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Abstract

The lack of an accurate representation of the Internet
topology at the Autonomous System (AS) level is a lim-
iting factor in the design, simulation, and modeling ef-
forts in inter-domain routing protocols. In this paper, we
design and implement a framework for identifying AS
links that are missing from the commonly-used Internet
topology snapshots. We apply our framework and show
that the new links that we find change the current Inter-
net topology model in a non-trivial way. First, in more
detail, our framework provides a large-scale comprehen-
sive synthesis of the available sources of information. We
cross-validate and compare BGP routing tables, Internet
Routing Registries, and traceroute data, while we extract
significant new information from the less-studied Internet
Exchange Points (IXPs). We identify 40% more edges
and approximately 300% more peer-to-peer edges com-
pared to commonly used data sets. Second, we identify
properties of the new edges and quantify their effects on
important topological properties. Given the new peer-to-
peer edges, we find that for some ASes more than 50%
of their paths stop going through their ISP providers as-
suming policy-aware routing. A surprising observation
is that the degree of a node may be a poor indicator of
which ASes it will peer with: the two degrees differ by
a factor of four or more in 50% of the peer-to-peer links.
Finally, we attempt to estimate the number of edges we
may still be missing.

1 Introduction

An accurate topology model would be important for sim-
ulating, analyzing, and designing the future protocols ef-
fectively [1]. With an accurate Internet AS-level topol-
ogy, first, we can design and analyze new interdomain
routing protocols, such as HLP [2], that take advantage
of the properties of the Internet AS-level topology. Sec-
ond, we can create more accurate models for simulation

purposes [3]. Third, we can analyze phenomena such as
the spread of viruses [4][5], more accurately. In addition,
the current initiatives of rethinking and redesigning the
Internet and its operation from scratch would also benefit
from such a model.

Developing an accurate representation of the Internet
topology at the AS level remains as a challenge despite
the recent flurry of studies [6][7][8][9][10][11][12][13].
Currently, several sources of topological information ex-
ist: (a) archives of BGP routing tables, (b) archives of
BGP routing updates, (c) Internet Routing Registries, and
(d) archives of traceroute data. Each of these sources has
its own advantages, but each of them also provides an in-
complete, sometimes inaccurate view of the Internet AS
topology; these views are often complementary. Further-
more, as far as we know, IXPs (Internet Exchange Points)
have not received attention in terms of Internet topology
discovery, although they play a major role in the Internet
connectivity.

The contributions of this work are two. (a) We design
and implement a systematic framework for discovering
missing links in our current Internet topology snapshot,
and address two limitations of previous studies —the syn-
thesis of different data source and incorporating topolog-
ical information from IXPs. (b) We apply our framework
and conduct an in-depth study of the importance of these
new links, and improve our understanding of the Internet
topology at the AS level. We describe our framework and
our results in more detail below, while we discuss how
our work complements and differs from previous efforts
in the next section.

(a) A framework for identifying missing links: First,
our framework identifies and validates a significant num-
ber of AS links by a careful cross-reference and synthe-
sis of most known sources of information: BGP tables,
traceroute, and IRR [14]. Second, our framework extracts
significant new topological information from Internet Ex-
change Points (IXPs); such information is typically not
used in topological studies. While prior work [15] has



proposed methods to identify participating ASes at IXPs,
our study greatly extends their work and overcomes cer-
tain limitations.

Note that we set a highly selective standard in our
framework: we only accept edges which are verified by
BGP tables or from traceroute data. In other words, we
do not provide a union of the existing sources of infor-
mation, but a critical synthesis. To achieve this goal, we
develop a large scale traceroute-based tool, RETRO, to
confirm the existence of edges, which we suspect exist.

We arrive at several interesting observations:
(i) We find a significant number of new edges:We

discover 40% more edges(15%) and approximately
300% more peer-to-peer edges(65%) as compared to the
widely used Oregon Routeviews data set (all available
BGP routing tables).

(ii) Most of the newly discovered edges are peer-to-
peer edges:the current topological models have a bias
by under-representing peer-to-peer edges.

(iii) Most missing peer-to-peer AS links are at the
IXPs: Our results show that nearly 95% of the peer-to-
peer links missed from the BGP tables are incident at
IXPs. This suggests that exploring the connectivity at
IXPs may help us identify hidden edges between ASes
that participate at IXPs.

(iv) IRR is a good source of potential new edges:More
than 80% of the new edges that are seen by considering an
increased number of BGP tables were also found to exist
in IRR; this indicates that IRR is a good source for finding
links missing from BGP tables. Note that our IRR data is
carefully filtered by the state of the art tool [16] for this
purpose, which was not used by previous IRR studies.

(b) The properties and the impact of the new links:
The new edges significantly change our view of the In-
ternet AS topology. In addition, we identify interesting
patterns of the new edges. Our key findings can be sum-
marized as follows:

(i) The new edges change the models of Internet rout-
ing and financial implicatoins that previous research
studies may have arrived at by using the incomplete
topology models: We quantify the routing decision
changes in the routing model due to the peer-to-peer
edges not considered previously. We find that for some
ASes, more than 50% of their paths stop going through
a provider, compared to the models with incomplete AS
topology. Most of these ASes are with degrees in the
10 to 300 range,i.e., they are “middle-class” ASes. The
financial implication of this phenomenon is that many
“middle-class” ASes may not pay to their providers to
the extent that was earlier expected. We conclude that
business-oriented and routing studies should consider all
peer-to-peer edges for accurate results.

(ii) We find that provider-customer and peer-to-peer
edges have significantly different properties and they

should be modeled separately:We find that the degree
distribution of the provider-customer only edges can be
accurately described by a power-law (with correlation co-
efficient higher than 99%) in all the topological instances
that we examine. In contrast, degree distribution of the
peer-to-peer only edges is better described by a Weibull
distribution with correlation coefficient higher than 99%.
These results corroborate observations made in previous
studies [13][11].

(iii) The degrees of the nodes of a peer-to-peer link can
vary significantly:We find that 50% of the peer-to-peer
edges are between nodes whose degrees differ by a fac-
tor of more than 4 or by a degree difference of 144. This
has direct implications on how we think about and model
peer-to-peer edges. For instance, this observation sug-
gests that researchers need to use caution when using the
degree as an indication of whether two ASes could have a
peer-to-peer relationship. Our results can provide guide-
lines to AS policy inference algorithms, which partly rely
on the node degree.

(iv) More peer-to-peer edges may exist:We estimate
that approximately 35% peer-to-peer edges, compared to
the peer-to-peer edges we know at the end of this study,
may still be missing. Our estimate is an educated guess
on how many more possible edges we could verify, if we
had more traceroute servers.

The rest of this paper is organized as follows. We re-
view the data sources and previous work in Section 2. In
Section 3, we present our framework and the motivation
behind its design. In Section 4, we quantify the impact
of our new found AS links. We introduce our methods to
identify the IXP participants in Section 5. In Section 6,
we summarize our work.

2 Background

2.1 Data Sources and Their Limitations

In this section, we describe the most popular data sources
and their two main limitations: incompleteness and a bias
in the nature of the discovered links.

BGP routing table dumps are probably the most widely
used resource that provides information on the AS In-
ternet topology. Each table entry contains an AS path,
which corresponds to a set of AS edges. Several
sites collect tables from multiple BGP routers, such as
Routeview[17] and RIPE/RIS[18]. An advantage of the
BGP routing tables is that their link information is con-
sidered reliable. If an AS link appears in a BGP routing
table dump, it is almost certain that the link exists. How-
ever, limited number of vantage points makes it hard to
discover a more complete view of the AS-level topology.
A single BGP routing table has the union of “shortest” or,
more accurately, preferred paths with respect to this point



of observation. As a result, such a collection will not see
edges that are not on the preferred path for this point of
observation. Several theoretical and experimental efforts
explore the limitations of such measurements [19][20].
Worse, such incompleteness may be statistically biased
based on the type of the links. (Most ASes peer with each
other with two types of links: the provider-customer links
and peer-to-peer links. Normally, customer ASes pay
their providers for traffic transit, and ASes with peer-to-
peer relationship exchange traffic with no or little cost to
each other.) Some types of AS links are more likely to be
missing from BGP routing table dumps than other types.
Specifically, peer-to-peer links are likely to be missing
due to the selective exporting rules of BGP. Typically,a
peer-to-peer link can only be seen in a BGP routing table
of these two peering ASes or their customers.A recent
work [13] discusses in depth this limitation.

BGP updates are used in previous studies[7][9] as a
source of topological information and they show that by
collecting BGP updates over a period of time, more AS
links are visible. This is because as the topology changes,
BGP updates provide transient and ephemeral route in-
formation. However, if the window of observation is
long, an advertised link may cease to exist [7] by the time
that we construct a topology snapshot. In other words,
BGP updates may provide a superimposition of a number
of different snapshots that existed at some point in time.
Note that BGP updates are collected at the same vantage
points as the BGP tables in most collection sites. Nat-
urally, topologies derived from BGP updates share the
same statistical bias per link type as from BGP routing
tables: peer-to-peer links are only to be advertised to the
peering ASes and their customers. This further limits the
additional information that BGP updates can provide cur-
rently. On the other hand, BGP updates could be useful in
revealing ephemeral backup links over long period of ob-
servation, along with erroneous BGP updates. To tell the
two apart, we need highly targeted probes. Recently, ac-
tive BGP probing[12] has been proposed for identifying
backup AS links. This is a promising approach that could
complement our work and provide the needed capability
for discovering more AS links.

By using traceroute, one can explore IP paths and then
translate the IP addresses to AS numbers, thus obtain-
ing AS paths. Similar to BGP tables, the traceroute path
information is considered reliable, since it represents the
path that the packets actually traverse. On the other hand,
a traceroute server explores the routing paths from its lo-
cation towards the rest of the world, and thus, the col-
lected data has the same limitations as BGP data in terms
of completeness and link bias. One additional challenge
with the traceroute data is the mapping of an IP path to an
AS path. The problem is far from trivial, and it has been
the focus of several recent efforts [21][22].

Internet Routing Registry (IRR)[14] is the union of a
growing number of world-wide routing policy databases
that use the Routing Policy Specification Language
(RPSL). In principle, each AS should register routes to
all its neighbors (that reflect the AS links between the
AS and its neighbors) with this registry. IRR informa-
tion is manually maintained and there is no stringent re-
quirement for updating it. Therefore, without any pro-
cessing, AS links derived from IRR are prone to human
errors, could be outdated or incomplete. However, the
up-to-date IRR entries provide a wealth of information
that could not be obtained from any other source. A re-
cent effort [16] shows that, with careful processing of the
data, we can extract a non-trivial amount of correct and
useful information.

2.2 Related Work and Comparison

There has been a large number of measurements studies
related to topology discovery, with different goals, at dif-
ferent times, and using different sources of information.

Our work has the following characteristics that distin-
guish it from most previous other efforts, such as [13][6]:
(1)We make extensive use of topological information
from the Internet Exchange Points to identify more edges.
It turns out that IXPs “conceal” many links which did
not appear in most previous topology studies. (2)We
use a more sophisticated, comprehensive and thorough
tool [16] to filter the less accurate IRR data, which was
not used by previous studies. (3) We employ a “guess-
and-verify” approach for finding more edges by identify-
ing potential edges and validating them through targeted
traceroutes. This greatly reduced the number of tracer-
outes that were needed. (4)We accept new edges con-
servatively and only when they are confirmed by a BGP
table or a traceroute. In contrast, some of the previous
studies included edges from IRR without confirming it
with a traceroute.

The most relevant previous work is done by Changet
al. [6] with data collected in 2001. They identify new
edges by looking at several sources of topological infor-
mation including BGP tables and IRR. They estimate that
25%-50% AS links were missing from Oregon Route-
view BGP table, the most commonly used data set for
AS topology studies. Their work was an excellent first
step towards a more complete topology.

In a parallel effort, Cohen and Raz [13] identify miss-
ing links in the Internet topology. Our studies corrobo-
rate some of the observations there. Note that, their work
does not include an exhaustive measurement, data col-
lection and comparison effort as our work. For example,
IXP information was not used in their work.

Several other interesting measurement studies exist.
NetDimes [8] is an effort to collect large volumes of host-



Table 1: The topological data sets used in our study.
OBD The Oregon routeviews BGP table dump
BD OBD and other additional BGP table dumps
IRRnc IRR edges processed by Nemecis with

non-conflicting policy declarations
IRRdual IRRnc edges correctly declared by both adjacent ASes
BD+IRR BD and the edges of IRRdual confirmed by RETRO
IXPall Union of cliques of IXP participants
ALL BD+IRR and the potential IXP edges

that are confirmed by RETRO

Table 2: The statistics of the topologies
Name Nodes Edges p-c p-p

OBD 19.8k 42.6k 36.7k 5.5k
BD 19.9k 51.3k 38.2k 12.7k

BD+IRR 19.9k 56.9k 38.2k 18.3k
ALL 19.9k 59.5k 38.2k 20.9k

based traceroute information. The key here is to increase
the number of traceroute points by turning cooperative
end hosts into observation points. The challenge now
becomes the measurement noise removal, the collection,
and processing of the information [23]. Our approach
and NetDimes could complement and leverage each other
towards a more complete and accurate topology. Don-
netet al. [24] propose efficient algorithms for large-scale
topology discovery by traceroute probes. Rocketfuel [25]
explores ISP topologies using traceroutes. In [9], the au-
thors examine the information contained in BGP updates.

The exhaustive identification ofIXP participantshas
received limited attention. Most previous work focuses
on identifying the existence of IXPs. Xuet al. [15] de-
velop what appears to be the first systematic method for
identifying IXP participants. Inspired by their work, our
approach subsumes their method, and thus, it provides
more complete and accurate results (see Section 5).

3 Framework For Finding Missing Links

In this section, we present a systematic framework for
extracting and synthesizing the AS level topology infor-
mation from different sources. The different sources have
complementary information of variable accuracy. Thus,
we cannot just simply take the union of all the edges. A
careful synthesis and cross-validation is required. At the
same time, we are interested in identifying the properties
of the missing AS links.

In a nutshell, our study arrives at three major obser-
vations regarding the properties of the missing AS links:
(1) most of the missing AS edges are of the peer-to-peer
type, (2) most of the missing AS edges from BGP tables
appear in IRR, and (3) most of the missing AS edges are
incident at IXPs. At different stages of the research, these
three observations direct us to discover even more edges,
some of which do not appear in any other source of infor-
mation currently.

Table 3: A collection of BGP table dumps
Route collector or # of # of # of edges with edges edges not in

Router server nameNodesEdges type inferred not in OBD w/ type
total p-p p-c OBD total p-p p-c

route-views(OBD) 1984342643425705551 36766 0 0 0 0
route-views2 1983741274412304464 3651410291028835 191

route-views.eqix1965034889348761027 33640 674 674 530 143
route-views.linx 1965537259372463246 33765251125112188 319
route-views.isc 1975336152361391915 34004 784 783 663 118

rrc00.ripe 1977036479364651641 34605 655 654 543 111
rrc01.ripe 1964034193341801121 32855 617 617 512 105
rrc03.ripe 1973739147391293850 35042323332282609 616
rrc05.ripe 1976532676326591122 3132410951091658 432
rrc07.ripe 1961832811317971219 30394 804 803 724 79
rrc12.ripe 1962833841338272024 31606161116101417 193

Total(BD) 1995051345512591273438265870286897183 1499

We present an overview of our work in order to pro-
vide the motivation for the different steps that we take.
We start with the data set from Oregon routeviews BGP
table Dump (OBD)[17], the BGP table dumps collected
at route-views.oregon-ix.net, which is by far the most
widely used data archive. Our work consists of four main
steps.

A. BGP routing tables: We consider the AS edges
derived from multiple BGP routing table dumps[7], and
compare them to the Routeview data (OBD). The ques-
tion we try to answer is what is the information that the
new BGP tables bring. We use the termBD to refer to
the combined data from all available BGP table Dumps.
Table 1 lists the acronyms for our data sets.

B. IRR data: We systematically analyze the IRR data
and identify topological information that seems trustwor-
thy by Nemecis[16]. We follow a conservative approach,
given that IRR may contain some out-dated and/or erro-
neous information. We do not accept new edges from
IRR, even after our first processing, unless they are con-
firmed by traceroutes (using our RETRO tool). Over-
all, we find that IRR is a good source of missing links.
For example, we discover that more than 80% of the new
edges found in the new tables (i.e., the AS edges in BD
but not in OBD) already exist in IRR [14]. Even com-
pared to BD, IRR has significantly more edges, which
are validated by RETRO as we explain below.

C. IXPs and potential edges:We identify a set of po-
tential IXP edges by applying our methodology on infer-
ring IXP participants from Section 5. We find that many
of the peer-to-peer edges missing from the different data
sets could be IXP edges.

D. Validation using RETRO: We use our traceroute
tool, RETRO, to verify potential edges from IRR and
IXPs. First, we confirm the existence of many poten-
tial edges we identified in the previous steps. We find
that more than 94% of the RETRO-verified AS edges in
IRR indeed go through IXPs. We also discover edges that
were not previously seen in either the BGP table dumps



or IRR. In total, we have validated 300% more peer-to-
peer links than those in the OBD data set from Route-
views.

The statistics of the topologies generated from the dif-
ferent data sets in our study are listed in Table. 2.

3.1 The new edges from a BGP table dump

We collect multiple BGP routing table dumps from vari-
ous locations in the world, and compare them with OBD.
On May 12, 2005, we collected 34 BGP routing ta-
ble dumps from the Oregon route collectors [17], the
RIPE/RIS route collectors [18] and public route servers
[26]. Several other route collectors were not operational
at the time that the data was collected and therefore, we
do not include them in this study. For each BGP routing
table dump, we extract its “ASPATH” field and gener-
ate an AS topology graph. We then combine these 34
graphs into a single graph and delete duplicate AS edges
if any. The resulting graph, which is named asBD (BGP
Dumps), has 19,950 ASes and 51,345 edges that inter-
connect these ASes. The statistics ofBD are similar to
what was reported in [7]. Interestingly,BD has only 0.5%
additional ASes, but 20.4% more AS edges as compared
with OBD.

To study the business relationships of these edges, we
use the PTE algorithm [27], which seems to outperform
most previous such approaches. Specifically, it signif-
icantly increases the accuracy (over 90%) of inferring
peer-to-peer AS links. Most of the AS edges are clas-
sified into three basic types on the basis of business re-
lationships: provider-customer, peer-to-peer and sibling-
to-sibling. Among them, sibling-to-sibling links only ac-
count for a very small (0.12%) portion of the total AS
edges and we do not consider them in this study. We
count the number of peer-to-peer (or “p-p” for short) and
provider-customer (or “p-c” for short) AS links for each
BGP routing table. The statistics for dumps with signifi-
cant number of new edges are shown in Table 3.

For comparison purposes, we pick the most widely
used AS graphOBD as our baseline graph. For each
of the other BGP routing tables, we examine the num-
ber of additional AS edges that do not appear inOBD, as
classified by their business relationship. As shown in Ta-
ble 3, from each of the BGP routing tables that provides
a significant number of new edges toOBD, most of the
new-found edges are of the peer-to-peer type.

BGP table biases: underestimating the peer-to-peer
edges. A closer look at the data reveals an interesting
dichotomy: (1) Most edges in a BGP table are provider-
customer. (2) Given a set of BGP tables, most new edges
in an additional BGP table are peer-to-peer type. We can
see this by plotting the types of new edges as we add the
new tables. In Fig. 1, we plot the cumulative number
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Figure 1: Most new edges in BD but not in OBD are
peer-to-peer edges.

of new found peer-to-peer edges and provider-customer
edges versus the total number of edges. To generate this
plot, we start withOBD with 42643 AS edges and com-
bine new AS edges derived from the BGP table dumps
other thanOBD, one table dump at a time, sorted by the
number of new edges they provide. At the end, when
all the BGP table dumps in our data set are included, we
obtain the graphBD; this has 51345 AS edges in total.
Among these edges, there are 7183 peer-to-peer edges
and 1499 provider-customer edges that do not exist in
the baseline graphOBD. Clearly, Fig 1 demonstrates that
we discover more peer-to-peer AS edges than provider-
customer edges when we increase the number of van-
tage points. Furthermore, the ratio of the number of new
found peer-to-peer edges to the number of new found
provider-customer edges is almost constant given that the
two plots (corresponding to the new found p-p edges and
the p-c edges) in Fig. 1 are almost straight lines.

The percentage of peer-to-peer edges increases with
the number of BGP tables.A complementary observa-
tion is that for a BGP-table-based graph, the more com-
plete it is (in number of edges), the higher the percentage
of peer-to-peer links. For example, the AS graph derived
from rrc12.ripe.net has 33841 AS edges, 2024 (5.98%)
of which are peer-to-peer edges. On the other hand,
the more complete AS graphOBD has 42643 edges,
and 5551 (13.0%) of these edges are peer-to-peer edges.
The combined graphBD has an even higher percentage
(24.8%) of peer-to-peer links.

The above observations strongly suggest that in order
to obtain a more complete Internet topology, one should
consider peer-to-peer links than any other type of primary
AS links.

3.2 Exploring IRR

We carefully process the IRR information to identify po-
tential new edges. Recall that we do not add any edges
until we verify them with RETRO later in this section.

We extract AS links from IRR on May 12, 2005 and
classify their business relationships using Nemecis [16]
as per the exporting policies of registered ISPs. The pur-



Table 4: AS edges in IRR (May 12, 2005) without rela-
tionship conflict

# of Perc. of Perc. of
Name of non-0 # of Avg total IRR edges
Graphs degree Edges Degree IRR without

Nodes edges conflict

IRRnc 16952 89540 10.56 92.6% 100.0%
peerIRRnc 6619 49411 14.93 51.1% 55.2%
pcIRRnc 15277 37619 4.925 38.9% 42.0%

siblingIRRnc 2277 2510 2.204 2.6% 2.8%
peerIRRdual 1561 18453 23.64 19.1% 20.6%
pcIRRdual 6298 8748 2.778 9.1% 9.8%

siblingIRRdual 226 143 1.265 0.1% 0.1%

pose of using Nemecis to filter the IRR is that, Nemecis
can successfully eliminate most badly defined or incon-
sistent edges and, it can infer with fair accuracy the busi-
ness relationships of the edges.

There are 96,654 AS links in total and they are clas-
sified into three basic types in terms of their relation-
ships: peer-to-peer, customer-provider and sibling-to-
sibling. Sometimes two ASes register conflicting poli-
cies with each other. For example, ASA may register
AS B as a customer while ASB registers ASA as a peer.
There are 7,114 or 7.4% of such AS links and we exclude
them in our data analysis. We call the remaining edges
non-conflicting IRR edgesor IRRnc. Considering the dif-
ferent types of policies, this set can be decomposed into
three self-explanatory sets:pcIRRnc, peerIRRncandsib-
lingIRRnc. From these edges, we define the setIRRdual
to include the edges for which both adjacent ASes reg-
ister matching relationships. (Contrarily,IRRncincludes
edges for which only one AS registers a peering relation-
ship while the other AS does not register at all.) Simi-
larly, the IRRdual set can be decomposed by type of edge
into three sets:pcIRRdual, peerIRRdualandsiblingIR-
Rdual.

The statistics of these data sets are summarized in Ta-
ble 4. We notice that the number of edges in the more
reliably definedIRRdualset is significantly less than that
of the IRRnc. In other words, AS edges inIRRdualand
its subsets (peerIRRdual, pcIRRdualand siblingIRRd-
ual) are fewer but we are more confident about: (a) their
existence, and (b) their business relationships.

We make the following two observations:
a. IRR is a good source of hints for missing edges.

We perform the following thought experiment:knowing
only the OBD data set, would IRR be a good source of
potential edges?We compare the edges in graphBD but
not in graphOBD with the edges in IRR. We find that
83.3% of these edges exist in IRR: 7251 from a total of
8702 new edges. This high percentage suggests that the
IRR can potentially be a source for finding new edges.
We also notice that from among these 7251 edges, 6302
are classified in terms of their business relationships by

Table 5: Percentage of IRR edges missing fromBD
# of edges # of edges

Name # of edges NOT in BD Missing Perc.
IRRnc 89,540 63,660 71.1%

peerIRRnc 49,411 39,894 80.7%
pcIRRnc 37,619 22,466 59.7%

siblingIRRnc 2,510 1,300 51.8%

Nemecis[16]. From among these classified edges, 5303
edges are of the peer-to-peer type and only 832 are of the
provider-customer type. This confirms the result shown
in Fig. 1, where most new found AS edges are of the
peer-to-peer type. Recall that, for Fig. 1, the business re-
lationships are inferred by the PTE algorithm[27], instead
of Nemecis[16], which we use here. Both algorithms give
quantitatively similar results which provides high credi-
bility to both the data and the interpretations.

b. IRR has many more edges compared to our most
complete BGP-table graph (BD). Motivated by the ob-
servation above, we examine the number of AS edges in
IRR that are not included inBD. Table 5 summarizes the
number and the type of IRR AS edges that do not appear
in BD. From among the IRR AS edges inferred as non-
conflicting types, 71.1% are missing fromBD. The per-
centage is especially high for peer-to-peer edges: 80.7%
of the peer-to-peer AS edges in IRR are missing from
BD. This suggests that there may be many IRR links that
exist but are yet to be verified. We also notice that 59.7%
of the provider-customer AS edges are missing. At this
point, we can only speculate that most of these missing
provider-customer AS edges represent backup links.

3.3 IXPs and missing links

Note that, when two ASes are participants at the same
IXP, it does not necessarily mean that there is an AS
edge between them. If two participating ASes agree to
exchange traffic through an IXP, this constitutes an AS
edge, which we call anIXP edge. Many IXP edges are of
peer-to-peer type, although customer-provider edges are
also established.

Identifying IXP edges requires two steps: (a) we need
to find the IXP participants, and (b) we need to identify
which edges exist between the participants. We defer a
discussion of our method and tool on how to find the IXP
participants to Section 5. However, even when we know
the IXP participants, identifying the edges is still a chal-
lenge: not all participants connect with each other. In
addition, the peering agreements among the IXP partici-
pants are not publicly known.

We start with a superset of the real IXP edges that con-
tains all possible IXP edges: we initially assume that the
participants of each IXP form a clique. We denote byIX-
Pall the set of all edges that make up all of these cliques.



Table 6: Many missing peer-to-peer links are at IXPs
Name # of Edges

⋂
IXPall Perc.

peerBD-OBD 7183 6197 86%
peerIRRnc-BD 39894 23979 60%

peerIRRdual-BD 13905 11477 83%
BD-OBD 8702 6910 79%

IXPall contains 141,865 distinct AS edges.
Potential missing edges and IXP edges.We revisit

the previous sets of edges we have identified and check
to see if they could be IXP edges. First, we look at the
peer-to-peer AS edges that appear inBD but not inOBD.
These are the peer-to-peer AS edges missing fromOBD
but are discovered withBD. We call this set of AS edges
peerBD-OBD. Here we use the minus sign to denote the
difference between two sets:A-B is the set of entities in
setA but not in setB. Second, we look at the AS edges
that appear inpeerIRRncbut not in the graphBD. We
call this set of linkspeerIRRnc-BD. These AS links are
the ones that are potentially missing fromBD. We define
thepeerIRRduallinks not inBD aspeerIRRdual-BD.

Having made this classification, we compare each
class with the super set,IXPall, of edges that we con-
structed earlier. The statistics are shown in Table 6. With
our first comparison, we find that approximately 86%
of the edges inpeerBD-OBDare in IXPall and hence,
are potentially IXP edges. Next, we observe that 60%
of the edges inpeerIRRnc-BDand 83% of the edges in
peerIRRdual-BDare in IXPall. Thus, if they exist, they
could be IXP edges.

In summary, the analysis here seems to suggest that,
most of the peer-to-peer AS links missing from the BGP
dumps but present in IRR are potentially IXP edges.

3.4 Validating links with RETRO

With the work so far, we have identified sets of edges and
obtained hints on where to look for new edges: (1) most
missing links are expected to be the peer-to-peer type, (2)
IRR seems to be a good source of information, (3) many
missing edges are expected to be IXP edges.

However, as we have noted before, the peer-to-peer
edges learned through the IRRs andIXPall are not guar-
anteed to exist. Therefore, in this section we focus on val-
idating their existence to the extent possible.Note here
that with the validation, we eliminate stale information
that may still be present in the IRR and IXP data sources.

To verify the existence of the edges inpeerIRRnc-
BD, we would like to witness these edges on tracer-
oute paths. Typically, when a traceroute probe passes
through an IXP edge between AS A and AS B, it
will contain the following sequence of IP addresses:
[IPAS A, IPIXP , IPAS B]. If such a pattern is observed

with our traceroute probes, it is almost certain that an IXP
edge between AS A and AS B exists.

We first tried to use the Skitter[28] traces as our veri-
fication source; however, we soon found that it was not
suitable for our purposes. Between May 8 and May 12
in 2005, we collected a full cycle of traces from each
of the active Skitter monitors. Despite a total number
of 21,363,562 individual traceroute probes in the data
set, we were only able to confirm 399 IXP edges in
peerIRRnc-BD. The reason could be that the monitors
were not in the “right” place to discover these edges: the
monitors should be at the AS adjacent to that edge, or
at one of the customers of those two ASes. With the lim-
ited number of monitors (approximately two dozen active
ones) in Skitter, it is difficult to witness and validate many
of the peer-to-peer AS edges.

To address this limitation, we develop a tool for detect-
ing and verifying AS edges. We employ public traceroute
servers(e.g.[29]) to construct RETRO (REverse TraceR-
Oute), a tool that collects traceroute server configura-
tions, send out traceroute requests, and collect tracer-
oute results dynamically. Currently, we have a total of
404 reverse traceroute servers which contain more than
1200 distinct and working vantage points. These van-
tages points cover 348 different ASes and 55 different
countries.

With the RETRO tool, we conduct the following pro-
cedure to verify AS edges in thepeerIRRnc-BDset. For
each edge inpeerIRRnc-BD, we find out if there are any
RETRO monitors in at least one of the two ASes incident
on the edge. For about 2/3 of the edges inpeerIRRnc-BD,
we do not have a monitor in either of the two ASes on the
edge. If there is at least one monitor, we try to traceroute
from that monitor to an IP that belongs to the other AS
on the edge. There are two problems in finding the right
IP address to traceroute to. First, some ASes do not an-
nounce or can not be associated with any IP prefixes and
thus, we are not able to traceroute to these ASes. Sec-
ond, most of the rest of the ASes announce a large range
(equal to or more than 256,i.e., a full /24 block) of IP ad-
dresses. To maximize our chances of performing a suc-
cessful traceroute, we choose a destination from the list
of IP addresses that has been shown to be reachable by at
least one of the Skitter monitors. We then trigger RETRO
to generate a traceroute from the selected monitor to the
destination IP address that we choose. We call this set of
traceroutesRETROTRACE1.

Most missing peer-to-peer links are incident at
IXPs. We define acandidateto be a potential edge be-
tween two ASes, which satisfy the following two condi-
tions: (a) we have a RETRO monitor located in one of the
two ASes, and (b) there is at least one IP address from the
other AS is reachable by the traceroute probe performed
from the RETRO monitor. We have 8791 such “candi-



Table 7: RETRO verifies peer-to-peer links in IRR miss-
ing from BD

Name # of # of RETRO # of confirmed peering
edges candidates total via IXP direct

peerIRRnc-BD 39894 8791 5646 5317 329
peerIRRdual-BD 13905 4487 3529 3351 178

Table 8: RETRO verifies AS edges not inBD andIRRnc
Name # of # of RETRO # of confirmed peering

edges candidates total via IXP direct
IXPall-BD-IRR 100,076 17,640 2,603 2,407 196

dates” for the potential AS edges inpeerIRRnc-BD. By
appropriately performing traceroutes on candidates, we
get traceroute paths. In these paths, we search for two
patterns for each candidate (ASA, ASB): (a) [IPAS A,
IPAS B]. , and (b) [IPAS A, IPIXP , IPAS B ]. If ei-
ther of the two patterns appears, it is almost certain that
the AS edge betweenASA andASB exists either as (a)
a direct edge or, (b) as an IXP edge, respectively. The
results that we obtain at the end of the above process are
summarized in Table 7.

Among 8791 candidates inpeerIRRnc-BD, RETRO is
able to confirm that a total of 5646 edges indeed exist.
The existence of the rest of the candidates does not show
in our RETRO data. Note that this method can only con-
firm the presence, but not prove the absence of an edge.
It could very well be that that the traceroute does not
pass through the right path. The most interesting result
is, from among the 5646 verified edges, 5317 or 94.2%
of them are IXP edges. The result suggests that most
of the missing peer-to-peer links from BGP tables are in
fact incident at IXPs. We conjecture that this is proba-
bly because the peer-to-peer links between middle or low
ranked ASes (national or regional ISPs) are typically un-
derrepresented in BGP tables. For those ASes, peering
with other ASes at IXPs is a much more cost-efficient
way than by building private peering links one by one.
Our result strongly suggests that in order to look for miss-
ing peer-to-peer links from BGP tables, we should exam-
ine IXPs more carefully.

Discover edges not observed in BGP tables or IRRs
From the results so far, we suspect that the missing edges
are often IXP edges. Following this pattern, we identify
and confirm edges that previously had not been observed
in any other data source.

We consider those AS edges inIXPall that are neither
in BD nor in IRRnc, and call themIXPall-BD-IRR. We
then attempt to trace these edges by using RETRO. We
call this set of tracerouteRETROTRACE2. The results
from our experiments are summarized in Table 8.

We find 2,603 new AS edges from out of 17,640
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Figure 2: Degree ratio distribution(left) and degree dif-
ference distribution (right) of all peer-to-peer AS links in
the Internet.

RETRO candidate paths. The percentage of confirmed
new AS edges is 14.8%. This is much lower than what
we see withpeerIRRnc-BD. This is due to the fact that
IXPall is an overly aggressive estimate. In addition, we
have already identified that many edges from IXPall are
in the previous sets (BD andpeerIRRnc-BD).

We also notice that there is a small number of con-
firmed edges that are shown to exhibit direct peering in-
stead of peering at some IXP. A closer look reveals that
many of such cases are due to the fact that a small number
of routers do not respond with ICMP messages with the
incoming interfaces, and therefore, the IXP IP address,
which is supposed to be returned by the traceroute, is
“skipped”. Note that this phenomenon does not stop us
from identifying the edge. It just makes us underestimate
the percentage of IXP edges among the confirmed edges.

4 Significance of the new edges

In this section, we identify properties of the new edges.
Then, we examine the impact of the new edges on the
topological properties of the Internet. Finally, we attempt
to extrapolate and estimate how many edges we may still
be missing.

4.1 Patterns of the peer-to-peer edges

We study the properties exhibited by nodes that peer.
Therefore, we examine the degrees,d1 andd2, of the two
peering nodes that make up each peer-to-peer edge. Let
us clarify that the degreesd1 andd2 include both peer-
to-peer and provider-customer edges. One would expect
that d1 andd2 would be “comparable”. Intuitively, one
would expect that the degree of an AS islooselyrelated
to the importance and its place in the AS hierarchy; we
expect ASes to peer with ASes at the same level.

However, we find thatthe node degree of the nodes
connected with a peer-to-peer link can differ signifi-
cantly.We compare the two degrees using their ratio and
absolute difference. Note that these two metrics provide
complementary view of difference, which leads to the fol-
lowing two findings: (1) Close to 78% of the peer-to-peer
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Figure 3: The degree distributions ofALL (left) andIR-
Rdual(right) in the top row, their provider-customer de-
gree distributions in the middle row, and their peer-to-
peer degree distributions in the bottom row.

edges connect ASes whose degrees differ by a factor of
2. In Fig. 2 (left), we plot the CDF of the distribution
of the ratiomin(d1, d2)/max(d1, d2) of the peer-to-peer
edges. Another observation is that 45% of the peer-to-
peer edges connect nodes whose degrees differ by a factor
of 5. This is a surprisingly large difference. One might
argue that this is an artifact of having peer-to-peer edges
between low degree nodes, sayd1 = 2 andd2 = 11,
whose absolute degree difference is arguably small. This
is why we examine the absolute difference of the degrees
next. (2) 35% of the peer-to-peer edges have nodes with
an absolute difference greater than 215. In Fig. 2 (right),
we plot the CDF of the distribution of the absolute value
|d1 − d2|, whered1 andd2 remain as defined earlier. An-
other interesting observation is that approximately half
of the peer-to-peer edges have a degree difference larger
than 144. Differences of 144 and 215 are fairly large if
we consider that roughly 70% of the nodes have a degree
less than 4. We intend to investigate why quite a few high
degree ASes establish peer relationship with low degree
ASes in the future.

4.2 Impact on the Internet topology

4.2.1 The degree distribution

There has been a long debate on whether the degree dis-
tribution of the Internet at the AS level follows a power-
law[30][31][32][6]. This debate is partly due to the ab-

sence of a definitive statistical test. For example, in Fig.
3 top left, we plot the complementary cumulative distri-
bution functions (CCDF), on a log-log scale, of the graph
ALL defined earlier in Table 1. The distribution is highly
skewed, and the correlation coefficient of a least square
errors fitting is 98.9%. However, one could still use dif-
ferent statistical metrics and argue against the accuracy
of the approximation [32].

Furthermore, the answer could vary depending on
which source we think is more complete and accurate,
and the purpose or the required level of statistical con-
fidence of a study. For example, if we go withIRRdual,
which is a subset of the AS edges recorded in IRR filtered
by Nemecis, the correlation coefficient is only 93.5%, see
Fig. 3 top right.

To settle the debate, we propose a reconciliatory
divide-and-conquer approach. We propose to model sep-
arately the degree distribution according to the type of
the edges: provider-customer and peer-to-peer. We ar-
gue that this would be a more constructive approach for
modeling purposes. This decomposition seems to echo
the distinct properties of the two edge types, as discussed
in a recent study of the evolution on the Internet topol-
ogy [11].

In Fig. 3, we show an indicative set of degree distribu-
tion plots for graphALL on the left column andIRRdual
on the right. We show the distributions for the whole
graph (top row), the provide-customer edges only (mid-
dle row), and the peer-to-peer edges only (bottom row).
We display the power-law approximation in the first two
rows of plots and the Weibull approximation in the bot-
tom row of plots.

We observe the following two properties: (a)The
provider-customer-only degree distribution can be accu-
rately approximated by a power-law. The correlation co-
efficient is 99.5% or higher in the plots of Fig.3 in the
middle row. Note that, although the combined degree
distribution ofIRRdualdoes not follow a power law (top
row right), its provider-customersubgraph follows a strict
power law (middle row right). (b)The peer-to-peer-only
degree distribution can be accurately approximated by a
Weibull distribution. The correlation coefficient is 99.2%
or higher in the plots of Fig.3 in the bottom row.

It is natural to ask why the two distributions differ. We
suggest the following explanation. Power-laws are re-
lated to the rich-get-richer behavior: low degree nodes
“want” to connect to high degree nodes. For provider-
customer edges, this makes sense: an AS wants to con-
nect to a high-degree provider, since that provider would
likely provide shorter paths to other ASes. This is less
boviously rue for peer-to-peer edges. If AS1 becomes a
peer of AS2, AS1 does not benefit from the other peer-
to-peer edges of AS2: a peer will not transit traffic for a
peer. Therefore, high peer-to-peer degree does not make
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a node more attractive as a peer-to-peer neighbor. We
intend to investigate its validity in the future.

4.2.2 Clustering coefficient

We expect that theALL graph will be more clustered
since we add edges. To quantify this, we use thecluster-
ing coefficientwhich has been used to characterize and
compare generated and real topologies [33]. Intuitively,
the clustering coefficient captures the extent to which a
node’s one-hop neighborhood is tightly connected. A
clustering coefficient of exactly one means that the neigh-
borhood is a clique. The average clustering coefficient of
OBD is 0.25 and it increases to 0.31 inALL.

In addition, we find that the density increase is not ho-
mogeneous. The neighborhoods of “middle-class” nodes
become more clustered: the clustering coefficient in-
crease is larger for nodes with degrees in the 10 to 300
range. Note that this property characterizes the new
edges, and could help us identify more missing edges in
future studies.

4.2.3 AS path length

We study the effect of the new edges on the AS path
lengths with policy-aware routing. The routing policy is
a consequence of the business practices driven by con-
tracts, agreements, and ultimately profit. As a first-order
approximation of the real routing policy, we use theNo
Valley Prefer Customer (NVPC)routing, which is defined
in [34] [35].

We have approximately 20,000 ASes present in the In-
ternet topology and examine all possible pairs of ASes.
For each AS pair, we compare the AS path lengths with
OBD and withALL. We find that approximately 10 mil-
lion of the paths change in length. While we note that

this is a small fraction of the total number of paths, it is
still a significant number in terms of its absolute value.
In addition,no change in the length does not mean that
the path did not change. For this reason, we study next
how many paths changed even if they did not change in
length.

4.3 The effect on ISP revenue

We examine how much the new discovered AS links
would change the models previous studies had arrived at
about routing decisions and ISP income by using incom-
plete Internet topology.

Similar to studying AS path length, we assume NVPC
routing in our model. For each AS, we count how many
of its paths stop going through one of its providers once
the new edges are added. We refer to these paths asex-
provider paths. The number of ex-provider paths is an in-
dication, of the financial gains for that AS. Clearly, there
are other considerations, such as prefix-based traffic engi-
neering and performance issues, that our analysis cannot
possibly capture. However, our results are a good first
indication of the effect of the new peer-to-peer links.

The significant financial benefits of the new peer-
to-peer edges. We plot the number of theex-provider
paths for each node in Fig. 4. The x-axis represents
the rank of the nodes on a log scale in order of decreas-
ing degree; The y-axis at the left represents the number
of ex-provider paths. In addition, we plot the node de-
grees (on the right y-axis) against their ranks as a semi
diagonal line. We see that the difference between using
an incomplete graph (OBD) and using a more complete
graph (ALL) is dramatic: there are many ASes, for each
of which, several thousands out of the total 20K paths (to
all other ASes) stop going through a provider. For some
ASes, more than 50% of their paths stop going through
their providers (10K out of 20K possible paths per AS).

The rise of the “middle class” ASes.Another inter-
esting observation is that the nodes which seem to benefit
the most from these changes have degrees in the range
from 10 to 300 (right y-axis). Top tier nodes (top 20
ranked) almost do not benefit at all; this is expected, since
they do not have any providers anyway. Nodes with really
low node degree do not benefit much either, since nodes
with very low degrees are less likely to have a peer-to-
peer edge.

4.4 Are we missing a lot more peer edges?

Currently, theALL graph has approximately 20.9K peer-
to-peer edges. However, we were very conservative in
adding edges fromIRRnc: we required that the edges are
verified by RETRO. So, a natural question is, how many
more edges could we verify fromIRRncif we had more



RETRO servers? We attempt to provide an estimate by
extrapolating the success of our method in finding new
edges. First, we provide a conservative estimation and
later, a more liberal estimation, below.

Conservative extrapolation using IRRdual:We find
35% more peer-to-peer edges compared to ALL. We re-
visit the IRRdualgraph and examine if we can include
more edges than the ones we validate with RETRO. Re-
call from Table 7 that we find that there are 13905 edges
in the peerIRRdual-BD, and from these, only 4487 are
“verifiable” candidates. From the verifiable edges, we
actually verify 3529 or 78.6% of the verifiable edges.
We generalize this percentage: we assume that if we
had more RETRO monitors, we could verify 78.6% of
the peerIRRdual-BD. This leads to an estimated 7.4K
(10.9K−3.5K) peer-to-peer edges not in ALL, which has
20.9K peer-to-peer edges.

Liberal Extrapolation using IRRnc: We find 95%
more peer-to-peer edges compared to ALL. In a similar
way, we estimate how many edges we could verify from
peerIRRnc-BD, which is a more “inclusive” set. Here, the
total number of peer-to-peer edges is 39,894, the verifi-
able edges 8,791, and the verified edges 5,646. This gives
rise to an estimate of 39894×5646/8791= 25.6K peer-to-
peer edges out of which 5.6K are already in ALL.

5 Identifying IXP Participants

In this section, we present a method for identifying the
participants at Internet Exchange Points (IXPs). Our
goal is to find all the participants at each IXP, and this
is a non trivial problem. We find that finding the IXP par-
ticipants is key for identifying many missing AS edges as
explained in section 3.

5.1 From IPs to IXP participants

This part of our approach uses two techniques to infer
IXP participants from IXP IP addresses: 1)path-based
inference, where we perform a careful processing of
collected traceroute data, and 2)name-based inference,
where, we analyze the name and the related informa-
tion with regard to IXPs from the DNS and/or WHOIS
databases.

In both inference methods, we start with the IP ad-
dress blocks allocated to the IXPs, which we callIXP
IP addresses. We obtain this information from the Packet
Clearing House (PCH) [36]. In terms of traceroute data,
we use a full cycle of Skitter traceroute data between May
1, 2005 and May 12, 2005, and ourRETROTRACE1data
in May 2005 as described in Section 3.4.

AS A

Layer 2 Switch 198.32.0.5
198.32.0.11.2.3.5

AS D

5.34.23.17

2.6.7.14

AS C3.9.8.22

3.9.8.21

AS B

Internet Exchange Point (IXP)

1.2.3.6

4.2.3.10 4.2.3.9

X

2.6.7.13

198.32.0.8

198.32.0.7

198.32.0.6

198.32.0.2 198.32.0.4
198.32.0.3

5.34.23.18

R

Figure 5: A conceptual model of a typical IXP

5.1.1 Path-based inference

The high level overview of the method is deceptively sim-
ple. First, for each IXP IP addressIPixp that we obtain
from PCH, we search for the IP address that appears im-
mediately afterIPixp in each of the obtained traceroute
paths. Second, if we find more than one such IP address
for the particularIPixp, we select the one that appears
most frequently to beIPnext. We call the above proce-
dure themajority selection process. Third, we find the
AS ASx that owns the IP address,IPnext and consider
thatASx to be a participant at the IXP. Furthermore, we
consider thatIPixp is the IP interface via whichASx ac-
cesses the IXP.

To illustrate this with an example let us consider Fig.
5. A typical traceroute from AS A to router X yields the
following sequence of IP addresses: [1.2.3.5, 198.32.0.5,
2.6.7.13, 5.34.23.17]. Since the address “2.6.7.13”,
which belongs to AS B, appears immediately after IXP IP
address “198.32.0.5”, we infer that, AS B is a participant
AS, and that 198.32.0.5 is the interface that is assigned to
AS B. Note from Fig. 5 that, irrespective of the location
of the traceroute source and its destination, if an IXP ad-
dress (the address 198.32.0.5 in our example) appears in
a traceroute, the IP address that appears immediately af-
ter (the address 2.6.7.13 in our example) is owned by the
AS (in our example AS B) that uses the IXP address (e.g.
198.32.0.5) to access the IXP as long as two conditions
hold. These are: (1) each IXP interface address is as-
signed to a single AS, and (2) routersalwaysrespond to a
traceroute probe with the address that corresponds to the
incoming IP interface. While the first condition largely
holds, the second condition does not. There is a small
chance that a router could respond to a traceroute probe
with an alternate (not the incoming) interface[37][21].
In our example, router R could respond to a traceroute
probe from AS A to router X with an alternate interface
(e.g.3.9.8.21), which makes the traceroute path appear as
[1.2.3.5, 198.32.0.5, 3.9.8.21, 5.34.23.17]. Since 3.9.8.21
could be within the IP space of AS C, one could incor-
rectly infer that AS C is an IXP participant. We overcome
this limitation with ourmajority-selection process; the
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Table 9: IXP participants inferring comparison
Name Actual XDZC Approach [15] Our Approach

of partici- correctly total R P correctly total R P

IXP pants inferredinferred inferredinferred

MSK-IX 154 90 115 68%90% 136 156 88%87%
JPIX 110 58 82 53%71% 107 128 97%84%

FREEIX 101 38 39 38%97% 64 65 63%98%
AMS-IX 211 177 220 84%80% 182 200 86%91%

LINX 175 164 242 94%68% 168 193 96%87%
DE-CIX 144 111 124 77%90% 137 142 95%96%

basis is the assumption thatin the majority of the cases,
routers will respond to a traceroute probe with the incom-
ing interface. This assumption has been shown to hold by
numerous prior efforts [37][21].

The previously proposed method in [15] does not have
the majority selection process. Furthermore the method
does not associate the specific IXP IP interface addresses
with their respective participating ASes. Our majority se-
lection process eliminates measurement noise and thus,
ensures a lower “false positive” rate. We map the discov-
ered AS participants to their assigned IXP IP addresses,
and using this, exclude the addresses in the name-based
inference process that we describe below. This practice
reduces the number of total IXP IP addresses that are sub-
ject to the name-based inference procedures which are in-
herently less reliable, and thus reduces the possible errors
overall.

5.1.2 Named-based IXP participants inference.

The basic name-based IXP participants inference
method, which was proposed in [15], works in three main
steps: (a) for every IP address in each IXP prefix space,
we do a reverse DNS look up, and we find the host name
for that IXP IP address, (b) we take the domain name
part (company.{com,net,org, etc.}) from the host name,
and do a DNS look up, which leads to a new IP address,

and (c) we find the AS that owns this address, and this
AS is considered a participant of that IXP. For example,
IXP DE-CIX has the IP address 80.81.192.186. If we do
a reverse DNS lookup, we get the host name
“GigabitEthernet3-2.core1.ftf1.level3.net”. A DNS
lookup of the domain name “level3.net” yields an IP ad-
dress of 209.245.19.41. An IP address to AS number
conversion reveals that the IP address belongs to AS3356
(Level3). Therefore, AS3356 is considered a participant
at DE-CIX.

Although this method has been used successfully by
previous studies [15], it has two limitations: (a) some-
times it can return incorrect AS numbers for IXP partic-
ipants, and (b) it does not always work: the DNS or the
reverse DNS lookup may not return an answer.

We address the first limitation by excluding the IXP
addresses that have been mapped on to AS participants
by our path-based inference method. This greatly reduces
the number of IXP addresses that are to be examined by
the named-based inference method and therefore reduces
the possible number of erroneous results.

We address the second limitation by proposing three
new methods to improve the success rate of name-based
inference:

a. Examining host names containing AS numbers.
Sometimes, the DNS name of an IXP IP address con-
tains the AS number of an IXP participant. For exam-
ple, 195.66.224.71 is an IP address at the London Inter-
net Exchange (LINX), which has a DNS name fe-3-4-
cr2.sov.as9153.net. From that, we can infer that AS9153
is a participant at the LINX IXP.

b. Examining common naming practices.We can
increase the success rate of DNS lookups by including
common host names with the inferred domain names. For
example, althoughcompany.netmay fail to be resolved,
the DNS look up may succeed withns.company.net. In
fact, there are several common host names such as “ns”,
“ns1”, “mail” and “www”. Hosts with these namesusu-
ally belong to the same AS. For example, 195.66.226.104
is an IP address at IXP LINX at London, England. The
host name of that IP address is “linx-gw4.vbc.net” and
the DNS lookup for the domain name “vbc.net” is unsuc-
cessful. However, the DNS lookup for ns.vbc.net returns
the address 194.207.0.129, which belongs to AS8785
(Astra/Eu-X and VBCnet GB).

c. Using the administrating personnel information.
A WHOIS lookup for a domain name often has an ad-
ministrative/technical contact person’s e-mail address.
The mail server is often within the same AS that corre-
sponds to the domain name. For example, for “decix-
gw.f.de.bcc-ip.net”, all DNS lookups described previ-
ously, fail. However, if we look at the WHOIS lookup for
domain “bcc-ip.net”, we will find the contact email server
is “bcc.de”, which has an IP address of 212.68.64.114,



and it belongs to AS9066 (BCC GmbH).

5.1.3 Putting the two techniques together

We integrate both the path-based and named-based tech-
niques, into a tool for inferring IXP participants from IXP
addresses. We start with the path-based technique, and
for every IP address in the IP block of an IXP, we try to
find it in a traceroute path. If this works, then we do not
reexamine this IP address. Otherwise, we use the name-
based inference and we utilize the three mechanisms that
we proposed above. For completeness, we show the flow
chart of the inference method in Fig. 6.

5.1.4 Evaluating our inference approach

We use two complementary metrics:RecallR andPre-
cisionP , which are widely used in the data mining lit-
erature for similar tasks. They are defined as follows:
R = Ncorrect

Nactual
andP = Ncorrect

Ninferred
whereNcorrect is

the number of correctly inferred participants from among
those inferred,Nactual is the actual number of partici-
pants, andNinferred is the total number of inferred par-
ticipants. Note that the Precision metric,P , has not been
used in previous studies although it is critical for detect-
ing false positives. Otherwise, we favor overly aggressive
inference methods that suggest a large number of correct
and incorrect participants.

For the comparison and for lack of a better criterion,
we select the six largest IXPs (in terms of number of par-
ticipants) for which we know the participants through the
EURO-IX site [38] or the IXPs’ own web sites. In Table
9, for each IXP, we list its actual number of participants,
the number of ASes that our algorithm inferred, and the
number of ASes that our algorithm inferredcorrectly. We
also show the Recall and Precision metrics.

It is easy to see that: (a) our approach is very effective
in determining most of the participants in these IXPs, and
(b) our approach identifies correctly more participants
than XDZC[15] and almost always with better Precision.
For the case of MSK-IX, we only have slightly lower Pre-
cision (by 3%) but a significantly higher Recall (by 20%).

5.2 From web-based archive

We notice there are some limitations on inferring IXP
participants by the IXP IP addresses alone. For example,
some IXPs do not have globally routable IP addresses and
some IP addresses are either invisible by traceroute or ap-
pear as “*”s in responses to traceroute probes.

To overcome these limitations, we include an addi-
tional source of information by retrieving IXP participant
information from the web sites. We have developed a tool
that automatically downloads and parses the web pages,

and outputs the AS numbers of the participants periodi-
cally. We use the European Internet Exchanges Associ-
ation [38] which maintains a database with 35 IXPs and
their participants. We are also able to collect information
from the web pages of 31 other IXPs. Naturally, as any
manually-maintained data, these archives can also con-
tain inaccuracies. However, we did not find any major
inconsistencies with our measured data.

5.3 The combined results

We applied our methods to infer the participants at vari-
ous IXPs on May 12, 2005. We first use our web-based
archival inference. For the rest of the IXPs, we collect
information with regard to their IP address blocks from
Packet Clearing House [36], and infer their participants
from their IXP IP addresses by using our inferring heuris-
tics. We identify 2348 distinct participants at 110 IXPs.
Some ASes actively participate in multiple IXPs. For ex-
ample, AS 8220 (Colt Telecom) is inferred as a partici-
pant in 22 different IXPs in 15 different countries. In this
study, we have used the combined results as our source
of IXP data.

6 Conclusion

In a nutshell, our work develops a systematic framework
for the cross-validation and the synthesis of most avail-
able sources of topological information. We are able to
find andconfirmapproximately 300% additional edges.
Furthermore, we recognize that Internet Exchange Points
(IXPs) hide significant topology information and most of
those new discovered peer-to-peer AS links are incident
at IXPs. The reason for such a phenomenon is probably
because, most missing peer-to-peer links are likely to be
at the middle or lower level of the Internet hierarchy, and
peering at some IXP is a cost-efficient way for the ASes
to setup peering relationships with other ASes. We show
that by adding these new AS links, some research results
based on previous incomplete topology, such as routing
decision and ISP profit/cost, change dramatically. Our
study suggest that business-oriented studies of the Inter-
net should make a point of taking into consideration as
many peer-to-peer edges as possible.

So, how many AS links are still missing from our new
snapshot of the Internet topology? Our findings suggest
that if we know the peering matrix of all the IXPs, we
might be able to discover most of the missing peer-to-
peer AS links. Unfortunately, very few IXPs publish
their peering matrices. Futhermore, the published peer-
ing matrices are not necessarily accurate, complete or up-
to-date. In our conservative estimates, there might be still
35% hiding peer-to-peer edges, in addition to what we al-
ready have in current Internet AS graph.



Our future plans have two distinct directions. First,
we want to continue the effort towards a more com-
plete Internet topology instance. Using the framework
we developed here, we are in a good position to quickly
and accurately incorporate new information, such as new
BGP routing tables, or new traceroute servers. Second,
given our more complete AS topology, we are in a better
position to understand the structure of the Internet and
the socio-economic and operational factors that guide its
growth. This in turn could help us interpret and anticipate
the Internet evolution and, indirectly, give us guidelines
for designing better networks in the future.
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