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Glossary

Autonomous System (AS): An Autonomous System is a connected group
of one or more IP prefixes run by one or more network operators which
has a single and clearly defined routing policy. A unique AS number (or
ASN) is allocated to each AS for identification purpose in inter-domain
routing among ASes. For example, an organization, such as an ISP or
a university, is an example of an AS. Some organization may have more
than one ASes and thus have more than one AS numbers.

BGP (Border Gateway Protocol): The Border Gateway Protocol (BGP)
is the de facto routing protocol used in the Internet to exchange reacha-
bility information among ASes and interconnect them. The current BGP
is version 4.

Degree: The degree of an AS (or a node) is the number of neighbors of this
AS (or node).

CCDF: The Complementary Cumulative Distribution Function (CCDF) of a
degree, is the percentage of nodes that have degree greater than the degree.

Degree Rank: The degree rank of a node is its index in the order of decreasing
degree.

Eigenvalue: Let A be an N × N matrix. If there is a vector X ∈ RN 6= 0
such that AX = λX for some scalar λ, then λ is called the eigenvalue of
A with corresponding eigenvector X .

1 Definition

The Internet Topology is the structure of how hosts, routers or Autonomous
Systems are connected to each other. Majority of the existing Internet topology
research focuses on AS-level. This is because: (1) AS-level Internet topology
is at the highest granularity of the Internet. Other levels of Internet topology
partially depend on AS-level topology. (2)The AS-level Internet topology is rel-
atively easy to obtain. Other levels of topology are sometimes regard as private
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Figure 1: The structure of Internet at two levels

information and they are harder to get. (3)AS-level topology is not directly en-
gineered by human; instead, it is driven by technological and economical forces.

The research on Internet topology is driven by the explosive growth of the
Internet, which has been accompanied by a wide range of inter-networking prob-
lems related to routing, resource reservation and administration. The study
of algorithms and policies to address such problems often requires topological
information and models. In 1999, Faloutsos brothers [1] discovered that the
seemingly random Internet topology does follow some rules: it follows power-
law distributions. This finding revolutionized the research on Internet topology
and generated much follow-up works.

2 Introduction

The Internet can be decomposed into connected subnetworks that are under
separate administrative authorities, as shown in Figure 1. These subnetworks
are called domains or Autonomous Systems (ASes). The Internet community
develops and employs different routing protocols inside an AS and between ASes.
An intra-domain protocol, such as RIP, IS-IS, or OSPF, is limited within an AS,
while an inter-domain protocol, such as BGP, runs between ASes. This way, the
topology of the Internet can be studied at two different granularities. At the
router level, each router is represented by a node [2], and a direct connection
(either inter-domain or intra-domain) between any pair of routers is represented
by an edge. At the AS level, each AS is represented by a single node [3] and
each edge is an inter-domain interconnection. The study of the topology at both
levels is equally important.

This article majorly focus on the AS level Internet topology. Note that,
at this level, only one edge exists between two nodes, although there may be
multiple connections between two ASes in practice. This limitation is majorly
due to the nature of the data that the community has.
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Network Next Hop (Other Fields) Path
2.0.0.0/24 157.130.10.233 (...) 701 1299 34211 41856 41856

Table 1: An excerpt of an entry in typical Cisco “sh ip bgp” format BGP table
dumps from BGP collector “route-views.oregon-ix.net” on May 1, 2007.

There are multiple benefits from understanding the topology of the Internet.
This is motivated by questions like the following “What does the Internet look
like?” “Are there any topological properties that don’t change in time?” “How
will it look like a year from now?” “How can I generate Internet-like graphs for
my simulations?”. Modeling the Internet topology is an important open prob-
lem despite the attention it has attracted recently. Paxson and Floyd consider
this problem as a major reason why we don’t know how to simulate the Inter-
net [4]. An accurate topological model can have signicant impact on network
research. First, we can design more efficient protocols that take advantage of
its topological properties. Second, we can create more accurate articial models
for simulation purposes. And third, we can derive estimates for topological pa-
rameters that are useful for the analysis of protocols and for speculations of the
Internet topology in the future.

In the rest of this article, we will first review how and where the Internet
topology information is collected in Section 3. We also compare the pros and
cons of different data sources and investigate the reason why they have such
difference. In Section 4, we will review the power-laws of the Internet, which
is one of the most important discoveries of the Internet topology. The power-
laws lead to significant follow-up works in modeling the Internet topology, and
we will discuss these models in Section 5 and Section 6. Then we exhibit the
techniques to discover the complete Internet topology in Section 7. At last, we
discuss future research directions of the Internet topology in Section 8.

3 Data Sources and Comparison

We first describe the data sources for collecting AS-level Internet topology. All
of these sources and methods have their shortcomings, which will be compared
at the end of this section.

3.1 BGP routing tables

BGP routing table dumps are probably the most widely used resource that
provides information on the AS Internet topology. Normally, these routing table
dumps are obtained from special BGP collectors1, each of which connects with
one or more Internet backbone routers in different ASes with special agreements.

1Normal BGP routing software runs on the BGP collectors. Therefore, each BGP collector
has all functionalities of a normal BGP router; routing table dumps can be obtained from
these BGP collectors.
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These BGP collectors do not advertise any prefix (i.e., IP blocks) to the Internet,
while they are configured to receive all routes that the Internet backbone routers
advertise to them. Therefore, these collectors are totally passive, and they have
no effect to the global Internet. Periodically, each collector dumps its full routing
tables to Internet archives, which are available for download.

Table 1 shows an entry of typical Cisco “sh ip bgp” format BGP table
dumps from BGP collector “route-views.oregon-ix.net” on May 1, 2007. This
entry indicates that, the destination network 2.0.0.0/24 can be reached via AS
path “701 1299 34211 41856”. Therefore, the instance of Internet topology
should include four ASes (AS701, AS1299, AS34211 and AS41856) and three
links (AS701-AS1299, AS1299-AS34211 and AS34211-AS41856). Typically a
BGP collector’s routing table dump has more than a hundred thousands such
entries from each peer AS; the total number of entries often exceeds several
millions. The number of ASes or routers that each BGP collector varies from a
few to approximately one hundred. There are two well-maintained BGP routing
table collector agent: Oregon Routeviews[5] and RIPE RIS[6]. Each of these
agents maintains a number of BGP collectors over the world.

Besides routing tables, a BGP collector may also dump routing updates
received from its peers periodically. Routing updates have a similar format to
routing tables. A BGP update message displays the current route to a prefix,
and therefore, a collection of BGP updates is able to reveal the dynamic of BGP
routing.

3.2 Traceroute

Traceroute[7] is a handy debugging program to discover the route that IP data-
grams follow from one host to another. Traceroute takes advantage the fact
that each router has to decrement the TTL (Time To Live) field by 1 for each
IP packet pass through it, and each router has to discard any IP packets with
TTL=0 and send an ICMP “time-exceeded” error message back to the sender
of the original IP packet. The original purpose of the action is to prevent IP
packets from circulating the network for ever. The operation of traceroute take
advantage of this feature: it sends TTL increasing IP packets to the destination.
These packets will expire at the routers along the path it reach the destination.
Since each router along the path will send ICMP “time-exceeded” message back
to the traceroute source, the identities of these routers (or more precisely, the
outgoing IP interfaces of those routers) can be discovered. Although there is no
guarantees that two consecutive IP packets will traverse the same route to the
same destination, most often they do.

Skitter[8] is a part of CAIDA’s [9] topology measurement project. CAIDA
[9] maintains a set of (about 20) active monitors distributed around the globe.
Each monitor uses a modified version of traceroute to probe a large set of IP
addresses which nearly cover the whole IP address space. Rocketfuel [10] is a
topology discovery project from University of Washington. Rocketfuel use a
larger number (a few hundreds) of traceroute sources from public traceroute
servers as their sources. Therefore Rocketfuel has significant more number of
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vantage points. However, due to restrictions of the public traceroute servers,
the rate of traceroute probing is limited in Rocketfuel. Therefore Rocketfuel is
better at probing specific ISP networks but not the whole Internet. Another
promising project is NetDimes [11] from Telaviv University. To increase the
number of vantage points, NetDimes distribute a large number (tens of thou-
sands) of probing agents to global Internet users on volunteer basis. These
agents perform traceroutes according to the NetDimes center controls. Since
the agents are most volunteers, coordination is still hard in order to probe the
Internet topology from anywhere at any given time.

All traceroute probes only reflect router-level topology. In order to obtain
AS level Internet topology, the probed IP addresses have to be mapped to the
ASes that they belong to. The conventional way to map an IP address to its AS
number is by looking up the IP block in the BGP routing tables with the longest
prefix match. For example, if there is an IP address 2.0.0.18 and the longest
prefix that it matches in the routing table is 2.0.0.0/24 (as shown in Table 1),
then the announcing AS, which is the AS appeared at the end of the “Path”
field, (AS41856 in Table 1) is the AS that the IP 2.0.0.18 should be mapped to.
However, the accuracy of such conversion may suffer in certain situations. Mao
et. al. [12][13] discussed them in details.

3.3 Internet Routing Registry (IRR)

The need for cooperation between Autonomous Systems is fulfilled today by
the Internet Routing Registries (IRR) [6]. ASes use the Routing Policy Spec-
ification Language (RPSL) [7] [8] to describe their routing policy, and router
configuration files can be produced from it. At present, there exist 55 registries,
which form a global database to obtain a view of the global routing policy.
Some of these registries are regional, like RIPE or APNIC, other registries de-
scribe the policies of an Autonomous System and its customers, for example,
cable and wireless CW or LEVEL3. The main uses of the IRR registries are
to provide an easy way for consistent configuration of filters, and a mean to
facilitate the debugging of Internet routing problems. From the registered rout-
ing export and import policies, Internet topology can be extracted from IRR.
For example, in Table 2, an excerpt of aut-num record for AS3303 in IRR is
shown. From the registered import and export policy in this excerpt, the Inter-
net topology should include three ASes (AS3303, AS701 and AS1239), and two
edges (AS3303-AS701 and AS3303-AS1239).

3.4 Data source comparison

BGP table dumps, especially the one from Oregon Routeview project, are the
most widely used source for Internet topology study. An advantage of the BGP
routing tables is that their link information is considered reliable. If an AS
link appears in a BGP routing table dump, it is almost certain that the link
exists. However, limited number of vantage points makes it hard to discover
a more complete view of the AS-level topology. A single BGP routing table
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aut-num: AS3303
as-name: SWISSCOM
descr: Swisscom Solutions Ltd
descr: IP-Plus Internet Backbone
... ...
import: from AS701 action pref=700; accept ANY
export: to AS701 announce AS-SWCMGLOBAL
import: from AS1239 action pref=700; accept ANY
export: to AS1239 announce AS-SWCMGLOBAL
... ...

Table 2: An excerpt of IRR in plain text format for AS3303.

has the union of “shortest” or, more accurately, preferred paths with respect to
this point of observation. As a result, such a collection will not see edges that
are not on the preferred path for this point of observation. Several theoretical
and experimental efforts explore the limitations of such measurements [14][15].
Worse, such incompleteness may be statistically biased based on the type of the
links: peer-to-peer links are more likely to be missing from BGP routing table
dumps than provider-customer links, due to the selective exporting rules of BGP.
Typically, a peer-to-peer link can only be seen in a BGP routing table of these
two peering ASes or their customers. Thus, given a peer-to-peer edge, unless a
BGP collector peers with a customer of either AS incident to the edge, the edge
can not be detected from the table dumps of the BGP collector. A recent work
[16] discusses in depth this limitation. Thus, apart from being incomplete, the
measured graph may not fairly represent the different types of links. Further
more, BGP table dumps are likely to miss alternative and back-up paths. By
definition, a router advertises only the best path to each destination, namely an
IP prefix. Therefore, the back-up paths will not show up in distant ASes unless
the primary link breaks. To address the problem, a recent effort suggests the
need for actively probing backup links [17].

BGP updates are used in previous studies[18][19] as a source of topological
information and they show that by collecting BGP updates over a period of
time, more AS links are visible. This is because as the topology changes, BGP
updates provide transient and ephemeral route information. However, if the
window of observation is long, an advertised link may cease to exist [18] by the
time that we construct a topology snapshot. In other words, BGP updates may
provide a superimposition of a number of different snapshots that existed at
some point in time. Note that BGP updates are collected at the same vantage
points as the BGP tables in most collection sites. Naturally, topologies derived
from BGP updates share the same statistical bias per link type as from BGP
routing tables: peer-to-peer links are only to be advertised to the peering ASes
and their customers. This further limits the additional information that BGP
updates can provide currently. On the other hand, BGP updates could be useful
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in revealing ephemeral backup links over long period of observation, along with
erroneous BGP updates, which are not visible in the Internet at large, unless
the primary link breaks down. To tell the two apart, we need highly targeted
probes. Recently, active BGP probing[17] has been proposed for identifying
backup AS links. This is a promising approach that could complement our
work and provide the needed capability for discovering more AS links.

By using traceroute, one can explore IP paths and then translate the IP
addresses to AS numbers, thus obtaining AS paths. Similar to BGP tables, the
traceroute path information is considered reliable, since it represents the path2

that the packets actually traverse. On the other hand, a traceroute server
explores the routing paths from its location towards the rest of the world, and
thus, the collected data has the same limitations as BGP data in terms of
completeness and link bias. One additional challenge with the traceroute data
is the mapping of an IP path to an AS path. The problem is far from trivial,
and it has been the focus of several recent efforts [12][13].

Internet Routing Registry (IRR)[20] is the union of a growing number of
world-wide routing policy databases that use the Routing Policy Specification
Language (RPSL). In principle, each AS should register routes to all its neigh-
bors (that reflect the AS links between the AS and its neighbors) with this
registry. IRR information is manually maintained and there is no stringent re-
quirement for updating it. Therefore, without any processing, AS links derived
from IRR are prone to human errors, could be outdated or incomplete. How-
ever, the up-to-date IRR entries provide a wealth of information that could not
be obtained from any other source. A recent effort [21] shows that, with careful
processing of the data, we can extract a non-trivial amount of correct and useful
information.

4 Power-Laws of the Internet

The power-laws for Internet topology are first observed by Faloutsos brothers [1],
and later summarized in [22]. In those two papers, the authors have shown that
the Internet topology at the AS level can be described efficiently with power-
laws. The elegance and simplicity of the power-laws provide a novel perspective
into the seemingly uncontrolled Internet structure.

Power-laws are expressions of the form y ∝ xa, where a is a constant, x and
y are the measures of interest, and ∝ stands for “proportional to”. Pareto was
among the first to introduce power-laws in 1896 [23]. He used power-laws to de-
scribe the distribution of income where there are few very rich people, but most
of the people have a low income. Another classical law, the Zipf law [24], was
introduced in 1949, for the frequencies of the English words and the population
of cities. More recently, power-laws have been observed in communication net-
works. First, power-laws have been observed in traffic [25][26][27]. In addition,
the topology of the World Wide Web [28, 29] can be described by power-laws.

2An exception is when the route changes while a path is being explored by a traceroute.
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Figure 2: Log-log plot of the degree dv versus the rank rv in the sequence of
decreasing degree.

Furthermore, power-laws describe the topology of peer-to-peer networks [30]
and properties of multicast trees [31, 32, 33, 34].

The initial work on power-laws [1] has generated significant follow-up work.
In fact, [1] is one of the top five most cited computer science papers published in
1999[35]. Various researchers verified the power-law observations with different
datasets[36, 37, 38]. In addition, significant work has been devoted in under-
standing the origin [39], and generating power-law topologies [40, 39, 41, 42, 43,
44, 45, 46, 47].

For the Internet topology, three power-laws have been identified: a rank
power-law, a degree power-law and an eigen power-law.

4.1 Rank power-law

Power-law 1 (rank exponent) Given a graph,
the degree, dv, of a node v, is proportional to the
rank of the node, rv, to the power of a constant, R:

dv ∝ rRv

Definition 1 Let us sort the nodes of a graph in decreasing order of degree.
We define the rank exponent, R, to be the slope of the plot of the degrees of the
nodes versus the rank the nodes in log-log scale.

Figure 2 shows the (rv , dv) pairs in log-log scale after the nodes in an Internet
topology are sorted in decreasing order of degree, dv . The measured data is
obtained from Oregon Routeviews [5] collector and represented by points, while
the solid line represents the least-squares approximation. A striking observation
is that the plots are approximated well by linear regression. The correlation
coefficient is over 0.97 in this case. The authors of [22] also have inspected more
than 1000 Internet topology instances and over six year span between 1997 and
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Figure 3: The log-log plot of Dd versus the degree for the Oregon topologies.

2003, and they found that for every instance of the inter-domain topology the
correlation coefficient was always higher than 0.97. This linearity is unlikely to
be a coincidence.

Intuitively, Power-law 1 correlate the degrees of the nodes and their rank
and reflects a principle of the way domains connect. Such relationship can be
used to calculate the number of edges as a function of the number of nodes for a
given rank exponent. In fact, in a graph where Power-law 1 holds, the number
of edges, E, of a graph can be estimated as a function of the number of nodes,
N , and the rank exponent, R, as follows:

E =
N

2(R + 1)
(1 −

1

NR+1
)

For additional discussion on estimates using this formula, see [1].

4.2 Degree power-law

Power-law 2 (degree exponent) Given a graph,
the CCDF, Dd, of an degree, d, is proportional to
the degree the power of a constant, D:

Dd ∝ dD

Definition 2 We define the degree exponent, D, to be the slope of the plot of
the Cumulative degree of the degrees versus the degrees in log-log scale.

In Figure 3, Dd is plotted versus the degree d in log-log scale. The major
observation is that the plot is linear. The correlation coefficient is more than
0.996 for the data obtained from Oregon Routeviews[5]. Authors in [22] found
that the degree power-law holds for all the instances they inspected from 1997
to 2003, with correlation coefficient higher than 0.99.
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Figure 4: The eigenvalues plot for the Oregon topologies.

The intuition behind this power-law is that the distribution of the degree of
Internet nodes is not arbitrary. The qualitative observation is that lower degrees
are more frequent. The power-law manages to quantify this observation by a
single number, the degree exponent. This way, the realism of a graph can be
tested with a simple numerical comparison. If a graph does not follow Power-
law 2, or if its degree exponent is considerably different from the real exponents,
it probably does not represent a realistic topology.

The exponents of the rank and degree power-laws are shown to be related[48][49].
More specifically, in a perfect power-law distribution, the exponent of the rank
power-law is equal to the multiplicative inverse of the exponent of the degree
power-law. However, in reality, the two exponents hardly have such perfect re-
lationship. The discrepancy could be attributed to measurement imperfections
and inaccuracies. In that regard, both the rank and the degree power-laws char-
acterize the degree distribution from different angles, and it is useful to report
both exponents when characterizing a topology.

4.3 Eigen power-law

Power-law 3 (eigen exponent) Given a graph,
the eigenvalues, λi, are proportional to the order, i,
to the power of a constant, E:

λi ∝ iE

Definition 3 We define the eigen exponent, E, to be the slope of the plot of the
sorted eigenvalues versus their order in log-log scale.

Eigenvalues of a graph are the eigenvalues of its adjacency matrix. In Figure
4, the eigenvalues are plotted versus the their order in the decreasing sequence,
in log-log scale. The eigenvalues are shown as points in the figure, and the solid
lines are approximations using a least-squares fit. Similar observations with
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equally high correlation coefficients were observed for all instances obtained
between 1997 and 2003 [22]. The plot is practically linear with a correlation
coefficient of 0.996, which constitutes an empirical power-law of the Internet
topology.

Eigenvalues are fundamental graph metrics. There is a rich literature that
proves that the eigenvalues of a graph are closely related to many basic topo-
logical properties such as the diameter, the number of edges, the number of
spanning trees, the number of connected components, and the number of walks
of a certain length between vertices, as shown in [50]. Interestingly, Mihail et
al. [51] show that there is a surprising relationship between the eigen expo-
nent and the degree exponent: the eigen exponent is approximately the half
of the degree exponent. In practice, the exponents obey adequately the math-
ematical relationship, although the match is naturally not perfect. All of the
above suggest that the eigenvalues intimately relate to topological properties of
graphs. However, it is not trivial to explore the nature and the implications of
this power-law.

4.4 The doubts and settlement

There has been doubts and debate on whether the degree distribution of the
Internet at the AS level follows a exact power-law [46][52]. The major concern
is that by adding new edges discovered from a number of sources other than
the most used Oregon Routeviews [5], the degree distribution of the Internet
topology deviates from a perfect power-law.

There are at least two reasons for this debate. First, this debate is partly
due to the absence of a definitive statistical test. In Figure 5 (a), the CCDF of
node degrees is plotted for an Internet topology instance obtained from multiple
resources, including Routeviews [5] and verified edges from IRR [20]. The dis-
tribution is highly skewed, and the correlation coefficient of a least square errors
fitting is 98.9%. However, one could still use different statistical metrics and
argue against the accuracy of the approximation [46]. Second, the answer could
vary depending on which source we think is more complete and accurate, and
the purpose or the required level of statistical confidence of a study. In Figure 5
(b), the CCDF is plotted for an Internet topology instance obtained from IRR
after filtered by Nemecis [21]. The correlation coefficient is only 93.5%.

A recent paper [53] propose a reconciliatory divide-and conquer approach
to explain and settle the debate: they propose to model separately the degree
distribution according to the type of the edges: provider-customer and peer-
to-peer3. In Figure 5, an indicative set of degree distribution plots are shown.
The graphs obtained from multiple sources (Oregon Routeviews and traceroute

3A provider-customer edge means the two ASes incident to the edge have provider-customer
relationship, i.e., one AS pays the other AS for traffic transit service. A peer-to-peer edge
means the two AS incident to the edge have peer-to-peer relationship, i.e., these two ASes have
mutual agreement that they carry traffic for each other with no or little fee. The classification
of AS relationships can be inferred fairly accurately from the BGP routing tables by a number
of algorithms[54][55][56][57]. Majority of the edges (approximately 80%) are provider-customer
edges and most of the rest edges are peer-to-peer edges [53].
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Figure 5: The degree distributions of Oregon + verified IRR (left) and Nemecis-
filtered IRR (right) in the top row, their provider-customer degree distributions
in the middle row, and their peer-to-peer degree distributions in the bottom
row.
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verified IRR links) are plotted in the left column ((a), (c), and (e)), and the
topology obtained from Nemecis-filtered IRR are plotted in the right column
((b), (d), and (f)). The distributions for the whole graph are shown in the top
row, the provide-customer edges only in the middle row, and the peer-to-peer
edges only in the bottom row. The power-law approximation in the first two
rows of plots and the Weibull approximation in the bottom row of plots are
shown.

The following two properties can be observed from Figure 5: (1)The provider-
customer-only degree distribution can be accurately approximated by a power-
law. The correlation coefficient is 99.5% or higher in the plots of Figure 5 (d)
and (e). Note that, although the combined degree distribution of the topology in
IRR does not follow a power law as shown in Figure 5 (b), its provider-customer
subgraph follows a strict power law in Figure 5 (d). (2)The peer-to-peer-only
degree distribution can be accurately approximated by a Weibull distribution.
The correlation coefficient is 99.2% or higher in the plots of Figure 5 (e) and (f).
It is natural to ask why the two distributions differ. The following could be one
of the explanations. Power-laws are related to the rich-get-richer behavior: low
degree nodes “want” to connect to high degree nodes. For provider-customer
edges, this makes sense: an AS wants to connect to a high-degree provider,
since that provider would likely provide shorter paths to other ASes. This
is less obviously true for peer-to-peer edges. If AS1 becomes a peer of AS2,
AS1 does not benefit from the other peer-to-peer edges of AS2 due to routing
policies[58]: an AS normally will not carry traffic from one of its peers to its
other peers. Therefore, high peer-to-peer degree does not make a node more
attractive as a peer-to-peer neighbor. The validity of this explanation is still
under investigation[53].

4.5 Network analysis before power-laws

Before the discovery of power-law distribution of Internet topology, the metrics
that had been used to describe graphs were mainly the node degree and the
distances between nodes. Given a graph, the distance between two nodes is
the number of edges along the shortest path between the two nodes. Most
studies report minimum, maximum, and average values and plot the degree and
distance distribution. Govindan and Reddy [3] study the growth of the inter-
domain topology of the Internet between 1994 and 1995. The graph is sparse
with 75% of the nodes having degrees less or equal to two. Pansiot and Grad
[2] study the topology of the Internet in 1995 at the router level. The distances
they report are approximately two times larger compared to those of Govindan
and Reddy.

For graph generation purposes, Waxman introduced what seemed to be one
of the most popular network models [59]. These graphs are created probabilisti-
cally considering the distance between nodes in a Euclidean sense. This model
was successful in representing small early networks such as the ARPANET.
As the size and the complexity of the network increased more detailed models
were needed [60] [61]. Zegura et al. [61] introduce a comprehensive model that
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includes several previous models.

5 Internet Topology Generating Models and Tools

An abstraction or model of the actual Internet topology is important to the
understanding of how the topology is formed and how Internet topology is going
to be like in the future. Generated topologies are useful in assessing proposed
solutions (such as routing protocols) and provide rigous foundations of analyses
of how the results scale or how they might change with a different topology.

5.1 Early models

The most simple model is probably the Pure Random model. In this model,
a set of nodes is distributed in a plane, and an edge is added between each
pair of the nodes with a fixed probability p. Although this model does not
explicitly attempt to reflect any structure of real networks, it is attractive for
its simplicity.

The Waxman [59] model, on the other hand, adds edges with a probability
that is some function of the distance between the node. This probability for an
edge between node u and node v is given by:

P (u, v) = αe−d/(βL) (1)

where 0 < α, β ≤ 1, d is the Euclidean distance from u to v, and L is the
maximum distance between any two nodes. There are several variations in of
the Waxman model[62][63][61].

The Transit-Stub [64] method tries to impose a more Internet-oriented
hierarchical structure as follows. A connected random graph is first generated
(e.g. using the Waxman method described above). Each node in that graph
represents an entire Transit domain. Each Transit domain node is expanded
to form another connected random graph, representing the backbone topology
of that transit domain. Next, for each node in each transit domain, a number
of connected random graphs are generated, representing Stub domains that are
attached to that transit node. Finally, some extra connectivity is added, in the
form of “back-door” links between pairs of nodes, where a pair consists of a node
from a transit domain and another from a stub domain, or one node from each
of two different stub domains. By having nodes of different types, it is possible
to generate large sparsely-connected Internet-like topologies with typically low
node degrees. GT-ITM(Georgia Tech Internetwork Topology Models) is a tool
to generate the Transit-Stub networks.

The problem of these early models is that they do not follow power-laws as
shown in the real Internet instances. Medina et. al. [40] tested the generated
topologies from Waxman and Transit-Stub, and they found both of them exhibit
the absence or weak presence of the power-law.
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5.2 Pure power-law models

Since the discovery of power-laws by Faloutsos brothers[1], the main focus of gen-
erating an Internet-like topology has shifted to matching the exhibited power-
law in the Internet.

Palmer et. al. [65] proposed the PLOD (Power Law Out-Degree) model. In
this model, a degree credit is first assigned to each node in a graph with a given
number of nodes. The degree distribution complies with the appropriate power-
laws. Then an edge placement loop is executed: it randomly picks two nodes
and assigns an edge if they are not connected and each node still has remaining
degree credit. After an edge is assigned, the degree credit of the nodes incident
to the edge will be deducted accordingly. The loop continues until there are no
more pairs of nodes that fulfill the condition.

The concept of PLRG (Power Law Random Graph) [66] was proposed by
Aiello et al. in the year 2000, and therefore this model is also sometimes called
Model A. In this model, a random graph is produced with power law degree
distribution depending on two parameters, which roughly delineate the size and
density but they are natural and convenient for describing a power law degree
sequence. The power law random graph model P (α, β) is described as follows.
Let y be the number of nodes with degree x. P (α, β) assigns uniform probability
to all graphs with y = eα/xβ , where α is the intercept and β is the (negative)
slope when the degree sequence is plotted on a log-log scale. After the degree
distribution is defined, a set, L, which contains deg(v) distinct copies of each
node v, will be formed. Then a random matching of the elements of L is chosen.
For two nodes u and v, the number of edges joining u and v is equal to the
number of edges in the matching of L joining copies of u to copies of v. The
graph formed in the end is the PLRG.

These power-law “matchers” do not attempt to answer how a graph comes
to have a power law degree sequence. Rather, they take that as a given. Surpris-
ingly, these method seem to be able to match many other topology properties
[67] of the real Internet.

5.3 Dynamic growth models

In contrast to the pure power-law model, the dynamic growth models try to
generate the Internet topology graph by simulating the growth of the Internet.

Barabasi and Albert [68] proposed a generic model (or BA Model) for
network growth:

1. Incremental growth: The network expands continuously by the addi-
tion of new nodes.

2. Preferential attachment: A new node attaches preferentially to nodes
that are already well connected.

In more detail, the network begins with a small number (m0) of connected
nodes. New nodes are added to the network one at a time. The probability
p(v) that a new node is connected to an existing node v is determined as the
following:
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p(v) = dv/
∑

j

dj (2)

where dv is the degree of node v and
∑

j dj is the sum of degrees of all
existing nodes. In BA model, heavily linked nodes tend to quickly accumulate
even more links, while nodes with only a few links are unlikely to be chosen as
the destination for a new link. The new nodes have a “preference” to attach
themselves to the already heavily linked nodes. This is so called “rich-get-richer”
phenomenon.

The AB model [69] extents the BA model by adding a third rewiring op-
eration called “rewiring”. The rewiring operation consists of choosing m links
randomly and re-wire each end of them according to the same preference rule
used in the BA model.

Bu et. al. [43] found that the graphs generated by PLRG, BA and AB models
have different characteristic values real Internet graph in terms of path length
and clustering coefficient. They proposed GLP (Generalized Linear Preference)
[43], in which the probability p is:

p(v) = (dv − β)/
∑

j

(dj − β) (3)

where beta ∈ (−∞, 0) is a tunable parameter. The smaller the value of β is,
the less preference gives to high degree nodes.

All these dynamic growth models produces graphs with power-law distri-
bution. However, it is still hard for these models to capture every topological
property of the Internet. Authors in [67] show that even GLP does not follow
some hierarchical properties of the Internet.

5.4 Sampling

All aforementioned models attempt to grow a graph, an approach called “con-
structive”. One weakness of these constructive methods lies in their dependence
on the principles of construction, and the choice of parameter values. Further-
more, they often focus on matching a certain number of topology properties,
while fail to match some other. To address these problems, Krishnamurthy et al.
[70] took a “reductive” approach: instead of trying to construct a graph, they
try to “sample” real topologies to produce a smaller graph. The idea is that
hopefully the original properties, either well-know or unnoticed, can be kept
during the process of reduction. In more detail, they propose several reduction
methods:

DRV (Deletion of Random Vertex): Remove a random vertex, each with
the same probability. DRE (Deletion of Random Edge): Remove a random
edge, each with the same probability. DRVE (Deletion of Random Vertex or
Edge): Select a vertex uniformly at random, and then delete an edge chosen
uniformly at random from the edges incident on this vertex. DHYB-w (Hybrid
of DRVE/DRE): In this method, DRVE is executed with probability w and
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DRE is executed with probability 1 − w, where w ∈ [0, 1]. This method was
motivated by the study showing that sometimes DRVE and DRE had opposite
performances with respect to different metrics.

The topologies sampled by both DRV and DRE methods are mathematically
proved to follow power-law degree distribution. By comparing experimental
data, the authors in [70] concluded that DHYB-0.8 is the best reduction method,
and it also compares favorably to graph generation methods proposed previously
in the literature. These sampling methods are successful to reduce a topology
down to 30% of the original size. Beyond that the statistical confidence is found
low.

5.5 Topology Generation Tools

BRITE (Boston university Representative Internet Topology gEnerator) [71]is
a universal topology generator. It implements a single generation model that has
several degrees of freedom with respect to how the nodes are placed in the plane
and the properties of the interconnection method to be used. With difference
parameter settings, BRITE can generate either Waxman model or BA mode.

Inet[72] is an AS level Internet topology generator. Inet aims at reproducing
the connectivity properties of Internet topologies as power-laws and with other
improvements. It initially assigns node degrees from a power-law distribution
and then proceed to interconnect them using different rules. The current ver-
sion Inet-3.0 improves from their previous versions by creating topologies with
more accurate degree distributions and minimum vertex covers as compared to
Internet topologies. Inet-3.0’s topologies still do not well represent the Internet
in terms of maximum clique size and clustering coefficient. These related prob-
lems stress a need for a better understanding of Internet connectivity and will
be addressed in the future work.

6 Conceptual Models for the Internet Topology

The Internet topology is large, complex and constantly changing. Even with
the introduction of power-laws, which appears as a necessary though not suffi-
cient condition for a topology to be realistic, a conceptual model of the topol-
ogy [22][2][38] is still hard to get. Although the Internet is widely believed to be
hierarchical by construction, it is too interconnected for an obvious hierarchy[45].
Several efforts to visualize the router-level topology have been made [73][8], how-
ever they can not be recreated manually and they do not provide a memorable
model.

One goal here is to develop an effective conceptual model: a model that
can be easily drawn by hand, while at the same time, it captures significant
macroscopic properties. The Jellyfish [67] and Medusa [74] models are two
conceptual models proposed for the inter-domain Internet topology.
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Instance
Int-11-1997 Int-06-2000 Int-07-2003

Layer No Nodes % of Nodes Nodes % of Nodes Nodes % of Nodes

Core/Layer-0 8 0.23 14 0.176 13 0.08
Layer-1 1354 44.90 3659 46.25 7330 46.27
Layer-2 1202 39.866 3090 39.05 7116 45.51
Layer-3 396 13.134 1052 13.29 1078 6.89
Layer-4 43 1.425 86 10.87 96 0.61
Layer-5 12 0.398 10 0.12 1 0.0063

Table 3: Distribution of nodes in layers for three Internet instances.

6.1 The Jellyfish model

The Jellyfish model classifies ASes into different hierarchical layers. The highest
layer is called the Core, which can be constructed in the following procedure.
First sort all ASes in non-increasing degree order. The highest degree node is
selected as the first member of the Core. Then each of the rest ASes is examined
in that order; a node is added to the Core only if it forms a clique with the
nodes already in the Core. In other words, the new node must connect to all
the nodes already in the core. The procedure stops when no more node can be
added. The constructed Core is a clique of high-degree ASes, but not necessarily
the maximal clique of the graph. The Core is a starting point to construct a
Jellyfish topology, and the ASes in the core are probably the most important
ASes in the Internet since they have high degrees. The rest of the nodes are
defined according to their proximity to the Core. The first layer is defined as
all the ASes adjacent to the Core. Similarly, the second layer is defined as the
non-labeled neighbors of the first layer. By repeating this procedure, six layers
can be identified from the instances of Internet AS-level topology if the Core is
counted as layer zero. Table 3 shows the number and percentage of ASes with
each layer for three Internet topology instances at different time.

The Jellyfish model also studies separately the one-degree ASes. This is
because, although one-degree nodes do not provide connectivities to the rest
of the network, they have significant numbers. In fact, 35%-45% of the ASes
in the Internet are one-degree. In the Jellyfish model, each layer is separated
into two classes: a) the multiple-degree or shell nodes, and b) the one-degree
or hang nodes. The one-degree nodes hanging from k-th shell are referred
as the k-th hang class. For example, shell-0 is the core, and its one-degree
neighbors are denoted as hang-0, while the rest of the neighbors constitute
shell-1. Naturally, the number of ASes in the layers, shells and hangs have the
following relationship:

Layerk = Shellk + Hangk−1

Table 4 shows the size of each group of nodes in the classification.
The conceptual Jellyfish model is described by the layer-shell-hang classifi-

cation. The Core is the center of the head of the jellyfish surrounded by shells
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Instance
Int-11-1997 Int-06-2000 Int-07-2003

Layer ID Nodes % of Nodes Nodes % of Nodes Nodes % of Nodes

Core/Shell-0 8 0.23 14 0.176 13 0.08
Hang-0 465 15.42 798 10.08 1174 7.5
Shell-1 889 29.49 2861 36.16 6156 39.37
Hang-1 623 20.66 1266 16 2821 18.04
Shell-2 579 19.2 1824 23.05 4295 27.47
Hang-2 299 9.92 662 8.36 808 5.16
Shell-3 97 3.22 390 4.92 270 1.72
Hang-3 41 1.36 74 0.93 84 0.53
Shell-4 2 0.66 12 0.15 12 0.07
Hang-4 12 0.4 10 0.12 1 0.006

Table 4: Distribution of nodes in shell and hang classes.

of nodes. Figure 6 shows a graphical illustration of this model. The hang nodes
form the tentacles of the jellyfish. The length of the tentacle represents the
concentration of one-degree neighbors for each shell.

Besides being a conceptual model, the Jellyfish represents some invariant
properties of the Internet topology. (1) Core: The topology has a core of highly
connected important nodes, which is represented by the center of the jellyfish
cap. (2) Center-heavy: Approximately 80% of the Ases are layer-1, layer-2 and
layer-3. (See Table 3.) (3) Node distance: Distances between ASes are small;
maximum distance less than 11 hops, and 80% of the ASes are within 5 hops.
(4) Edges type: Approximately 70% of the edges are between different node
layers. The rest are horizontal to the hierarchy providing connectivity between
nodes of the same layer. (5) One-degree nodes: There is a non-trivial percentage
(35%-45%) of one-degree nodes. (See Table 4.)

6.2 Jellyfish tells the difference

As shown in the previous section, the Internet topology fits in the Jellyfish
profile. However, not every graph can be modeled as a jellyfish. For example,
if a tree with N nodes were to modeled into a jellyfish, the number of shells
would be proportional to O(log N). This does not fit into the Jellyfish profile of
Internet, where the number of shells is constant at 5 despite the rapid growth of
the number of nodes. This provides an opportunity to use the Jellyfish model
as a test of the realism of Internet like graphs.

Siganos et. al. [67] use the Jellyfish model to test the GLP methodology
proposed in [43], and the PLRG approach proposed in [66]. The GLP approach
depends on the preferential model. On the other hand, the PLRG generator is
based on an interesting theoretical model for scale free graphs, and takes the
degree distribution as a given. In [43], these two generators were compared and
it was concluded that the best generator was the GLP. PLRG was shown to
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Figure 6: The Internet topology as a jellyfish.

fail capturing properties like the characteristic path length and the clustering
coefficient. However, by using Jellyfish model, Siganos et. al. [67] were able
to show that GLP does not capture the macro structure by using jellyfish.
Incidentally, PLRG seems to pass the test, although it fails other properties.

In more detail, two graphs are generated by the GLP model and the PLRG
model respectively. Both of them have similar number of nodes to an Internet
topology instance in Jun 2000. In table 5, these graphs are decomposed using
the jellyfish model. These results clearly show that the generated graph using
the GLP methodology is qualitatively different than the Internet graph. First,
the Core of the network is much bigger in GLP (21) compared to the Internet
(14). Second, The number of hanging nodes (degree one) in GLP far out-exceeds
the number of shell nodes. The ratio is approximately 70% hanging nodes to
30% shell nodes. In the case of the Internet, this ratio is the opposite. Third, the
GLP topology has only up to 5 layers, with the 5th layer having only 3 members,
while the real Internet has 6 layers. On the other hand PLRG seems to maintain
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Instance
GLP Int-06-2000 PLRG

Layer ID Nodes % of Nodes Nodes % of Nodes Nodes % of Nodes

Core/Shell-0 21 0.2 14 0.176 11 0.13
Hang-0 1885 23.82 798 10.08 565 7.1
Shell-1 1672 21.13 2861 36.16 2346 29.6
Hang-1 3371 42.6 1266 16 1298 16.4
Shell-2 688 8.7 1824 23.05 2305 29.13
Hang-2 221 2.79 662 8.36 525 6.6
Shell-3 3 0.037 390 4.92 325 4.1
Hang-3 3 0.037 74 0.93 125 1.5
Shell-4 0 0 12 0.15 41 0.51
Hang-4 0 0 10 0.12 23 0.29

Table 5: Distribution of nodes in shell and hang classes.

similar structure according to the jellyfish model. The only differences between
PLRG and the Internet is that the clique is smaller, having only 11 nodes, and
that there is a slightly smaller shell-1 and a bigger shell-2.

6.3 The Medusa model

One problem of the Jellyfish model is that the identities of the Jellyfish Core are
not particularly robust when the completeness of the Internet topology is uncer-
tain. Carmi et al. [74] found that by adding or deleting an edge, the ASes in the
Jellyfish Core could change up to 25%, mostly affecting some European ASes.
To address the problem, they proposed a model called Medusa. The Medusa
model depends on an informative functional decomposition of the Internet AS
called k-pruning, which proceeds as follows:

First, each AS with only one neighbor is removed. The link to that neighbor
along with the node is removed as well. As this pruning proceeds, further nodes
with one neighbor (or fewer) may be exposed. They will be removed until there
is no 1-degree ASes in the remaining graph. ASes removed in this way make
up what is called 1-shell. The remaining graph is called 2-core. Second, the
pruning process is repeated and it is characterized by an index k. For example,
when k = 2, all nodes with 2 neighbors will be removed from the 2-core, and the
removed nodes in this step is called 2-shell. The process continues, eliminating
any nodes reduced to a degree of 2 (or fewer) by this pruning, until all nodes
remaining have 3 or more neighbors. The remaining graph is called 3-core. The
process is repeated to identify the 3-shell and 4-core, and so on. The process
stops at the point when no further nodes remain. The last nonempty k-core
provides a very robust and natural definition of the heart or nucleus of any
communications network. Last, the k-crust is defined as the union of the nodes
in the 1 through k shells, and the links that join them. The k − 1 crust is the
complement of the k-core.
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For small k, the crusts consist of many small clusters of connected sites.
For sufficiently large k, the largest connected cluster of a k-crust consists of a
significant fraction of the whole k-crust, while no smaller cluster contains more
than a few nodes. The change occurs at a well-defined threshold value of k.
There is a significant fraction of the nodes within each large-k crust which is
not part of its largest cluster, and remain isolated. Thus the AS graph (or any
similar scale-free network) can be decomposed into three distinct components:

1. The nucleus (the innermost k-core)

2. The giant connected component of the last crust, in which only the nucleus
is left out

3. The isolated components of the last crust, nodes forming many small
clusters. These connect to the connected component of the last crust
only through the nucleus

These three classes of nodes are quite different in their functional role within
the Internet. The nucleus plays a critical role in BGP routing, since its nodes lie
on a large fraction of the paths that connect different ASes. It allows redundancy
in path construction, which gives immunity to multiple points of failure. The
connected component of the large-k crusts could be an effective substrate on
which to develop additional routing capacity, for messages that do not need
to circle the globe. Finally, the isolated nodes and isolated groups of nodes
in the last crust essentially leave all routing up to the nodes in the nucleus of
the network. Because all their message traffic passes through the nucleus, even
when the destination is relatively close by, they may be contributing unnecessary
load to the most heavily used portions of the Internet. The relative size of this
component could be a key indicator of the evolution of the topography of the
Internet.

This model can be visualized as Figure 7. The core of the Medusa includes
the most important nodes that are found in the core and the first ring of the
Jellyfish’s mantle. The Jellyfish has relatively few rings around its core, while
the Medusa’s mantle is more extended and differentiated. The tendrils hanging
from the Jellyfish (leaf nodes) descend mostly from the core, but also from
all the other rings, while all the tendrils of the Medusa are, by construction,
attached to its nucleus.

7 The Complete Internet Topology

An accurate topology model would be important for simulating, analyzing, and
designing the future protocols effectively [4]. With an accurate Internet AS-level
topology, first, one can design and analyze new inter-domain routing protocols,
such as HLP [75], that take advantage of the properties of the Internet AS-
level topology. Second, one can create more accurate models for simulation
purposes [76]. Third, one can analyze phenomena such as the spread of viruses
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Figure 7: The Internet topology as a medusa.
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[77][78], more accurately. In addition, the current initiatives of rethinking and
redesigning the Internet and its operation from scratch would also benefit from
such an accurate Internet topology.

7.1 Toward finding a representative snapshot of Internet
topology

Developing an accurate representation of the Internet topology at the AS level
remains as a challenge despite the recent flurry of studies [52][18][11][19][79][80][17][16].
One of the major problems is that, although ASes are generally presented com-
pletely in most of the Internet topology sources, the edges among the ASes are
not. As seen in the previous section, each of topological sources has its own ad-
vantages, but each of them also provides an incomplete, sometimes inaccurate
view of the Internet AS topology; these views are often complementary.

Recently, He et. al [53] present a systematic framework for extracting and
synthesizing the AS level topology information from different sources. Instead of
simply taking the union of all resources, a careful synthesis and cross-validation
is performed. In additional to the sources mentioned above, they also utilize
information gathered from IXPs (Internet Exchange Points), which have not
received attention in terms of Internet topology discovery, although they play a
major role in the Internet connectivity.

They identify and validate several properties of the missing AS links. (1)most
of the missing AS edges are of the peer-to-peer type, (2) many of the missing AS
edges from BGP tables appear in IRR, and (3) most of the missing peer-to-peer
AS edges are incident at IXPs.

Their work consists four steps.
First, BGP routing tables are compared. They consider the AS edges de-

rived from multiple BGP routing table dumps[18], and compare them to the
Routeview data (OBD). The question to answer is what is the information that
the new BGP tables bring. Table 6 lists a portion of the collection of BGP table
dumps that were collected in May 2005. One observation here is that, about
80% of the missing links that do not appear in a single table dump (OBD) but
appear in a collection of table dumps (BD) are peer-to-peer type. For exam-
ple, among 8702 edges in BD but not in OBD, 7183 of them are classified as
peer-to-peer type.

Second, they systematically analyze the IRR data and identify topological
information that seems trustworthy by Nemecis[21]. They follow a conserva-
tive approach, given that IRR may contain some out-dated and/or erroneous
information. They do not accept new edges from IRR, even after our first
processing, unless they are confirmed by traceroutes by using public traceroute
servers. Overall, they find that IRR is a good source of missing links. For exam-
ple, they discover that more than 80% of the new edges found in the extra tables
already exist in IRR [20]. On the other hand, IRR has still have significantly
more edges.

Third, they identify the ASes which participate at Internet Exchange Points
(IXPs). An IXP is a relative low cost solution for an AS to peer with many other
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Table 6: A collection of BGP table dumps
Route collector or # of # of # of edges with edges edges not in

Router server nameNodesEdges type inferred not in OBD w/ type
total p-p p-c OBD total p-p p-c

route-views(OBD) 19843 4264342570 5551 36766 0 0 0 0
route-views2 19837 4127441230 4464 36514 1029 1028 835 191

route-views.eqix 19650 3488934876 1027 33640 674 674 530 143
route-views.linx 19655 3725937246 3246 33765 2511 25112188 319
route-views.isc 19753 3615236139 1915 34004 784 783 663 118

rrc00.ripe 19770 3647936465 1641 34605 655 654 543 111
rrc01.ripe 19640 3419334180 1121 32855 617 617 512 105
rrc03.ripe 19737 3914739129 3850 35042 3233 32282609 616
rrc05.ripe 19765 3267632659 1122 31324 1095 1091 658 432
rrc07.ripe 19618 3281131797 1219 30394 804 803 724 79
rrc12.ripe 19628 3384133827 2024 31606 1611 16101417 193

Total(BD) 19950 513455125912734 38265 8702 86897183 1499

peers who are also participants at the same IXP. The exhaustive identification
of IXP participants has received limited attention. Most previous work focuses
on identifying the existence of IXPs. The finding here is that many of the ASes
incident to the peer-to-peer edges missing from the different data sets are IXP
participants. Note that even if two ASes peer at the same IXP, that does not
necessarily mean there is an AS edge between these two ASes, because this
totally depends on peering agreement between these two ASes. Therefore, in
order to test whether or not these missing edges are indeed at the IXPs, they
proceed to the next step.

Fourth, they use their traceroute tool, RETRO, to verify potential edges
from IRR and IXPs. RETRO is a tool that collects public traceroute server
configurations, send out traceroute requests, and collect traceroute results dy-
namically. They confirm the existence of many potential edges identified in the
previous steps. The results show that more than 94% of the RETRO-verified
AS edges in IRR indeed go through IXPs. They even discover edges that were
not previously seen in either the BGP table dumps or IRR. In total, 300%
more peer-to-peer links than those in the conventional BGP table dumps from
Routeviews have been validated.

7.2 Towards finding Internet backup links

One limitation of the previous method is that it ultimately depends on tracer-
oute to verify the existence of a suspected edge. It is plausible if the suspected
edge is a primary link, which means they exist most of the time. If an suspected
edge is a backup, and it does not show unless some other links break down, it
is unlikely to be witnessed by traceroute. Even one can keep probing for a long
period of time, it is hard to tell if a link observed before is still existing currently.

26



Recently, active BGP probing [17] has been proposed for identifying backup
AS links. The main idea is to inject false AS path loops for an unused IP block.
Since AS path loops are prohibited in inter-domain routing, BGP routers are
forced to switch to backup links for this unused IP block. These links can
be observed from any route collectors, such as Routeviews or RIPE/RIS. This
probing technique does not affect normal Internet routing because every change
is restricted in the unused IP block.

In more detail, the principle of active BGP probing is the following. An
active probing AS announces one of its prefixes with AS-paths including a num-
ber of other ASes. These ASes, due to loop detection, will not use or propagate
the announcement. Then if there is any alternative path available, it will show
up. To avoid influencing AS-path length, the prohibited ASes are placed in an
AS-set at the end of the path. For example, to stop its announcement from
being propagated by ASes 1, 2, and 3, an AS (say AS12654) might announce
one of its prefixes with an AS-path of [12654 {1,2,3}]. This allows AS 12654 to
discover who propagates its announcements, find backup paths, and deduce the
policies of other ASes with respect to its prefixes. By proper constructing the
“prohibited” AS sets, one may be able to discover all backup links visible to the
probing AS.

Note, due to BGP export policies and very limited number of probing
ASes, this method majorly discovers provider-customer type backup links. This
method and the method of discovering missing peer-to-peer links [53] are com-
plementary to each other.

8 Future Directions

degree-degree correlation sigcomm 2006, topology with directions (Gao) Topol-
ogy generator and sampler for BGP simulation. Evolution (infocom 2006)
Router-level topology discovery (NetDimes, iplane, rocketfuel)
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