
Aggregated Multicast: an Approach to Reduce Multicast State

Aiguo Fei, Junhong Cui, Mario Gerla, Michalis Faloutsos
Computer Science Department Computer Science & Engineering

University of California University of California
Los Angeles, CA 90095 Riverside, CA 92521

Abstract—IP multicast suffers from scalability problem with the number of
concurrently active multicast groups because it requires a router to keep for-
warding state for every multicast tree passing through it and the number of for-
warding entries grows with the number of groups. In this paper, we propose
an approach to reduce multicast forwarding state. In our approach, multiple
groups are forced to share a single delivery tree. We discuss the advantages and
some implementation issues of our approach, and conclude that it is feasible and
promising. We then propose metrics to quantify state reduction and analyze the
bounds on state reduction of our approach. Finally, we use simulations to verify
our analytical bounds and quantify the state reduction. These initial simulation
results suggest that our method can reduce multicast state significantly.

I. I NTRODUCTION

Multicast state scalability is the problem we address in this
work. Multicast is a mechanism to efficiently support multi-
point communications. IP multicast utilizes a tree delivery
structure, on which data packets are duplicated only at fork
nodes and are forwarded only once over each link. This ap-
proach makes IP multicast resource-efficient in delivering data
to a group of members simultaneously and can scale well to sup-
port very large multicast groups. However, even after approxi-
mately 20 years of multicast research and engineering effort, IP
multicast is still far from being as common-place as the Internet
itself.

Multicast state scalability is among the technical difficul-
ties that delay its deployment. In unicasting, address aggrega-
tion coupled with hierarchical address allocation has helped to
achieve scalability. This can not be done for multicasting easily
if not impossible at all, since a multicast address corresponds
to a logical group and does not convey any information on the
location of its members. A multicast distribution tree requires
all tree nodes to maintain per-group(or even per-group/source)
forwarding state, which grows at least linearly with the num-
ber of “passing-by” groups. As multicast gains widespread use
and the number of concurrently active groups grows, more and
more forwarding state entries will be needed. More forwarding
entries translates into more memory requirement, and may also
lead to slower forwarding process since every packet forwarding
involves an address look-up. This perhaps is the main scalabil-
ity problem with IP multicast when the number of simultaneous
on-going multicast sessions is very large.

Recently, significant research effort has focused on the prob-
lem of multicast state scalability. Some schemes attempt to re-
duce forwarding state by tunneling[12] or by forwarding state
aggregation[8, 11]. Thaler and Handley analyze the aggre-
gatability of forwarding state in[11] using an input/output fil-
ter model of multicast forwarding. Radoslavov et al. pro-
pose algorithms to aggregate forwarding state and study the
bandwidth-memory tradeoff with simulation in [8]. Both these
works attempt to aggregate routing state after this has been allo-
cated to groups. Second, some other architectures aim to com-
pletely eliminate multicast state at routers [4, 9] using network-
transparent multicast, which pushes the complexity to the end-

points.
In this paper, we propose a novel scheme to reduce multicast

state, which we call aggregated multicast. Our difference with
previous approaches is that we force multiple multicast groups
to share one distribution tree, which we call anaggregated tree.
This way the total number of trees in the network may be sig-
nificantly reduced and thus forwarding state: core routers only
need to keep state per aggregated tree instead of per group. In
this paper we examine several design and implementation issues
of our scheme and study the problem analytically deriving some
bounds on the reduction of state. We will also present results
from our initial simulation experiments in which our scheme
achieves significant state reduction in the worst case scenario
where group members have no spatial locality at all.

The rest of this paper is organized as follows. Section II in-
troduces the concept of aggregated multicast approach and dis-
cusses some implementation related issues. Section III proposes
metrics to quantify multicast state reduction in aggregated mul-
ticast and analyzes the bounds on reduction ratios and presents
simulation results. Section IV gives a short summary of our
work.

II. A GGREGATEDMULTICAST

Aggregated multicast is targeted as an intra-domain multicast
provisioning mechanism in the transport network. For example,
it can be used by an ISP (Internet Service Provider) to provide
multi-point data delivery service for its customers and peering
neighbors in its wide-area or regional backbone network (which
can be just a single domain). The key idea of aggregated mul-
ticast is that, instead of constructing a tree for each individ-
ual multicast session in the core network (backbone), one can
have multiple multicast sessions share a single aggregated tree
to reduce multicast state and, correspondingly, tree maintenance
overhead at network core.

A. Concept

Fig. 1 illustrates a hierarchical inter-domain network peering.
Domain A is a regional or national ISP’s backbone network,
and domain D, X, and Y are customer networks of domain A
at a certain location (say, Los Angeles). Domain B and C can
be other customer networks (say, in New York) or some other
ISP’s networks that peer with A. A multicast session originates
at domain D and has members in domain B and C. Routers D1,
A1, A2, A3, B1 and C1 form the multicast tree at the inter-
domain level while A1, A2, A3, Aa and Ab form an intra-
domain sub-tree within domain A (there may be other routers
involved in domain B and C). The sub-tree can be a PIM-SM
shared tree rooted at an RP (Rendezvous Point) router (say, Aa)
or a bi-directional shared CBT (Center-Based Tree) tree cen-
tered at Aa or maybe an MOSPF tree. Here we will not go into
intra-domain multicast routing protocol details, and just assume

Ab

Domain B

Domain C

A2

A3

Domain A

B1

C1

Aa

D1

Customer network, domain D

A1

X1

Y1
Domain X

Domain Y

Fig. 1. Domain peering and a cross-domain multicast tree, tree nodes: D1, A1,
Aa, Ab, A2, B1, A3, C1, covering groupG0(D1, B1, C1).

that the traffic injected into router A1 by router D1 will be dis-
tributed over that intra-domain tree and reaches router A2 and
A3.

Consider a second multicast session that originates at domain
D and also has members in domain B and C. For this session, a
sub-tree with exactly the same set of nodes will be established
to carry its traffic within domain A. Now if there is a third multi-
cast session that originates at domain X and it also has members
in domain B and C, then router X1 instead of D1 will be in-
volved, but the sub-tree within domain A still involves the same
set of nodes: A1, A2, A3, Aa, and Ab. To facilitate our discus-
sions, we make some distinctions among these nodes. We call
node A1 asource nodeat which external traffic is injected, and
node A2 and A3exit nodeswhich distribute multicast traffic
to other networks, and node Aa and Abtransit nodes which
transport traffic in between. In a bi-directional inter-domain
multicast tree, a node can be both a source node and an exit
node. Source nodes and exit nodes together are calledterminal
nodes. Using the terminologies commonly used in DiffServ[2],
terminal nodes are oftenedgerouters and transit nodes are often
corerouters in a network.

In conventional IP multicast, all the nodes in the above exam-
ple that are involved within domain A must maintain separate
state for each of the three groups individually though their mul-
ticast trees are actually of the same “shape”. Alternatively, in
an aggregated multicast approach, one can setup a pre-defined
tree(or establish on demand) that covers nodes A1, A2 and A3
using a single multicast group address (within domain A). This
tree is called anaggregated tree(AT) and it is shared by all
multicast groups that are covered by it and are assigned to it.
We say an aggregated treeT coversa groupG if all terminal
nodes forG are member nodes ofT . Data from a specific group
is encapsulated at the source node. It is then distributed over
the aggregated tree and decapsulated at exist nodes to be further
distributed to neighboring networks. This way, transit router Aa
and Ab only need to maintain a single forwarding entry for the
aggregated tree regardless how many groups are sharing it.

B. Implementation Considerations

It is not our goal to establish an architecture or provide pro-
tocol details for aggregated multicast in this paper. However, a
high-level overview of how it can be implemented in practice
will provide a reality check which helps validate our work and
provides some insights regarding its advantages and drawbacks.

First of all, there are a couple of possibilities to distribute
multicast traffic of different groups over a shared aggregated
tree. For any implementation, there are two requirements:
(1)original group addresses of data packets must be preserved
somewhere and can be recovered by exit nodes to determine

how to further forward these packets; (2)some kind of identifi-
cation for the aggregated tree which the group is using must be
carried and transit nodes must forward packets based on that.
One possibility is to use IP encapsulation as said above, which,
of course, adds complexity and processing overhead (at termi-
nal nodes). Another potentially much better possibility is to use
MPLS (Multiprotocol Label Switching)[10] in which labels can
identify different aggregated trees.

To handle aggregated tree management and matching be-
tween multicast groups and aggregated trees, a centralized man-
agement entity calledtree manageris introduced. A tree man-
ager has the knowledge of established aggregated trees in the
network and is responsible for establishing new ones when nec-
essary. It collects (inter-domain) group join messages received
by border routers and assigns aggregated trees to groups. Once
it determines which aggregated tree to use for a group, the tree
manager can install corresponding state at those terminal nodes
involved, or distribute corresponding label bindings if MPLS is
used. Aggregated tree construction within the domain can use
an existing routing protocol such as PIM-SM, or use a central-
ized approach like what proposed in centralized multicast[5], or
use MPLS signaling protocols extensions proposed in [6] which
allow the establishment of pre-calculated trees.

The set of aggregated trees to be established can be deter-
mined based on traffic pattern from long-term measurements.
Let us say, for example, measurements in MCIWorldcom’s na-
tional backbone show that there are always many concurrent
multicast sessions that involve three routers in Los Angeles,
San Francisco and New York. Based on that knowledge, a net-
work operator can instruct the tree manager to setup an aggre-
gated tree covering routers in these three locations. Aggregated
trees can also be established, changed (to add/remove nodes)
or removed dynamically based on dynamic traffic monitoring.
Knowing a set of existing aggregated trees, a tree manager can
“match” a specific group, given group membership (set of ter-
minal nodes) information, to an aggregated tree that covers the
group (i.e., all terminal nodes are member nodes of the tree).

C. Discussions

A related motivation for aggregated multicast is how to sim-
plify the provisioning of multicast with QoS guarantees in fu-
ture QoS-enabled networks. Regarding QoS support, per-flow-
based traffic management requirement of Integrated Services[3]
does not scale. That is why, today providers are backing away
from it and are moving towards aggregated flow based Differ-
entiated Services[2]. The intrinsic per-flow nature of multicast
may be problematic for DiffServ networks especially in provi-
sioning multicast with guaranteed service quality. Aggregated
multicast can simplify and facilitate QoS management for mul-
ticast by pre-assignment of resource/bandwidth (or reservation
on demand) in a smaller number of shared aggregated trees. A
centralized tree manager coupled with admission control and
policing atsourcenodes (at network edge) then can do the same
for multicast as what bandwidth broker does for point-to-point
flows in DiffServ. Aggregated multicast may thus pave the way
for ISP’s to provide bandwidth guaranteed service of simulta-
neous multi-point data distribution.

A number of benefits of aggregation are apparent. First of all,
transit nodes don’t need to maintain state for individual groups;
instead, they only maintain forwarding state for a potentially
much smaller number of aggregated trees. On a backbone net-

work, core nodes are the busiest and often they are transit nodes
for many “passing-by” multicast sessions. Relieving these core
nodes from per-micro-flow multicast forwarding enables better
scalability with the number of concurrent multicast sessions. In
addition, an aggregated tree doesn’t go away or come up as in-
dividual groups that use it, thus tree maintenance can be a much
less frequent process than in conventional multicast. The benefit
of control overhead reduction is also very important in helping
achieve better scalability.

There are a number of concerns that one may have with this
approach. First, it relies on a centralized tree manager for tree
management, which can be overloaded and be a single point of
failure. There are two ways of looking at this problem. First,
a variety of systems, such as clusters and processor groups,
should be able to provide the processing power and speed re-
quired – considering how amazingly many web servers scale
up; at the same time, a distributed system can remedy the sin-
gle point of failure problem. On the other hand, such reliance
is common in real life. Most core routers at prominent service
providers’ backbone networks can not fail without serious con-
sequences. One may also argue that the problem of requiring a
tree manager is no worse than that of requiring a few RP routers
in PIM-SM or a bandwidth broker in DiffServ[2]. This discus-
sion has its root in debate regarding centralized vs. decentral-
ized multicast. In practices, however, centralized approach is
indeed adopted in multicast in ATM networks[7], and central-
ized tree calculation is one possibility proposed in an MPLS
multicast traffic engineering proposal[6].

Another concern with this approach is membership dynam-
ics. The problem aries when a new exit node is added but it
is not covered by the current tree, or when an exit node leaves
the group and it may cause too much bandwidth overhead if the
current tree is still used for this size-reduced group. This can
be solved by allowing a group to switch from one tree to an-
other. While this process might be slower than in conventional
multicast and causes additional complication especially if band-
width guarantee (QoS) is involved, it is clearly doable. To avoid
membership dynamics completely, an ISP may require a cus-
tomer to provide a list of group members prior to the start of a
multicast session and not to change group membership in the fu-
ture – this is like a multi-point “VPN” (virtual private network)
service. On the other hand, one may argue that, membership
change on the backbone is very infrequent for many applica-
tions. For example, an Internet TV station may use an ISP’s na-
tional backbone to distribute its programming to local regional
networks, then to subscribers. There can be frequent member-
ship dynamics at access networks connected to subscribers, but
membership of backbone nodes is likely to be fixed or change
very slowly if there is a large population of TV viewers. An-
other example is video-conferencing in which participants are
expected to be in the group throughout the session or over a
long period of time.

In group to aggregated tree matching, complication arises
when there is noperfect match or no existing aggregated tree
covers a group. A match is aperfect or non-leaky match for a
group if all its leaf nodes are terminal nodes for the group thus
traffic will not “leak” to any nodes that do not need to receive it.
For example, the aggregated tree with nodes (A1, A2, A3, Aa,
Ab) in Fig. 1 is a perfect match for our early multicast groupG0

which has members (D1, B1, C1). A match may also be aleaky
match. For example, if the above aggregated tree is also used

for groupG1 which only involves member nodes (D1, B1), then
it is a leaky match since traffic forG1 will be delivered to node
A3 (and will be discarded there since A3 does not have state for
that group). A disadvantage of leaky match is that certain band-
width is wasted to deliver data to nodes that are not involved for
the group. Now let’s get back to the problem. When no per-
fect match is found, a leaky match may be used, if it satisfies
certain constraint (e.g., bandwidth overhead is within a certain
limit). This is often necessary since it is not possible to establish
aggregated trees for all possible group combinations. The trade-
off is bandwidth overhead vs. the benefit of aggregation. When
no existing aggregated tree covers a group, either conventional
multicast is used, or a new tree is established or an existing
tree is extended (by adding new nodes) to cover that group. Of
course, it is possible to enforce that aggregation is only applied
to groups that are covered by a set of aggregated trees estab-
lished based on long-term traffic pattern and any other group
will use conventional multicast.

III. STATE REDUCTION: ANALYSIS AND SIMULATION

In this section we attempt to quantify multicast state reduc-
tion that can be achieved using aggregated multicast. It is
worth pointing out that our approach of multicast “aggregation”
is completely different from multicast “state aggregation” ap-
proaches in [8, 11]. We aggregate multiple multicast groups
into a single tree to reduce the number multicast forwarding
entries, while their approach is to aggregate multiple multicast
forwarding entries into a single entry to reduce the number of
entries. It is possible to further reduce multicast state using their
approaches in an aggregate multicast environment. Here we
study state reduction achieved by “group aggregation” before
any “state aggregation” is applied.

A. Analysis

Without losing generality, we assume a router needs one state
entry per multicast address in its forwarding table. Here we care
about thetotal number of state entries that are installed atall
routers involved to support a multicast group in a network. In
conventional multicast, the total number of entries for a group
equals the number of nodes|T | in its multicast treeT (or sub-
tree within a domain, to be more specific) – i.e., each tree node
needs one entry for this group. In aggregated multicast, there
are two types of state entries: entries for the shared aggregated
trees and group-specific entries at terminal nodes. The number
of entries installed for an aggregated treeT equals the number
of tree nodes|T | and these state entries are considered to be
shared by all groups usingT . The number of group-specific
entries for a group equals the number of its terminal nodes be-
cause only these nodes need group-specific state.

Furthermore, We also introduce the concept ofirreducible
stateandreducible state: group-specific state at terminal nodes
is irreducible . All terminal nodes need such state information
to determine how to forward multicast packets received, no mat-
ter in conventional multicast or in aggregated multicast. For
example, in our early example illustrated by Fig. 1, node A1 al-
ways needs to maintain state for groupG0 so it knows it should
forward packets for that group received from D1 to the interface
connecting to Aa and forward packets for that group received
from Aa to the interface connecting to node D1 (and not X1 or
Y1), assuming a bi-directional inter-domain tree.

Let Na be the total number of state entries to carryn mul-
ticast groups using aggregated multicast,N0 be the total num-
ber of state entries to carry the samen multicast groups using
conventional multicast. We introduce the termoverall state re-
duction ratio – i.e., total state reduction achieved at all routers
involved in multicast, intuitively defined as

ras = 1− Na

N0
. (1)

Let Ni be the total number of irreducible state entries all these
group need (i.e., sum of the number of terminal nodes in all
groups),reducible state reduction ratio is defined as

rrs = 1− Na −Ni

N0 −Ni
, (2)

which reflects state reduction achieved at transit or core routers.
Now consider state reduction achievable with a single aggre-

gated tree. Consider an aggregated treeT with m = |T | nodes
andk0 leaf nodes (k0 ≤ m), and assume it is used as aper-
fect match for a total ofn groups each hask ≥ k0 terminal
nodes. Assume the “native” multicast tree for a groupG using
this aggregated tree isT0. Since allT ’s leaf nodes are terminal
nodes forG, it is reasonable to assumeT = T0 if both trees are
constructed using, say, CBT (or PIM-SM) with the same core
(or RP) router. If source-trees (say, rooted at a source node) are
used, they can be different, but we can assume|T | = |T0| = m
as an approximation for our discussion. Now consider multicast
state entries installed at all routers involved using two different
approaches. Using native multicast, the number of entries is
N0 = n × m (i.e., each group needs a total ofm entries atm
routers). Using aggregated multicast, the number of entries if
Na = m + n × k: the first term is the number of entries for
the aggregated tree and the second term is the number of entries
installed at terminal nodes. We get

ras = 1− m + n× k

n×m
= 1− k

m
− 1

n
. (3)

Whenn is large enough,

ras ∼ 1− k

m
≤ 1− k0

m
, (4)

which provides an upper bound onras. To achieveras > 0,
we needn > 1

1−k/m ; i.e., to “squeeze” that many of groups
into an AT. The percentage of reducible state entries that can be
eliminated by aggregated multicast is:

rrs = 1−Na − n× k

N0 − n× k
= 1− m

n(m− k)
= 1− 1

n(1− k
m)

. (5)

Whenk = m (i.e., all tree nodes are terminal nodes, an unlikely
event), no state is reducible and extra state entries are actually
introduced by using an aggregated tree (i.e.,m entries). When
k < m, this ratio approaches 100% whenn is large enough;
i.e., a large number of reducible state entries are reduced to
only m entries required by the aggregated tree. If not all mul-
ticast groups using aggregated treeT havek terminals or leaky
matches exist, it gives us an approximation for state reduction
if we replacek with the average number of terminal nodesk̄

in the above equations. Apparently the lower the terminal node
ratio(k

m), the higher state reduction ratio can be achieved.
The above analysis tells us that, while that the overall state

reduction ratio which reflects state reduction at all multicast
routers is bounded by the percentage of terminal nodes, the
reducible state reduction ratio which reflects state reduction at
transit or core routers can approach 100% if we can “squeeze”
enough groups into an aggregated tree – transit nodes only need
state for aggregated trees, the number of which is much smaller
than the number of groups.

B. Simulation

Next we will present simulation results from a dynamic
matching experiment allowing leaky matches. In this exper-
iment, we use the Abilene[1] network core topology as our
simulation network, which has eleven nodes located in eleven
metropolitan areas. Distance between two locations is used as
the routing metric (cost), which could result in different routes
than the real ones; however, routes from UCLA to a number of
universities (known to be connected to Internet 2) discovered by
traceroute are consistent with what we expect from the Abilene
core topology using distance as routing metric.

First we introduce two concepts. Assume an aggregated tree
T is used by groupsGi, 1 ≤ i ≤ n, each of which has a “na-
tive” treeT0(Gi), theaverage aggregation overheadfor T is
defined as:

δA(T) =
n× C(T)−

∑n
i=1 C(T0(Gi))∑n

i=1 C(T0(Gi))

=
n× C(T)∑n

i=1 C(T0(Gi))
− 1,

(6)

whereC(T) is the cost of treeT (total cost of allT ’s links). In-
tuitively, δA(T) reflects the amount of extra bandwidth wasted
to carry multicast traffic using the shared aggregated treeT , in
percentage. LetNg be the total number of multicast groups and
Nt be the total number of aggregated trees used to support these
groups,average aggregation degree– i.e., the average number
of groups an aggregated tree “matches”, is defined as

AD =
Ng

Nt
. (7)

The larger this number, the larger the number of groups that
are aggregated into an aggregated tree, and correspondingly the
more the state reduction. This number also reflects control over-
head reduction: more groups an aggregated tree supports, fewer
number of trees are needed and thus less control overhead to
manage these trees (fewer refresh messages, etc.).

We randomly generate multicast groups and use the follow-
ing strategy to match them with aggregated trees and establish
more aggregated trees when necessary. In generating groups,
every node can be a terminal node (i.e., we don’t single out any
node to be core node that is not directly accessible to neigh-
boring networks); in simulation results to be presented, group
size is uniformly distributed from 2 to 10. When a groupG is
generated, first a source-based “native” multicast treeT0 (with a
member randomly picked as the source) is computed. An aggre-
gated treeT (from a set of existing ones, initially empty) is se-
lected forG if the following two conditions are met: (1)T cov-
ersG; and (2)after addingG, δA(T) ≤ bth; wherebth is a fixed

0

5

10

15

20

25

30

35

40

45

0 200 400 600 800 1000

A
ve

ra
ge

 A
gg

re
ga

tio
n

D
eg

re
e

�

of Group

bth=0.3
bth=0.2
bth=0.1

Fig. 2. Average aggregation degree vs. number of groups.

0

0.02

0.04

0.06

0.08

0.1

0.12

0.14

0.16

0.18

0.2

0 200 400 600 800 1000

O
ve

ra
ll

S
ta

te
 R

ed
uc

tio
n

R
at

io

�

of Group

bth=0.3
bth=0.2
bth=0.1

Fig. 3. Overall state reduction ratio vs. number of groups.

threshold to controlδA(T). When multiple trees satisfy these
conditions, a min-cost one is chosen. If no existing tree satis-
fies these conditions, either (1)an existing treeT is extended (by
adding necessary nodes) to coverG if the extended treeT ′ can
satisfy the following condition: after addingG, δA(T ′) ≤ bth;
or (2)the native tree forG is added as a new aggregated tree.
Constraints above guarantee that bandwidth overhead is under
a certain threshold.

Fig. 2 plots the simulation result of average aggregation de-
gree vs. number of groups added for different bandwidth over-
head thresholds. As the result shows, as more groups are added
(i.e., more concurrently active groups), the average aggregation
degree increases: we can “squeeze” more groups into an aggre-
gated tree, in average. Bandwidth overhead threshold affects
aggregation degree in a “positive” way: as we lift the control
threshold, more aggregation can be achieved – as we are will-
ing to “sacrifice” more bandwidth for aggregation, we are get-
ting more aggregation. Fig. 3 and Fig. 4 plot the results for
overall state reduction ratio and reducible state reduction ratio
defined in Eq. 1 and 2, and demonstrate the same trend regard-
ing the number of groups and bandwidth overhead threshold as
aggregation degree. The results show that, though overall state
reduction has its limit, reducible state is significantly reduced
(e.g., over 80% for a 20% bandwidth overhead threshold). This
also confirms our early analysis.

In interpreting the implications of the above simulation re-
sults, we should be aware of their limitations: the network
topology is fairly small and it is adopted from a logic topol-
ogy and not really a backbone network with all routers at pres-
ence. Nevertheless, it should give us some feelings about the
“trend”. Another fine point is that, this simulation represents
a worst-case scenario since all groups are randomly generated
and has no correlation or pattern. In practice, certain multicast
group membership pattern (locality, etc.) may be discovered
from measurements and can help to realize more efficient ag-
gregation.

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

0 200 400 600 800 1000

R
ed

uc
ib

le
 S

ta
te

 R
ed

uc
tio

n
R

at
io

of Group

bth=0.3
bth=0.2
bth=0.1

Fig. 4. Reducible state reduction ratio vs. number of groups.

IV. CONCLUSIONS ANDFUTURE WORK

In this paper, we propose a novel approach to resolve the
problem of multicast state scalability. The key idea of aggre-
gated multicast is to force groups into sharing a single delivery
tree, instead of creating multiple trees and then trying to aggre-
gate the state.

Our work could be summarized in the following points:
• Aggregated multicast is an unconventional yet feasible and
promising approach.
• We derive analytical bounds for the amount of state reduction
we can get from aggregated multicast.
• Initial simulations show promising results. In simulation ex-
periments with a 30% bandwidth overhead control, aggregated
multicast can reduce 90% or more of the reducible state and
roughly 16% of the total multicast state for large numbers of
groups. Recall that we assumed no group-member locality,
which is the worst case scenario.
• Our analytical and experimental results reinforce each other
exhibiting similar trends.

In addition, our scheme provides a mechanism for simplified
QoS multicast provisioning and a mechanism for multicast traf-
fic engineering. We find that this by itself could be a sufficient
reason for aggregated multicast.

FUTURE WORK. We are in the process of conducting more
simulations under different environments. We are particularly
interested in assessing the effect of member locality in the per-
formance of our approach. Initial observations suggest that it
will have significant positive impact.

REFERENCES

[1] Abilene network topology.http://www.ucaid.edu/abilene/.
[2] S. Blake, D. Black, and et al. An architecture for differentiated services.

IETF RFC 2475, 1998.
[3] R. Braden, D. Clark, and S. Shenker. Integrated services in the internet

architecture: an overview.IETF RFC 1633, 1994.
[4] P. Francis. Yoid: extending the internet multicast architecture.

http://www.aciri.org/yoid/docs/index.html.
[5] S. Keshav and S. Paul. Centralized multicast.Proceedings of IEEE ICNP,

1999.
[6] D. Ooms, R. Hoebeke, P. Cheval, and L. Wu. MPLS multicast traffic

engineering.Internet draft: draft-ooms-mpls-multicast-te-00.txt, 2001.
[7] Radia Perlman.Interconnections: Bridges, Routers, Switches, and Inter-

networking Protocols. Addison-Wesley Publishing Company, 2nd edition,
October 1999.

[8] P. I. Radoslavov, D. Estrin, and R. Govindan. Exploiting the bandwidth-
memory tradeoff in multicast state aggregation. Technical report, USC
Dept. of CS Technical Report 99-697 (Second Revision), July 1999.

[9] Y. Chu S. Rao and H. Zhang. A case for end system multicast.Proceed-
ings of ACM Sigmetrics, June 2000.

[10] E. Rosen, A. Viswanathan, and R. Callon. Multiprotocol label switching
architecture.IETF RFC 3031, 2001.

[11] D. Thaler and M. Handley. On the aggregatability of multicast forwarding
state.Proceedings of IEEE INFOCOM, March 2000.

[12] J. Tian and G. Neufeld. Forwarding state reduction for sparese mode mul-
ticast communications.Proceedings of IEEE INFOCOM, March 1998.

