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Abstract

Several novel concepts and tools have revo-
lutionized our understanding of the Internet
topology. Most of the existing efforts attempt
to develop accurate analytical models. In this
paper, our goal is to develop an effective con-
ceptual model: a model that can be easily
drawn by hand, while at the same time, it cap-
tures significant macroscopic properties. We
build the foundation for our model with two
thrusts: a) we identify new topological proper-
ties, and b) we provide metrics to quantify the
topological importance of a node. We propose
the jellyfish as a model for the inter-domain
Internet topology. We show that our model
captures and represents the most significant
topological properties. Furthermore, we ob-
serve that the jellyfish has lasting value: it de-
scribes the topology for more than six years.

1 Introduction

“How can we represent the network graphically
in a way that a human can draw or under-
stand?”. “How can we define a hierarchy in the
Internet topology?”

These are the two main questions that we ad-
dress in this paper. The overarching goal is
to provide a conceptual model for the Inter-
net topology at the Autonomous System (AS)
level. Most current research on topology at-
tempts to maintain and describe the information
in all its detail. However, a simple conceptual
model is also important, especially when it cap-
tures graphically many fundamental properties.

An example of a successful conceptual model is
the bow-tie model used to describe the structure
of the world wide web [5].

Conceptual models demonstrate the following
paradox: they are difficult to think of, but once
they are presented they seem obvious. In our
case, the difficulty lies in identifying an “an-
chor” and a “compass”: a well-defined start-
ing point and a way to explore the topology
systematically. The main challenge is that the
topology is large, complex and constantly chang-
ing. Even with the introduction of power-laws,
we do not have a comprehensive model of the
topology [34][29][21]. Second, although the In-
ternet is widely believed to be hierarchical by
construction, it is too interconnected for an ob-
vious hierarchy[35]. Several efforts to visualize
the topology have been made [8] [27], but their
goal is slightly different from ours: they attempt
to show all the available information. In addi-
tion, several of those models target the topology
at the router-level. These visualizations are use-
ful for multiple different reasons, but they do not
meet our requirements: they can not be recre-
ated manually and they do not provide a mem-
orable model.

In this paper, we propose a jellyfish structure
as a conceptual model for the Internet topol-
ogy, extending our work in [36]. The value of
the model lies in its simplicity and its ability to
capture graphically many topological properties.
We use real Internet instances for over six years
for our experiments. First, we identify a num-
ber of new interesting topological properties that
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Figure 1: The evolution of the size of the Inter-
net.

guide the development and validate our model.
Second, we identify metrics for the topological
“importance” of a node. We use these metrics
to validate our model and establish an anchor: a
highly interconnected group of important nodes.
Third, we show how the topology can be mapped
to a jellyfish. Fourth, we observe that the jelly-
fish structure has not changed significantly dur-
ing more than six years. The network grows
”horizontally” by populating its layers, and not
by adding new layers. Finally, using our model,
we show how we can evaluate graph generators.
We find that one of the best graph generators
fails to capture the macroscopic structure of the
Internet.

The rest of this paper is structured as follows.
Section 2 presents some background and previ-
ous work. Section 3 presents several interest-
ing topological properties, which guide the de-
velopment and justify our jellyfish model. Sec-
tion 4 develops a conceptual model for the In-
ternet topology. Section 5 studies the time evo-
lution of the Internet regarding the properties
of our model. Section 6 compares the Internet
topology with generated topologies. Finally, sec-
tion 7 concludes our work.

2 Background

The Internet consists of domains or Au-
tonomous Systems (autonomously administered
sub-networks of the Internet). The topology of
the Internet can be studied at two different lev-
els of granularity. At the router level, we rep-
resent each router by a node in the graph. At
the inter-domain level, a single node represents
each domain and each edge indicates whether the
two ASes are directly connected. Here, we study
the topology at the inter-domain level or Au-
tonomous System level. We model the topology
using an undirected graph.

Definitions and Symbols. The degree of a
node is defined as the number of edges incident
to it. The distance between two nodes is the
number of edges on a shortest path between the
two nodes. The core of the graph corresponds to
the clique of the highest degree nodes and is de-
fined in more detail in section 4.1. The effective
eccentricity, ecc(v), of node v is the minimum
number of hops required to reach at least 90%
of the nodes that are reachable from that node1.
Note that important nodes have low eccentric-
ity. In the rest of this paper, we refer to effective
eccentricity simply as eccentricity. The signif-
icance of a node attempts to capture both the
number and the importance of neighbors. A sim-
ple recursive algorithm can be used to calculate
the significance [19], which is similar to the page
rank notion used by google to rank web pages.
Initially, all nodes start with equal significance.
At each step, the significance of each node is set
to the sum of the significance of its neighbors.
At the end of each step, all values are normal-
ized so that their sum equals to one. We stop
when the significance of the nodes converges to
a set of values. Note that this is equivalent to
finding the eigenvector of the maximum eigen-
value of the adjacency matrix of the graph [19].
We define relative significance as the product

1The effective eccentricity as defined here has already
been used successfully to analyze topological properties
of the Internet at the router level [28].
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of the significance of a node and the number of
nodes in the graph2. In the rest of this paper, we
focus on the relative significance and we use the
terms significance and relative significance inter-
changeably. In order to study the importance of
a node we will use the degree, the eccentricity
and the significance of a node.

In some cases, we will use power-laws to char-
acterize skewed distributions. A power-law is
an expression of the form y ∝ xc, where c is a
constant, x and y are measures of interest and ∝
stands for ”proportional to”. We use linear re-
gression to fit a line to a set of two-dimensional
points [30] and the least square errors method.
The validity of the approximation is indicated
by the correlation coefficient, which is a number
between -1 and 1. We refer to the absolute per-
cent value of the correlation coefficient value, for
which a value of 100% indicates perfect linear
correlation.

Graph Instances. We analyze real instances of
the Internet topology from 1997 to 2003. We use
the data collected from the Oregon routeviews
project [26]. Although the Oregon has been
reported to miss edges between ASes [7], it is
widely used in many AS studies [27, 13, 14, 35, 7].
The reason for its popularity is that it is the only
archival of data that can provide information for
the evolution of the topology, and also it captures
in a consistent way the nodes of the topology.

The network has grown significantly over the
six years of observation. In figure 1, we plot the
network size of the three real graphs for most of
our experiments. The growth of the Internet in
the time period we study is almost 516%. We
highlight three instances that we will use more
often in this paper:

1. Int-11-97: November of 1997 with 3015
nodes and 5156 edges and 3.42 avg. degree

2The definition of relative significance facilitates the
interpretation of its value by establishing one as a ref-
erence value. If we assume that all nodes have equal
importance, then the relative significance values would
be equal to one. Therefore, a node with relative signifi-
cance greater than one has more importance than its ”fair
share”.

2. Int-06-2000: June 2000, 7864 nodes and
15713 edges and 3.996 avg. degree.

3. Int-07-2003: July 2003, 15634 nodes and
34689 edges and 4.43 avg. degree.

Previous work. Modeling the Internet
topology has received significant attention re-
cently. However, most of this work does not at-
tempt to develop a conceptual model which is
the target of this paper.

Real Network Studies and Properties. Falout-
sos et al. [34] identified several power laws that
describe concisely distributions of graph proper-
ties such as the node degree. Intuitively, their
work shows that the topological properties show
high variability with few elements having very
high values, while the majority of them has
below-average values. In an earlier effort, Govin-
dan and Reddy [15] study the growth of the
inter-domain topology of the Internet. They
classify the domains in a 4-tier hierarchy based
on degree. Albert et al. [3] explore the resilience
of the network using the average distance be-
tween nodes as a metric. Chen et al. [7] ex-
press concerns about the completeness and ac-
curacy of the topology from the Oregon project.
Tangmunarunkit et al. [35] examine macroscopic
topological properties and attempt to develop a
framework for comparing topologies.

Theoretical studies. A fascinating study by
Reittu and Norros [32] provides theoretical sup-
port for our model. Their study proves that
graphs with power-law degree distribution and
randomly connected nodes (given the power-law
degree distribution) will also have the following
properties: a) there exists a highly connected
core, b) the diameter of the graph is propor-
tional to log log N . Another study by Cohen and
Havlin [9] concurs that small world networks are
expected to have small diameter and distances.
Our data validates both these theoretically pre-
dicted properties. Mihail et al. [24] prove a
surprising relationship between the eigenvalues
of the adjacency matrix and the degree of the
nodes. Recently, there exist a number of the-
oretical papers [25] [31], [10] that propose the
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use of hierarchical network models to character-
ize graphs with a power-law degree distribution.

Most recently, several theoretical studies on
complex networks address the problems of core
identification and hierarchy in social and life sci-
ence networks [37, 39].

Visualization Efforts. There have been few vi-
sualization efforts compared to the measurement
activity [8, 27, 17]. Most of these efforts attempt
to show the entire graph in all its detail. Further-
more, some of these efforts examine the topology
at the router level [8, 17].

Graph Generators. We can distinguish In-
ternet models in two categories depending on
whether they consider power-laws in their degree
distribution. The early graph models assume a
uniform degree distribution [38][11]. Zegura et
al. [40] introduce a comprehensive model that
includes several previous models and combines
simple topologies in a hierarchical structure. Af-
ter the discovery of power-laws, several models
have been proposed to capture the skewed degree
distribution [22][4][1][6][12][2][18].

Recently, two research efforts study the struc-
ture of the logical AS graph, which is a directed
graph that represents the business relationships
(i.e. customer - provider) apart from the connec-
tivity. Gao et al [14] develop a structural model
of the directed AS graph. Subramanian et al. [20]
propose a five level classification of ASes based
on the commercial relationships.

3 Topological Properties

In this section, we identify several topological
properties that provide guidelines for the devel-
opment of our model. First, we study metrics to
quantify the topological importance of a node.
Second, we study the spatial distribution of the
one-degree nodes in the graph. Third, we study
the connectivity of the graph.

In order to study the topological importance 3,

3Note that we are focusing on the topological im-
portance of a node, which is not necessarily related to
other types of importance such as financial, or functional

-10

-8

-6

-4

-2

 0

 2

 4

 6

 8

 10

 2  3  4  5  6  7  8

lo
g.

 r
el

at
iv

e 
si

gn
ifi

ca
nc

e

Effective eccentricity

’Int-07-2003’

Figure 2: The logarithm of relative significance
versus the effective eccentricity for Int-07-2003.

we propose three metrics. The degree of a node is
a straightforward metric of the importance. Nat-
urally, a high degree suggests higher importance.
Additionally, we explore the meaning and the re-
lationships between the eccentricity and the sig-
nificance.

The degree and the significance capture
different topological properties. The degree
and the significance are related, but at the same
time, they capture significantly different aspects
of the topology. The degree of a node captures
the quantity of the neighbors, while the signifi-
cance considers also the “quality” of the neigh-
bors. For example, if we order the nodes accord-
ing to significance and according to degree we
obtain two drastically different sequences. Here,
we will limit ourselves to an indicative example.
In graph Int-11-97, we have a node with degree
3 and significance 103.7, and a node of degree 10
and significance 1.305. The first node4 connects
to the three most significant nodes of the graph,
while the second node does not connect to any
node of high significance.

Significant nodes tend to be in the cen-
ter of the network. The significance and the
effective eccentricity are correlated. In figure 2,

(amount of traffic that goes through a node).
4Note that significance here is according to our defi-

nition, and captures the topological significance and not
the role of the node in the forwarding of traffic.
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Figure 3: The average number of one-degree
neighbors versus the degree of such node.

we plot the logarithm of the significance versus
the effective eccentricity. We observe that nodes
of high significance tend to have low effective
eccentricity.Intuitively, this can be seen in two
ways: central nodes are also significant, or that
significant nodes gravitate towards the center.

The effective eccentricity of adjacent
nodes cannot differ by more than one.

Lemma 1 Let G=(V, E) be a connected undi-
rected graph and (u, v) an edge in E, then the
effective eccentricity of nodes u and v can not
differ by more than one:

|ecc(u) − ecc(v)| ≤ 1

This lemma is easy to prove, since for any node
x that node u can reach in h hops, node v can
reach it with at most h + 1 hops.

This lemma helps us interpret the difference
between the eccentricity of adjacent nodes. We
can estimate the position of adjacent nodes with
respect to the center of the network. When does
this maximum difference in eccentricity appear?
It does, when all paths are passing through a
node. For example, consider a node of degree
one: its eccentricity is equal to the eccentricity
of its single neighbor plus one. We will refer to
this observation when we evaluate the model we
develop.
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Figure 4: The CCDF of the one-degree neighbors
of a node in log-log scale.

3.1 Location of One-Degree Nodes

The most common way to picture a hierarchy is
to think of a social or military structure, where
each class member connects to nodes of compa-
rable importance. Each class connects to an im-
mediately higher and lower class. Please refer to
appendix B for a more detailed discussion on this
model, which we call the cast or broom model.
It turns out that the Internet topology deviates
significantly from such a hierarchical model.

One-degree nodes are scattered all over
the network. We examine the spatial distri-
bution of the one-degree nodes in the graph.
Note that one-degree nodes, are approximately
35 − 45% of the nodes. In figure 3, we plot the
average number of one degree nodes, that are ad-
jacent to a node, versus it’s degree. The qualita-
tive observation is that one-degree nodes connect
to both high and low degree nodes. Namely, the
connectivity is not selective on the degree: nodes
of the lowest degree can connect directly to the
top nodes.

To better understand and characterize the one
degree nodes, we examine the distribution of the
one degree neighbors of a node. We use the
Complementary Cumulative Distribution Func-
tion (CCDF) of the one degree neighbors of a
node, which we denote as Or. We plot the Or

versus the number of one degree neighbors r in
log-log scale in figure 4 for graph Int-07-2003.
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date for the topological paths. Each line repre-
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The correlation coefficient is 99.5% for this in-
stance and above 98% for all the instances we
examined. This observation can be stated as the
following power-law.

Power Law 4: Given a graph, the CCDF
Or of the one degree neighbors r of a node, is
proportional to the r to the power of a constant
θ.

Or ∝ rθ

A natural question to ask, is whether this
power-law relates to the power-law of the de-
gree distribution. Although there is a correlation
between the degree of a node and the number
of its one-degree neighbors, we do not observe
a straightforward relationship such as a propor-
tionality.

3.2 The Network Connectivity

To further examine the structure, we quantify
the connectivity with two complementary met-
rics: a) the topological distances of the graph,
b) the number of alternative paths that exist be-
tween two nodes.

Topological distances. The distribution of
the topological distances has remained practi-
cally the same. We find that the distances in the
network do not change significantly in the time
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Figure 6: The CCDF distribution of the paths
versus the path length between the nodes with
degree 590 and 524 in log-log scale (Int-11-97).
Correlation coefficient 99.8%.

period we examine. This is somewhat counter-
intuitive for every-day thinking, where we expect
something that increases in size to increase in all
its dimensions.

In Figure 5, we plot the percentage of nodes
we can reach for a given number of hops versus
the day that each instance was collected. Each
line corresponds to a different number of hops.
We see that the neighborhood of a node as a
percentage of the total nodes is either constant or
increasing. For example, we find that within five
hops we can always reach more than 95% of the
nodes, and at least 45% of the nodes are within
three hops. Given that the network increases,
it is clear that the size of the neighborhood in
absolute size is increasing for all the hops.

Properties of Alternate Paths. We study
the number of alternate paths between a given
pair of nodes, which provides a different aspect
of the connectivity. There are several ways of
defining alternate paths depending on the in-
tended use, such as node-disjoint, edge-disjoint,
or shortest paths only. Here, we are mostly in-
terested in the topological insight we can obtain
from the analysis.

Greedy shortest-path discovery method. We
decided to emulate the behavior of a network op-
eration, namely that of a possible fault-tolerant
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routing protocol. Such a protocol may select the
shortest path as primary path, and the second
shortest path as back up. We restrict the back up
path to be node disjoint with the primary. Fol-
lowing this, in our study, for each pair of nodes,
we iteratively find and remove the shortest path,
except the end points. We stop when we cannot
find any more paths. Note that we have also con-
sidered another approach based on the max-flow
method, where we maximize the number of al-
ternate node-disjoint paths, but the results were
comparable and are not shown here.

We find that the relationship between the
number of node-disjoint paths and path length
between a pair of nodes u and v is skewed. In
figure 6, we plot the relationship between the
CCDF distributions of the number of paths ver-
sus the path length for a pair of nodes. We
want to capture this skewed path distribution
concisely in a qualitative way. This leads us to
state the following power-law as a rough approx-
imation of the above observations. Recall that
our focus is the topological structure and not an
accurate model for the path length distribution.

Approximation Power Law 5: The com-
plementary cumulative distribution function of
the number of paths Ru,v of length lu,v between
a pair of nodes u and v (found by our greedy
shortest path discovery method) is inversely pro-
portional to the length of that path lu,v to the
power of a constant m.

Ru,v ∝ l−m
u,v

The failure of the doughnut model. The
value of the above observation is its insight on
the macroscopic structure of the topology. Let
us assume that the Internet topology is like a
roughly homogeneous “doughnut”, which we dis-
cuss further in appendix B. In this model, for
any two nodes we would have two equally popu-
lar path lengths, each corresponding to one side
of the doughnut. In that case, the path length
distribution would not follow the power-law we
observe in practice.

4 The Jellyfish Model

In this section, we integrate all the observations
and insight of the previous sections into a con-
ceptual model. First, we identify a topological
center and we classify nodes into layers with re-
spect to the center. Then, we show how the jel-
lyfish model captures all the properties that we
examined.

4.1 Core, Layers and Hierarchy

The first step in defining a hierarchy is to iden-
tify a starting point. A natural point to look for
a center is the most important node. In fact,
we observe that the highest degree nodes are ad-
jacent to each other. We define the core as a
clique of high-degree nodes with the follow-
ing procedure. We sort nodes in non-increasing
degree order. We select the highest degree node
as the first member of the core. Then, we exam-
ine each node in that order; a node is added to
the core only if it forms a clique with the nodes
already in the core. In other words, the new node
must connect to all the nodes already in the core.
We stop when we can not add any more nodes.
This way, the core is a clique but not necessarily
the maximal clique of the graph.

Why do we define the core as a clique? Intu-
itively, the clique makes the representation more
useful when we consider node distances, and in
particular we can prove easily upper bounds for
the distances of two nodes, as we discuss later in
section 4.2. A path passing from the clique will
have at most one hop through the clique. Thus,
the distance between two nodes is bounded from
their relative from the clique plus the one hop in
the clique. In appendix A, we explore alternative
definitions for the core by relaxing the stringent
clique requirement. Recent, a work by Bar et al.
examines the definition of an Internet core [33].

We now classify the rest of the nodes according
to their proximity to the core. We define the first
layer to be all the nodes adjacent to the core.
Similarly, we define the second layer as the non-
labeled neighbors of the first layer. By repeating
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this procedure, we identify six layers if we count
the core as a layer zero.

Node distribution across layers. Table 1 shows
the distribution of the nodes for three Internet
instances. The node distribution across layers
does not seem to change significantly in the in-
stances we examine. We make two interesting
observations:

• Approximately 80-90% of the nodes are in
the first 3 layers.

• We find six layers in all the instances we
examine, and despite the significant network
growth.

These two observations strongly suggest that the
network grows “horizontally” by populating its
layers and not by adding more layers. We elab-
orate on this point in the next section.

The effectiveness of the classification.
We want to examine the effectiveness of our clas-
sification and explore its topological meaning.
First, we find that the layers differ significantly
in topological importance, which indicates that
the classification captures some elements of the
topological structure. We use our three metrics
to quantify the importance of each layer. Figure
7 shows the average values of the effective eccen-
tricity, the logarithm of the degree, and the log-
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Figure 8: The average importance of each shell:
log of the average degree, average effective eccen-
tricity and log of the relative significance (Int-07-
2003.

arithm of the relative significance for each layers
for the Int-07-2003 instance. All metrics suggest
that the importance of the nodes of each layer de-
creases rapidly as we move away from the core.
Note that for the average degree and the relative
significance the scale is logarithmic.

It is important to locate and study separately
the one-degree nodes. First, the one-degree
nodes are not useful in terms of connectivity
to the rest of the network. Second, one-degree
nodes are a large percentage of the network, and
it is important to clarify and isolate their role.
We separate each layer into two classes: a) the
multiple-degree or shell nodes, and b) the one-
degree or hang nodes. We refer to the one-
degree nodes hanging from k-th shell as the k-th
hang class. The layers and the shells have the
following relationship:

Layerk = Shellk + Hangk−1

For example, shell-0 is the core, and its one-
degree neighbors are denoted as hang-0, while
the rest of the neighbors constitute shell-1.

Table 2 shows the size of each group of nodes
in our classification.

The topological importance of shell de-
creases as we move away from the core. In
figure 8, we plot the logarithm of the average de-
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Instance
Int-11-1997 Int-06-2000 Int-07-2003

Layer No Nodes % of Nodes Nodes % of Nodes Nodes % of Nodes

Core/Layer-0 8 0.23 14 0.176 13 0.08

Layer-1 1354 44.90 3659 46.25 7330 46.27

Layer-2 1202 39.866 3090 39.05 7116 45.51

Layer-3 396 13.134 1052 13.29 1078 6.89

Layer-4 43 1.425 86 10.87 96 0.61

Layer-5 12 0.398 10 0.12 1 0.0063

Table 1: Distribution of nodes in layers for three Internet instances.

Instance
Int-11-1997 Int-06-2000 Int-07-2003

Layer ID Nodes % of Nodes Nodes % of Nodes Nodes % of Nodes

Core/Shell-0 8 0.23 14 0.176 13 0.08

Hang-0 465 15.42 798 10.08 1174 7.5

Shell-1 889 29.49 2861 36.16 6156 39.37

Hang-1 623 20.66 1266 16 2821 18.04

Shell-2 579 19.2 1824 23.05 4295 27.47

Hang-2 299 9.92 662 8.36 808 5.16

Shell-3 97 3.22 390 4.92 270 1.72

Hang-3 41 1.36 74 0.93 84 0.53

Shell-4 2 0.66 12 0.15 12 0.07

Hang-4 12 0.4 10 0.12 1 0.006

Table 2: Distribution of nodes in shell and hang classes.
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Figure 9: The Internet topology as a jellyfish.

gree distribution, the logarithm of average rela-
tive significance, and the average effective eccen-
tricity of each shell. All metrics suggest that the
importance of shells near the core is higher. Note
that for the average degree distribution and sig-
nificance the scale is logarithmic so a difference
of one is substantial. This analysis indicates that
our shells manage to cluster the nodes according
to their topological importance.

Most of the connectivity is towards the
center. Observe that the average effective ec-
centricity increases by approximately 0.5 to 1 as
we go away from the core. Recalling the lemma
of section 3, an increase in effective eccentric-
ity of approximately one indicates that the outer
node is approximately one link further away from
the core. Intuitively, nodes at the outer shells
need to go through the previous shell for most of
their shortest path connections. This suggests
that our selection of the core and the layers cap-
tures effectively the direction of the paths.

4.2 The Jellyfish Model

We use the shell-hang classification to define the
jellyfish model. The core is the center of the head
of the jellyfish surrounded by shells of nodes.
Figure 9 shows a graphical illustration of this
model. The hang nodes form the tentacles of
the jellyfish. We make the length of the tentacle
longer to graphically represent the concentration

of one-degree neighbors for each shell. We can
color each shell according to its importance.
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Figure 10: The percentage of the different types
of edges classified according to their adjacent
nodes (Int-07-2003).

From table 2 we can see how the nodes are
distributed in the different layers of our model.
We observe that 80 − 90% of nodes are in the
first few layers: core, shells one and two, and
hang one and two.

The jellyfish model provides upper
bounds of the node distances. By construc-
tion, the model can provide upper bounds on the
distances between nodes. For example, we can
state that the nodes in the first three layers
(80-90% of nodes) are within 5 hops from
each other5. In the worst case, the shortest
path between two nodes in layer two would con-
sist of nodes in: layer-2, layer-1, core, core, layer-
1, layer-2. The distance is bounded by five, but
it could be less than five. Note that this upper
bound seems to be very close to empirical obser-
vations, that indicate that 90% of the nodes are
within 5 hops [34]. Generalizing, we can prove
the following lemma.

Lemma 2 (Upper Bound of Distance):
The distance between nodes v of layer-kv and w

of layer-kw is bounded above as follows:

d(v,w) ≤ kv + kw + 1

5We refer to layers instead of the equivalent shell and
hang for simplicity.
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The proof is a straightforward if we consider
the construction of the layers.

In the jellyfish model, 70% of edges are
between different node layers. In Figure 10
we plot the percentage of edges that exist be-
tween and within layers. We find that 70% of
the edges connect nodes between different lay-
ers. We think of these edges as vertical with
respect to the jellyfish hierarchy. In contrast,
approximately 30% are horizontal to the hierar-
chy providing connectivity between nodes of the
same class.

Let us examine the vertical edges in more de-
tail. The construction of the jellyfish model is a
breadth-first type of network exploration. The
breadth-first tree consists of N − 1 edges, where
N the number of nodes. The number of edges
in the graph is approximately: 2N (average de-
gree close to four). Therefore, 50% of the edges
are part of the breadth first tree of the jellyfish.
Recall that 70% of the edges are vertical edges.
This means that the other 70− 50 = 20% of the
vertical edges are “redundant” edges.

Why is the jellyfish a good model? It should be
clear by now that this model is driven by several
empirical observations. We provide an overview
of the topological properties that the jellyfish
model captures. As an intuitive model, the jel-
lyfish represents these properties in a graphical
and qualitative way6.

1. Core: The topology has a core of highly
connected topologically-important nodes,
which is represented by the center of the jel-
lyfish cap.

2. Five layers: The distances between nodes
are small; maximum distance less than 11
hops, and 80% of nodes are within 5 hops.

3. Center-heavy: 80% of the nodes are in the
first 3 layers.

6Note that not all properties listed below can be de-
duced directly from the model, but the model can act as
a intuitive reminder.
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Figure 11: The distribution of nodes over time
grouped by class.

4. One-degree nodes: There is a non-trivial
percentage (35-45%) of one-degree nodes,
which are scattered everywhere (represen-
tation of power-law 4).

5. The importance of the nodes decreases with
their distance from the core.

6. The model provides good upper bounds of
the distances between nodes.

An additional strength of the model is that
it has persisted in time. Its structure and the
node distribution across classes has not changed
qualitatively during the years of our study. We
elaborate on the model evolution in the next sec-
tion.

5 The Evolution of the Jellyfish

We study the evolution of the Internet struc-
ture for approximately three years. We find that
the statistical properties of the jellyfish model
change relatively little over time. Second, we find
that the node and edge distribution across the
jellyfish classes remains approximately the same.
Third, we find that the classification of individ-
ual nodes does not change significantly within a
three to eight month interval. Finally, we study
the identity of the nodes that constitute the core.
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Nov97 Apr98 Nov98 Apr99 July99 Oct99
v/s v/s v/s v/s v/s v/s

Apr98 Aug98 Apr99 July99 Oct99 June00

No change 1845 2829 3278 3986 4289 3972

Total change 968 651 887 919 963 1615

Hang to shell 343 228 395 312 320 634

Shell to hang 148 155 227 193 265 382

Drop in shell 119 69 97 152 54 256

Increase in shell 117 97 60 62 171 140

Drop in hang 91 38 67 155 27 125

Increase in hang 150 64 41 45 126 78

Table 3: The change in the node classification between consecutive instances.

Figure 12: The distribution of edges over time
grouped by type.

Distribution of nodes over time: horizontal
growth. The first striking observation is that
the growth does not create new layers: the net-
work grows horizontally. The second obser-
vation is that the distribution of the nodes in
each class remains approximately the same, see
figure 11. The percentage of nodes in each cate-
gory is within ±5% with respect to the average of
the category7 over the 8 instances and figure 12
shows the average node distributions over time.

Changes in the classification of individual
nodes. The classification of most of the nodes in
the jellyfish model does not change significantly

7Note that the 5% refers to the total number of nodes,
and not 5% of the average of the class. With this defini-
tion, a change from 30% to 35% is within 5%.

within a three to eight month interval. Table 3
shows the results of comparing multiple pairs of
instances. We list the number of nodes that have
remained in the same class, or changed classes.
In case of change, we have several different types
depending on whether the move was from a shell
to a hang category or between different shells etc.
Naturally, we consider only nodes that appear in
both instances under comparison. We find that
most of the nodes (about 60% to 80%) maintain
the same classification. The second largest type
of change is nodes going from a hang to a shell
category. This suggests that the existing nodes
become more connected with time possibly to
increase their fault-tolerance, which has been an
independently observed trend [16].

Edge distribution over time. We look at the
distribution of edges over time with respect to
our model8. The main observation is that the
edge distribution among the layers stays within
±5% of the average of each layer. Figure 12
shows the edge distribution over time. Observe
that the maximum number of edges are between
core and layer-1 and between layer-1 and layer-2.
These two groups account for about 65% of all
the edges in the graph.

Which ASes are in the core? We find that
there are 20 nodes that appear in the core at

8We refer to layers instead of shell-hang classes to sim-
plify the plot.
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least once in the eight instances we examine.
Among them, only four nodes appear in all eight
instances. The maximum number of nodes in the
core in any instance was 14 and the minimum
was 8. Here are the most interesting observa-
tions:

• The maximum number of nodes in the core
is 14 in June 2000, while the minimum is 8
in November 1997 and August 1998.

• There were four nodes that are always in the
core: AlterNet, Cable and Wireless, Sprint-
Link and GTE Internetworking. These
nodes also constitute the highest-degree
nodes in the core, except in June 2000 when
AT&T (572) exceeded GTE (426)

• The node with the smallest degree in the
core was Exodus communications (53) in
April 1998.

6 The Importance of the Jelly-

fish Model

So far, we showed that the jellyfish can be used to
describe the Internet in a consistent way for the
last six years. In this section, we demonstrate
the usefulness of jellyfish. There are two param-
eters that we need to investigate. First, we try to
answer whether all graphs can be described us-
ing the jellyfish model that we found in the pre-
vious sections. Ideally, jellyfish should be able to
distinguish among different type of graphs. We
try to answer this in a qualitative way by us-
ing simple regular topologies, and we show that
not all topologies can be characterized as jelly-
fish. Second, we check whether our model can
be used to distinguish among power-law graphs9.
Using two popular graph generators, we show
that graphs that follow approximately the same
power-law distribution, can have significant dif-
ferent macroscopic properties, and can be distin-
guished using jellyfish.

9By power-law graphs, we mean graphs that their de-
gree distribution follows a power-law

Can any graph be modeled as a jellyfish?
For every graph, we can pick a center and com-
pute it’s layers. On the other hand, not every
graph can match the Internet profile, i.e. the
number of layers and the distribution of nodes
among these layers. For example, let us consider
some regular topologies such as a square mesh, a
complete binary (or k-ary) tree, a clique 10, and
purely random graphs. None of these graphs will
fit the above description of the jellyfish in all its
aspects. As an example, we will mention a few of
the more pronounced differences. First, there is
no natural central point to place the core. Even
if we define an arbitrary core, there are also other
properties that will be violated. The mesh and
the tree will have a large number of shells propor-
tional to O(

√
N) or O(log N) respectively. More

importantly, when the size of the network would
double, the number of layers and shells would in-
crease, which does not happen here. The clique
also does not fit the jellyfish profile: it has only
one layer, and no one-degree nodes. We have
also seen other network models which do not
match this profile such as the strictly hierarchical
model, and the doughnut model in appendix B.

6.1 Power-law Graph Generators

We can use the Jellyfish model as a test of the
realism of Internet like graphs. We will use
the GLP methodology proposed in [6], and the
PLRG approach proposed in [1]. The GLP ap-
proach depends on the preferential model, and it
is the most recent proposed generator and is con-
sidered to be the state of the art. On the other
hand, the PLRG generator is based on an in-
teresting theoretical model for scale free graphs,
and takes the degree distribution as a given.
Note that in [6], they compared the two gen-
erators and found that the best generator is the
GLP. They showed that PLRG fails to capture
properties like the characteristic path length and
the clustering coefficient. We show that GLP

10Varying these models by adding or removing a few
edges or nodes in a uniformly distributed way will not
reconciliate the differences with the jellyfish in most cases.
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Instance
GLP Int-06-2000 PLRG

Layer ID Nodes % of Nodes Nodes % of Nodes Nodes % of Nodes

Core/Shell-0 21 0.2 14 0.176 11 0.13

Hang-0 1885 23.82 798 10.08 565 7.1

Shell-1 1672 21.13 2861 36.16 2346 29.6

Hang-1 3371 42.6 1266 16 1298 16.4

Shell-2 688 8.7 1824 23.05 2305 29.13

Hang-2 221 2.79 662 8.36 525 6.6

Shell-3 3 0.037 390 4.92 325 4.1

Hang-3 3 0.037 74 0.93 125 1.5

Shell-4 0 0 12 0.15 41 0.51

Hang-4 0 0 10 0.12 23 0.29

Table 4: Distribution of nodes in shell and hang classes.

does not capture the macro structure that we
found using jellyfish. Incidentally, PLRG seems
to pass the test, although it fails other proper-
ties. Therefore, our jellyfish model is an excellent
tool to distinguish graphs.

We use the Brite generator [23] for the GLP
model, which includes an implementation of this
model 11. We have implemented PLRG. In order
to compare the Internet topology with the gen-
erators, we will use the Int-06-2000 graph. We
want to generate a topology that would have the
same properties as Int-06-2000. Following the
methodology presented in [6] we use the follow-
ing parameters: ρ = 0.434 and β = 0.661 for the
GLP. For the PLRG, we simply use the degree
distribution of Int-06-2000.

The correlation coefficient for the degree
power-law plot is 97, 6% for the GLP with slope
a = −1.092. For the PLRG plot the correlation
coefficient is 99, 7% and the slope is a = −1.243.
For the Int-06-2000 the correlation coefficient is
99.7% and the slope is a = −1.16312. In table 4,

11Note that the GLP model in the Brite generator is
not exactly the same as described in the original paper.
The difference lies in that the number of edges of a new
node can be either one with probability 87%, or two with
probability 13%. We updated the model used in brite to
reflect the original approach.

12Note that the PLRG doesn’t have the exact same
degree distribution as the Int-06-2000. When we generate

we have the decomposition of the graphs using
the jellyfish model. These results clearly show
that the generated graph using the GLP method-
ology is qualitatively different than the Internet
graph. On the other hand PLRG seems to main-
tain similar structure according to the jellyfish
model. The only differences between PLRG and
Int-06-2000 is that the clique is smaller, having
only 11 nodes, and that we have a slightly smaller
shell-1 and bigger shell-2.

Where does GLP fail to model the In-
ternet? The main differences between GLP and
the Int-06-2000 can be summarized as following:

1. The core of the network is much bigger in
GLP compared to the Internet. More specif-
ically, we have 21 nodes in the core for the
GLP, while only 14 nodes in the Int-06-2000.

2. The number of hanging nodes (degree one)
far out-exceeds the number of shell nodes.
The analogy is approximately 70% hanging
nodes to 30% shell nodes. In the case of the
Int-06-2000 we have the opposite result.

3. The GLP topology has only up to 5 layers,
with the 5th layer having only 3 members,

the topology using PLRG, we might pick to connect two
nodes that are already connected, so in this sense we have
fewer edges in the final graph.

14



while the Int-06-2000 has 6 layers.

Using our analysis we can conclude that jellyfish
is an excellent tool to distinguish among genera-
tors into two classes, those that can capture the
macro structure of the Internet and those that
can not.

7 Conclusions

In this paper, we develop a simple and concep-
tual topological model for the inter-domain In-
ternet topology. Our work has five components
of independent interest. First, we present and
study three metrics of the topological impor-
tance of a node. Second, we identify some new
topological properties. Third, we integrate the
main properties into our jellyfish model. Fourth,
we study the time evolution of the Internet with
respect to our model. Finally, we show that our
model can be used to distinguish among graph
generators.

The jellyfish model provides novel insight into
the structure of the Internet topology. Despite
its simple nature, the jellyfish captures most of
the known macroscopic properties. The model
facilitates the visualization of the complex Inter-
net structure by abstracting it into something
that a human can easily picture and understand.

We summarize our main observations and con-
tributions in the following points.

• We use three metrics to quantify the topo-
logical importance of a node and we examine
their meaning and their relationships.

• The Internet has a highly connected core
and layers of nodes in decreasing impor-
tance. This way, we can define a notion of
loose hierarchy in the network.

• The jellyfish model provides fairly tight up-
per bounds of the distances between nodes.

• Low degree nodes are scattered in the net-
work in contrast to a strictly layered hierar-
chy.

• Approximately 30% of the edges are be-
tween nodes of the same class according to
our model. From the remaining edges, 20%
of the edges are “redundant” edges between
adjacent layers.

• The topological growth is horizontal: the
number of layers has not increased over
time.

• The statistical properties of the topol-
ogy with respect to the jellyfish have not
changed significantly over time.

• The jellyfish can be used to distinguish
among graph generators.

In the future, we want to develop a theoretical
framework that will explain and justify our ex-
perimentally derived model. The ground break-
ing work of Reittu and Norros [32] opens the
doors for a parallel approach where theory and
real-data analysis complement each other. Fur-
thermore, we intend to elaborate and fine tune
the jellyfish model by integrating more topolog-
ical properties. We want to identify more topo-
logical properties and integrate them into the
model using novel means such as color. Finally,
we want to examine whether other real networks
can be described by the jellyfish model.
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A Core: Relaxing the clique

constraint

We explain our choice of defining our core to be a
clique containing the maximal degree node. One
could consider near-cliques, and include in the
core nodes of high degree that connect with al-
most all the core nodes. This would make sense
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Value of n

Figure 13: Significance of the core versus relax-
ing the clique constraint by n edges.

if by relaxing the clique constraint, we could get
a set of nodes that are substantially more impor-
tant than the nodes left out of the clique.

D
¯
efinition 1: We define an n-relaxed clique

to be a set of nodes that connect to every node
in the set except at most n nodes.

For example, a set of k nodes is a 1-relaxed
clique if and only if each node connects to at
least d-1 nodes in the original clique where d is
the size of the original clique.

We do the following experiment. We begin
with the clique containing the highest degree
node. Let c be the number of nodes in the clique.
This corresponds to a 0-relaxed clique. Now for
the next iteration, we relax this requirement and
allow nodes into the core that have one missing
edge from the original core forming a 1-relaxed
clique.

We plot the average significance of an n-
relaxed clique versus n for Internet instance Int-
06-2000. We vary n from 0 to c − 1 where c is
the number of nodes in the first clique (n = 0).

First, we observe that the maximum average
significance is obtained when the core is a clique
which corresponds to the case of n = 0. Second,
we see that as we increase n the average signifi-
cance of the core decreases smoothly. Therefore,
we do not have a reason to pick a value of n other
than zero. For n=0, we have the maximum av-
erage significance and also the interpretation of
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Property Cast Furball Doughnut Jellyfish

Horizontal Connectivity no yes yes yes

High-Low Degree Edges no no maybe yes

Distance Distribution yes yes no yes

Table 5: The matrix of observed properties and wether they are satisfied by the different models.

the core is straightforward.

B Failed Internet Models

Figure 14: The Internet topology as a broom.

In this section we take a look at several models
that looked promising but failed, as they could
not model the properties that we observed (see
table 5).

The Cast or Broom Model. This model is
probably the simplest model one could visualize
where domains are connected as parent and chil-
dren. However this model fails because we do
not take into account that ASes could be con-
nected horizontally as peers and it does not
capture that one-degree nodes connect to high
degree nodes as we explain below.

The Furball Model. This model allows for
nodes to be classified into layers as before. How-
ever it assumes a connectivity scheme via which
the high degree nodes only connect to other high
degree nodes and so on with the one-degree do-
mains connecting to the edge of the network.
However this violates our power-law on the dis-
tribution of one-degree nodes which states that
the one-degree nodes are uniformly distributed
throughout the network and thus, the model
fails.

Figure 15: The Internet topology as a furball.

u v

Figure 16: The Internet topology as a doughnut.

The Doughnut Model. Here we try to
model the Internet as a ring. The figure shows
the possible paths between two nodes in a layer.
In this model there are several paths of short
length between any two nodes. However there
are also several paths that go all the way around
the previous layer. This model fails as we know
that the majority of nodes go through the core
to connect to other nodes. Therefore we do not
find long round paths as proposed by this model.
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