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Abstract—The Internet community has not reached a con-
sensus on an appropriate topological model for evaluating the
performance of inter-domain routing protocols. Using the current
Internet topology is not realistic, since its size is prohibitively
large for, say, a packet-level BGP simulation. Furthermore,
routing policies, which play a critical role in inter-domain routing,
are often ignored in many simulation studies. In this paper,
we address this issue by designing an algorithm to generate
small-scale, realistic, and policy-aware topologies. We propose
HBR, a network sampling method, which produces topologies
that preserve the fundamental properties of the Internet graph,
including, in particular, its hierarchical structure. Our approach
provides a long-term solution to the difficult problem of AS-level
routing evaluations: it can be used to generate small realistic
topologies in the future, starting from any newer or more
complete Internet instance.

I. I NTRODUCTION

Inter-domain routing studies need to use simulations, since
theoretical analysis and experimentation cannot be easilyused
for many types of BGP performance evaluations. BGP and
the inter-domain interactions are too complex for theoretical
analysis, especially when it comes to large scale phenomena.
Experimentation, on the other hand, is very cumbersome:
replicating a medium-size inter-domain network in a lab is
not trivial, and experimenting on the Internet itself is not
a welcomed proposition to network operators. As a result,
simulations are widely used to test and validate new techniques
for BGP improvements [29][28][6][8][34] and to study the
behavior and performance of BGP with different parametric
settings [17][25].

Our goal is to enable efficient and meaningful inter-domain
routing studies, by providing a tool to produce topologies that
are (a) sufficiently small, so that simulations can be conducted
and repeated in “human” time (e.g. a few days), and, at the
same time, (b) faithfully represent the Internet graph, so that
the results provide reasonable estimates of the performance
in the real world. Currently available methods for topology
generation have not, in our view, yet been able to satisfy these
two criteria at the same time.

Interestingly, routing policies are not considered in many
previous and even recent studies [8][34]. These studies model
BGP as a pure path vector routing protocol that chooses the
shortest path and each AS always advertises the best (shortest)
known route to all of its neighbors. However, this is not
a realistic behavior due to routing policies. Not considering
these routing policies may lead to inaccurate or unrealistic
conclusions. Here, we use the termpolicy-aware to refer to
a topolgy that represents routing policies, and use the term
no-policy to refer to a topology without representing any
routing policies. A policy-aware topology has annotated edges,
which represent the type of relationship between the connected

ASes. For example, directed edges are often used to indicate
a provider-customer relationship. Note that a realistic policy-
aware topology has to beBGP-connected: any two ASes must
be able to communicate over a path that does not violate any
routing policy.

A key problem is that noreasonably sizedand represen-
tative inter-domain topologies are currently available for con-
ducting simulations. The complete Internet topology (25,000
ASes) is too large for any packet-level simulators, such as
SSFNET [3]. On top of this, BGP simulations are typically
repeated a number of times to test different parameter settings
and for ensuring reliability of the results; the total number of
runs could exceed 200,000 [17]. For this reason, researchers
either only use small canonical topologies [17], or rely on
topology generators [21][26][7][24] and sampling approaches
[22][30] to produce smaller scale Internet-like topologies.
However, none of these approaches produces policy-aware
topologies. A recent work [11] proposes an Internet topology
generator with AS relationships, but the topology is not guar-
anteed to be BGP-connected. The lack of small, representative
and BGP-connected topologies impedes our ability to evaluate
inter-domain routing in an efficient manner.

In this paper, we proposeHierarchy-Based Reduction
(HBR), a novel approach to sample the complete Internet
topology. A key novelty is that HBR uses and respects the
hierarchical structure of the Internet, to produce small policy-
aware BGP-connected1 topologies.

HBR can reduce a topology successfully to 20% of the
original size. According to our initial evaluation, HBR can
successfully produce small realistic policy-aware topologies
that are approximately 20% of the size of the original graph.
We validate the realism of our topologies using: (a) an
extensive list of graph metrics that characterize the Internet
graph, and (b) an actual evaluation of BGP performance, such
as BGP convergence time. (Due to space limitations, the latter
evaluation is not included here, and it can be found in [18].)

Our work in perspective.The value of our work is not the
generation of aparticular topology, but the development of a
methodto generate topologies. Thus, as the Internet grows or
as we measure it more accurately, our approach can always
be used to sample the newer, more complete topology.

In addition, our work can be seen as a promising step
towards developing a more realistic BGP topology model –
a goal that is considered to be ambitious and non-trivial [27].
Further enrichment of the model is left for the future work. For
example, since we model the AS-level topology at the level of
ASes (i.e., each node represents an AS), intra-AS dynamics

1HBR can generate provably BGP-connected topologies, if theinitial topol-
ogy is BGP-connected, but this not discussed here due to space limitations.



or the interactions between iBGP and BGP [13] cannot be
captured in our model.

II. BACKGROUND AND RELATED WORK

The Internet is composed of tens of thousands Autonomous
Systems (ASes). The Border Gateway Protocol (BGP) is
the de facto routing protocol used to exchange reachability
information among these ASes and to interconnect them.
Simulations have been widely used to study BGP parameters
such as MRAI [17], and Route Flap Damping [25], and
to evaluate new inter-domain protocols [29][28][6][8] [34].
However, simulations in all these studies only use no-policy
topologies.

Routing policies are commonly implemented in today’s
Internet. Policies can be thought of as the rules with which an
AS accepts, modifies, and advertises further route information
(route updates) that it receives from its neighbors. Although an
AS may have specific routing policies for each of its neighbor
ASes, general policies are normally determined by the business
relationships (say, provider-customer or peer-peer) withits
neighbor ASes. One common policy for a multi-homed AS,
for example, is that it will not advertise the routes learnedfrom
one of its providers to its other providers. This is because the
multi-homed AS does not want to carry transit traffic between
its providers. An AS could also prefer to use and advertise
routes learned from its customers to routes learned from its
providers, even if the paths via its customers are longer [35].

The business relationships between the ASs can be inferred
from global routing tables[14][36][5][9]. Gao et al. [16][15]
study and formalize the model of routing policies that is widely
used now. Labovitz et al. [23] measure the impact of topology
on BGP performance using data from about 200 ISPs, but their
goal is not to provide a topology model as we do here.

The challenge of realistic BGP simulations:An Internet-
scale BGP simulation is very resource consuming and often
impossible. The required memory for detailed BGP simulators,
such as [3][2][1], increases cubically with the size of the
network [10]. In the most popular BGP simulator SSFNET
[3], a simulation on a 1000-AS no-policy topology could
consume 2GB memory even if each AS only announces one
prefix. C-BGP [32] can perform large scale BGP simulations.
However, it only implements the BGP decision process, and
does not consider details of the protocol, such as timers and
BGP messages. A recent simulator, simBGP [31], can perform
large-scale simulations by ignoring the protocol stack below
the application layer, but the number of prefixes in each
simulation is very limited. Even if memory requirement were
not an issue, large simulations would take months for a single
run.

III. SAMPLING METHODS

In this section, we tackle the problem of how to produce
smaller-scale, while still representative, “Internet-like” topolo-
gies with policies.

A. Identifying Required Properties of the Topology

As discussed earlier, when policies are considered, there
are two additional properties that a topological model needs

to satisfy. First,the topology must be “BGP-connected”.
The concept of connectivity is extended when routing policies
are incorporated: nodes are not only required to be within
a connected component, but are also required to reach each
other without violating any routing policy. For example, ifthe
only paths between a pair of ASesA andB are through some
customers of these two ASes, then the topology is not BGP-
connected, as such paths violate the export filtering policy,
and there is no other path betweenA and B. Since any
AS in the Internet should be able to reach any other AS, a
policy-aware Internet topology should be “BGP-connected”.
Second,the topology must be “relationship loop-free”. For
example, ASesA, B andC form a relationship loop ifA is
B’s provider, B is C ’s provider, andC is A’s provider. In
reality, relationship loops should not occur; otherwise, BGP is
not guaranteed to converge [15].

Obtaining a smaller scale topology is more challeng-
ing when we incorporate policies. Most previous efforts
[21][26][22][30], in fact, do not consider routing policies. A
recent work [11] attempted to generate a topology with AS
relationships by enforcing the joint distribution of provider,
customer and peer degrees. However, this approach is not quite
satisfactory because the resulting topology is not guaranteed
to be BGP-connected nor relationship loop-free. We examined
an extension of this scheme that trims away BGP-disconnected
nodes, but we discovered that such a practice greatly deterio-
rates the quality of the generated topologies. In fact, in some
cases, trimming could make a topology completely degenerate
into BGP-disconnected pieces. In addition, a careless assign-
ment of AS relationships could introduce relationship loops.

B. Hierarchy-Based Reduction

We present Hierarchy-Based Reduction (HBR), a novel
method to sample a large initial topology. We develop several
variations of HBR. We first present the basic method (HBR0),
the operation of which can be described in three stages:

Initialization stage: We first identify and select all ASes
that have no providers in the initial topology. As we will see
later, these ASes form a clique, which we calltop-clique, with
peer-to-peer links only, if the topology is BGP-connected.

Iterative stage: For each AS selected in the Initialization
stage, we select its customers with probabilityp. This is step
1 in this stage. In the next step, we take the new ASes from
step 1 and select their customers with probabilityp. We repeat
the process step by step until an iteration does not select any
new ASes.

Assembling stage:We construct the smaller topology by
keeping all the links between the selected ASes including
peer-to-peer links. Naturally, the relationship reflectedby a
link in the new graph is the same as that in the initial
graph. Algorithm 1 provides a pseudo-code description of our
method.

C. HBR variations and uniform reduction

We recognize that HBR0 is not the only way to reduce a
large Internet AS topology. Thus, for each of the three reduc-
tion stages introduced in Section III-B, we consider possible
alternatives, and compare the performance. Obviously thisis



Algorithm 1 HBR0 algorithm:G(V, E) ⇒ Gs(Vs, Es)

Input: original topologyG(V, E), sampling rate0 < p ≤ 1
Output: smaller topologyGs(Vs, Es)

1: TopASes ⇐ get top clique ASes fromG(V, E)
2: Vs ⇐ TopASes
3: CurrentLayerASes ⇐ TopASes
4: while CurrentLayerASes not emptydo
5: NextLayerASes ⇐ empty
6: for all AS in CurentLayerASes do
7: for all cust such thatcust is a customer ofAS do
8: if 0 ≤ rand() < p andcust not in Vs then
9: addcust into NextLayerASes

10: end if
11: end for
12: end for
13: Vs ⇐ Vs

S

NextLayerASes
14: CurrentLayerASes ⇐ NextLayerASes
15: end while
16: Es ⇐ empty
17: for all edge in E do
18: if both nodes at the two ends of theedge is in Vs then
19: addedge into Es

20: end if
21: end for
22: return Gs(Vs, Es)

not an exhaustive list, and the analysis of other modification
of HBR0 is left for future work.

HBR1: Here, in theInitialization stage, instead of selecting
every top-clique AS in the initial topology, we only choose
a subset of the tier-1 ASes. The number (s) of the chosen
tier-1 ASes has a lower boundMinS. s is also related to
the initial clique size (InitS) and the sampling ratep: s =
MinS + ⌈p ∗ (InitS − MinS)⌉. We useMinS = 1 in this
paper unless otherwise stated. The reason for considering this
alternative method is that there are normally fewer tier-1 ASes
in a smaller scale Internet instance, as shown from the history
of Internet. HBR1 tries to match the corresponding number of
tier-1 ASes when it reduces a large topology to a smaller one.

HBR2: Here, in theIterative stage, customers of ASes from
an upper tier are considered only once with probabilityp at a
given step. As a result, in this scheme multi-homed ASes have
a lower chance of being selected in HBR2 than in HBR0.

HBR3: Here, in theAssembling stage, instead of keeping
all provider-customer edges among the selected ASes, we only
keep the provider-customer edges along which the customer
was selected. This variation reduces the number of edges, as
well as the number of multi-homed ASes.

For comparison purposes, we present two additional, uni-
form reduction heuristics: DDRV and DDRE, which are vari-
ations of the method in [22] to sample no-policy networks.

DDRV: Directed Deletion of Random Vertex. Remove each
AS, independently, with probability1− p, and keep all edges
between the remaining ASes. Finally, choose the largest BGP-
connected component.

DDRE: Directed Deletion of Random Edges. Remove each
edge, independently, with probability1−p. In the end, choose
the largest BGP-connected component.

Note that, in order to improve the performance of these
approaches, we do not remove the top-clique ASes in DDRV

or the edges of the top-clique in DDRE.

IV. EVALUATION

There are at least two possible ways to assess the success of
a reduced topology: one can either try to match the properties
of real Internet instances in history, or try to match the
properties of the initial unreduced instance. If the topological
properties do not change with size, these two approaches
converge. However, as shown in [12] and later in this section,
no strict size-independent Internet topology property seems to
exist so far. In fact, some propertieshave tochange with size.
For example, the average path length bewteen the nodes in a
grid topology increases as the size of the network increases.
Thus, we decide to compare the properties of the sampled
topology with the real (historical) Internet topology thathas
approximately the same size.

We conduct our evaluation using the data from Oregon
Routeviews [4]. This is the most frequently used route archival
data to infer AS-level Internet topologies. Furthermore, it is
the only data archive that has instances dated back to 1997.
Although this is not a complete topology, we argue that this
is less important in our case: (i) our comparison is consistent,
since we start from a large instance of the same data set,
and (ii) our sampling does not depend on the completeness of
peer-to-peer edges, which are the ones mostly missing from
the data [19]. We use snapshots of the Internet topology from
Dec 1997 to Dec 2006, a 9-year span during which the size
of Internet topology has grown 8-folds, from approximately
3,000 ASes in Dec 1997 to nearly 24,000 ASes in Dec 2006.

To infer the AS relationships of an AS topology, we use the
algorithm described in [14]. Other methods are available, but
they either require additional/seed data, which is not always
available for the topology instances we have from 1997 to
2006 [36][9][33], or do not always work for our topology
instances. A common problem with all inference algorithms
is that they sometimes produce a topology that is not BGP-
connected. We trim the ASes that are not connected to the
top-clique of the topology. The number of the trimmed ASes
is very small, typically less than 1% of ASes in the original
topology.

A. Topological Properties

We compare a number of topological properties between
sampled topologies and the real Internet topologies with the
same size. We include 6 sampling techniques: HBR0, HBR1,
HBR2, HBR3, DDRV and DDRE. For each of the considered
techniques, we sample a real Internet topology instance ob-
tained on Dec 1, 2006 from Oregon Routeviews. We vary the
sampling ratep from 0.1 to 1 to get smaller scale topologies
with different sizes.

Overview of results: We find thatHBR0 and HBR1 are
the best sampling methods. HBR2 performs adequately, but
consistently worse than HBR0. Finally, HBR3, DDRV, and
DDRE perform significantly worse in most of the metrics.

We now provide the comparison of these methods in detail.
Due to space limitations, we cannot show all the metrics that
were used or provide intuitive explanations for the resultsin
each case.
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Number of edges.The number of edges in a graph of a
given size represents the density of a graph. In Fig. 1, we
plot the number of edges against the number of nodes in the
topologies. One can see that, throughout the years from 1997
to 2006, the number of edges grows almost linearly with the
number of nodes in the historical Internet instances. Reduction
methods HBR0, HBR1 and HBR2 follow the Internet data
nicely while HBR3, DDRV and DDRE deviate from the
evolution of Internet data.

Degree distribution. The degree distribution of the AS-
level Internet topology is known to follow a power-law with
a correlation coefficient larger than 99% [12], especially
if we focus on customer-provider edges [19]. We calculate
the power-law correlation coefficient for the complementary
cumulative distribution (CCDF) function on the node degrees
of each topological instance. In Fig. 2, we see that all
Internet instances from the Oregon Routeviews follow power-
law degree distributions. Topologies sampled from HBR0 and
HBR1 follow the Internet instances very well (≥99%) until
the sizes drop to 1/8th of the original’s.

Assortativity. The assortativity coefficientr of a topology
is defined as the Pearson’s correlation coefficient of node
degrees between all pairs of connected nodes. Intuitively,r
captures the tendency of the nodes to attach to nodes with
similar (assortative mixing, 0 < r ≤ 1) or different degrees
(disassortative mixing, −1 ≤ r < 0). In Fig. 3, we plot the
r values for all historical Internet instances as well as for
the one sampled by our reduction methods. We find thatr
in the Internet instances is fairly stable at approximately-0.2.
Among all the reduction methods, HBR1 works best: ther
values from HBR1 graphs follow the Internet values until the

size of topology is reduced to 1/8th of the initial size.
Degree entropy. We define thedegree entropyH of a

topology asH = −
∑

k
P (k)lnP (k), where P (k) is the

probability that a randomly selected node has a degreek in
this topology. The degree entropy is a measure of the degree
randomness of graphs. In Fig. 4, we plotH values for all
topologies.H for the Internet instances is fairly stable at about
1.6.H for topologies produced by HBR0 and HBR1 are very
stable and close to that from the Internet. On the other hand,
HBR3, DDRE and DDRV perform badly as the degree entropy
drops sharply in the sampled topologies that they produce.

Average clustering coefficient.We examine theclustering
coefficientwhich has been used to characterize and compare
generated and real topologies [20]. Intuitively, the cluster-
ing coefficient captures how tightly connected is the one-
hop neighborhood of a node. For a nodevi with ni > 1
neighbors, the clustering coefficient ofvi is γi = m

mmax

, where

mmax = ni(ni−1)
2 , and m is the number of edges between

these neighbors. A clustering coefficient of exactly one means
that the neighborhood is a clique. Theaverage clustering
coefficientγ is the averageγi of all nodes in the topology. In
Fig. 5, we plot the average clustering coefficient against the
number of nodes. For Internet instances before 2001 (there
were about 8,000 ASes at that time),γ grows as the size of
the topology grows. However, after 2001,γ slowly decreases.
Explaining this observed change in the trend is intriguing but
outside the scope of this paper. We limit ourselves to observing
that HBR0 follows the most recent (2001 to 2006) trend of
Internet the best, although HBR1, HBR2, and DDRV are not
far behind.

AS path length.The AS path lengthdAB from ASA to AS



B in a topology with routing policies is defined as the shortest
steady-state AS path length fromA to B consistent with
the routing policies. Many previous studies only consider the
shortest distance without policies, and they may underestimate
the AS path length. The average AS path length is the average
of dAB for all AS pairs. The number of AS pairs in ann-node
topology isn(n−1). Note that in an AS topology with routing
policies, dAB is not always the same asdBA. In contrast,
dAB is always the same asdBA if no policy is considered. In
Fig. 6, we plot the average AS path length for each topology
instance. We see that the average distance between ASes is
slowly increasing from 2001 when the size of Internet was
about 8,000 ASes. The topologies produced by HBR0, HBR1,
HBR2 and DDRV follow this trend very well.

V. CONCLUSION

In this work, we develop a method for conducting feasible
and meaningful inter-domain routing evaluations.

We develop the HBR approach, which can reduce a topology
successfully to 20% of its initial size. We validate the realism
of our sampled topologies using: (a) an extensive list of graph
metrics, and (b) actual BGP performance evaluations (the
results not shown here due to lack of space).

Our work opens new frontiers in our ability to model the
inter-domain topology accurately and evaluate BGP routing
effectively. Towards these goals, we intend to release: (a)
our HBR tool, and (b) a series of sampled graphs in an
effort to establish a badly-needed community-wide simulation
benchmark.

On-going and future work.We are in the process of extend-
ing the current work along several dimensions [18].

a. What are the effects of policies on BGP routing simula-
tions?We claim that research studiesshouldconduct policy-
aware simulations. In fact, our initial results suggest that when
policies are not considered, BGP simulation results can be
significantly different not only in their numerical values but
in the fundamental trends.

b. Can we guarantee any properties of the topologies
generated by HBR?From a more theoretical standpoint, we
want to identify the necessary and sufficient condition for a
topology to be BGP-connected. Based on these conditions, we
can prove that HBR will produce a BGP-connected topology,
if the initial topology is BGP-connected. In addition, we
would like to be able to prove that HBR can guarantee the
preservation of certain graph metrics. For example, if the
initial topology follows a power-law degree distribution,will
the sampled topology do too?

c. How much does simulation time decrease when using a
sampled topology?A back of the envelope calculation would
be easy, if we assume that the simulation running time grows
as a cubic or quadratic function of the network size. However,
it would be interesting to quantify the benefits in practice and
take into consideration other practical parameters such asthe
complexity of the scenario we study. Our initial results show
a decrease in time by a few orders of magnitude.
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