wei Chen, “Fisheye state routing:
A routing scheme for ad hoc wireless networks,” inICC (1), 2000, pp.
70–74.

17

[20] Paul F. Tsuchiya, “The landmark hierarchy : A new hierarchy for routing
in very large networks,” inSIGCOMM. 1988, ACM.

[21] Benjie Chen and Robert Morris, “L+: Scalable landmark routing and
address lookup for multi-hop wireless networks,” 2002.

[22] L. Kleinrock and F. Kamoun, “Hierarchical routing for large networks:
Performance evaluation and optimization,,”Computer Networks, vol. 1,
1977.

[23] Aline C. Viana, Marcelo D. de Amorim, Serge Fdida, and Jos F.
de Rezende, “Indirect routing using distributed location information,”
ACM Mobile Networks Applications, Special Issue on Mobile and
Pervasive Computing, 2003.

[24] A. Rao, S. Ratnasamy, C. Papadimitriou, S. Shenker, and I. Stoica,
“Geographic routing without location information,” inACM MobiCom,
2003.

[25] James Newsome and Dawn Song, “Gem: graph embedding for routing
and data-centric storage in sensor networks without geographic infor-
mation,” in SenSys ’03: Proceedings of the 1st international conference
on Embedded networked sensor systems, New York, NY, USA, 2003,
pp. 76–88, ACM Press.

[26] I. Stoica, R. Morris, D. Karger, M. Kaashoek, and H. Balakrishnan,
“Chord: A scalable peer-to-peer lookup service for internet applications,”
in SIGCOMM’01. ACM, 2001.

[27] David Karger, Eric Lehman, Tom Leighton, Mathhew Levine, Daniel
Lewin, and Rina Panigrahy, “Consistent hashing and random trees:
Distributed caching protocols for relieving hot spots on the world wide
web,” in ACM Symposium on Theory of Computing, May 1997, pp.
654–663.

[28] Jungkeun Yoon, Mingyan Liu, and Brian Noble, “Random waypoint
considered harmful,” inINFOCOM, 2003.

[29] H. Tangmunarunkit, R. Govindan, and S. Shenker, “Internet path
inflation due to policy routing,” .

[30] Yih-Chun Hu, David B. Johnson, and Adrian Perrig, “Sead: Secure
efficient distance vector routing in mobile wireless ad hoc networks,” in
Fourth IEEE Workshop on Mobile Computing Systems and Applications
(WMCSA ’02), June 2002, pp. 3–13.

[31] Yih-Chun Hu, Adrian Perrig, and David B. Johnson, “Ariadne: A secure
on-demand routing protocol for ad hoc networks,” inProceedings of
the Eighth Annual International Conference on Mobile Computing and
Networking(MobiCom 2002), Sept. 2002.

[32] Lidong Zhou and Zygmunt J. Haas, “Securing ad hoc networks,”IEEE
Network, vol. 13, no. 6, pp. 24–30, 1999.

[33] Sergio Marti, T. J. Giuli, Kevin Lai, and Mary Baker, “Mitigating routing
misbehavior in mobile ad hoc networks,” inMobile Computing and
Networking, 2000, pp. 255–265.

