
Short-Circuiting the Congestion Signaling Path for
AQM Algorithms using Reverse Flow Matching ?

Mart Molle a and Zhong Xu b

aDepartment of Computer Science & Engineering
bDepartment of Electrical Engineering

University of California, Riverside, CA 92521, USA

Abstract

Recently, we introduced a new congestion signaling method called ACK Spoofing, which
offers significant benefits over existing methods, such as packet dropping and Explicit Con-
gestion Notification (ECN). Since ACK Spoofing requires the router to create a “short cir-
cuit” signaling path, by matching marked data packets in a congested buffer with ACK
packets belonging to the same flow that are traveling in the opposite direction, the focus of
this paper is evaluating the feasibility of reverse flow matching. First, we study the behavior
of individual flows from real bi-directional Internet traces to show that ACK Spoofing has
the potential to significantly reduce the signaling latency for Internet core routers. We then
show that reverse flow matching can be implemented at reasonable cost, using essentially
the same hardware as the packet filtering logic commonly employed in Layer 2 transparent
bridges. Finally, we show that this architecture can be scaled to accommodate worst-case
traffic patterns on multi-gigabit links that would render ordinary route caching algorithms
completely ineffective.

Key words: ACK Spoofing, active queue management, route caching, signaling, packet
marking, TCP congestion control, flash crowd

? This work was supported in part by Nortel Networks Inc, and by the Industry-University
Research Program of the University of California under grant DiMI00-0061

Email addresses: mart@cs.ucr.edu (Mart Molle), zhong@cs.ucr.edu (Zhong
Xu).

URLs: www.cs.ucr.edu/˜mart (Mart Molle), www.cs.ucr.edu/˜zhong
(Zhong Xu).

Preprint submitted to Elsevier Science 18 December 2003



1 Introduction

Active Queue Management (AQM) schemes for IP routers, in combination with
congestion avoidance algorithms for TCP sources, play a fundamental role in im-
proving QoS for network services. The key idea behind AQM is that the router must
adopt a more proactive congestion control policy, in which it tries to gradually sig-
nal the onset of congestion before its queue has become completely full. In this
way, TCP sources are forced to decrease their transmission rates before severe con-
gestion occurs. A well-designed AQM algorithm could yield better fairness, much
lower queueing delay and possibly higher throughput than Tail Drop[1]. Published
AQM algorithms include RED[2], BLUE[3], REM[4], SRED[5], FRED[6], etc.
In addition, there have been many efforts on combining existing AQM algorithms
with flow classification, prioritizing and packet marking techniques, so as to pro-
vide some kind of QoS in the router.

However, most of the work on congestion control has focused on the signaling pol-
icy, rather than the signaling mechanism itself. Recently, we have found that the
congestion signaling mechanism has a significant impact on network Quality of
Service, and that the effect of improving the signaling method can be as large as
changing AQM algorithms. Packet dropping is widely used as an implicit conges-
tion signaling method. However, packet dropping is expensive, in the sense that it
wastes a significant amount of network resources. Moreover, packet dropping may
cause timeouts, which can drastically reduce the throughput of the targeted stream
[7]. On the other hand, Explicit Congestion Notification (ECN) simply marks some
ECN control bits in the header of the target packet and then allows it to continue
through the network [8][9]. Thereafter, the ECN markings that reach the TCP re-
ceiver are returned to the TCP sender through the acknowledgement stream. ECN
signaling was first introduced in combination with RED, but it has subsequently
been adopted by several other AQM algorithms, such as REM and BLUE. There is
also ongoing research on how to mark ECN bits efficiently and fairly [10][11][12].
If carefully designed, AQM algorithms with ECN signaling gain several benefits,
including smaller queueing delays, less packet losses, and improved effective trans-
mission throughput [8][3][4][13][14].

Unfortunately, ECN signaling suffers from a serious deployment problem because
it is not supported by existing IP routers and TCP implementations. Incremental
deployment of ECN would create a mixture of ECN-compatible traffic (i.e., flows
with ECN-capable TCP implementations in both end hosts) and ECN-incompatible
traffic. Such heterogeneous systems can lead to severe fairness problems, even
though we preferentially adopt ECN signaling for ECN-compatible flows and packet
dropping for ECN-incompatible flows [15]. Therefore, we have recently introduced
another new congestional signaling method called ACK Spoofing [16], which is
compatible with existing TCP implementations. In the following sections we de-
scribe ACK Spoofing and demonstrate via simulation that it provides a significant

2



QoS improvement over both ECN signaling and packet dropping. However, the cre-
ation of spoofing ACKs requires the router to capture state information about the
target flow from the ACKs traveling in the reverse direction. Thus, the main focus
of this paper is to investigate the feasibility of implementing reverse flow matching
in Internet core routers.

The rest of this paper is organized as follows. Section 2 provides a brief introduc-
tion to ACK Spoofing, together with its associated on-demand state maintenance
scheme, and signal cancellation enhancement mechanism. We also provide a few il-
lustrative examples, obtained via simulation, to demonstrate its performance. Since
ACK Spoofing’s performance advantage comes from reducing the congestion sig-
naling delay, in section 3 we study some Internet traces to estimate its potential
benefits in the real world. We then turn our attention to evaluating the implemen-
tation complexity for ACK Spoofing. In section 4 we provide a brief introduc-
tion to IP routing, and focus on aggregate flows and/or flash crowds to model the
worst-case traffic pattern for a congested router. Although these worst-case traffic
patterns would render route caching completely ineffective for high speed Internet
core routers, we show in section 5 that reverse flow matching can be done quite
easily under the same conditions. Moreover, it can be implemented very efficiently
using the same hardware components used for packet filtering in layer 2 switches.
Finally, we give our conclusions in section 6.

2 ACK Spoofing and its Performance

Almost all current TCP implementations are based on the TCP Reno or later re-
leases, which incorporate the fast retransmit and fast recovery mechanisms. These
mechanisms cause the TCP sender to reduce its congestion window size by half
after receiving multiple duplicate ACKs. In ACK Spoofing, this duplicate-ACK
response is artificially triggered by the router as a congestion signaling method.
Whenever the AQM algorithm targets a particular TCP flow to receive a conges-
tion signal (or the router is forced to drop a packet due to buffer overflow), the
router sends multiple artificially-generated duplicate ACK packets (called spoofing
ACKs) to the corresponding TCP sender. Upon receiving the spoofing ACKs, the
TCP sender will be tricked into immediately reducing its sending rate and retrans-
mitting the “missing” packet. However, unless the packet was actually dropped, the
retransmission is just a needless duplicate that can be discarded at the router.

Note that setting the ack number carried by the spoofing ACKs to the proper value
is critical to the operation of ACK Spoofing. A value that is smaller1 than in
previously-seen ACK packets for the same flow might cause the TCP sender to

1 Using modulo arithmetic to handle wrap around of ACK and sequence numbers, of
course.

3



ignore the spoofing ACKs (delayed, out-of-order), while larger ack numbers would
compromise reliability of the TCP session and possibly even deadlock. Therefore,
to generate spoofing ACKs the router must include some state variables obtained
from real ACK packets traveling over the reverse path, i.e., ack number (th ack) and
advertised window size (th win). In the ideal case, the router would simply main-
tain per-flow state information about every active flow all the time — so it could
instantly generate spoofing ACKs for any of those flows. Clearly, this would gener-
ate considerable processing overhead and possibly reduce the router’s throughput.
However, we can drastically reduce this state-maintenance overhead (at the cost
of increasing the signaling latency) by adopting an On-demand State Maintenance
scheme, in which the router only tracks the state variables for a given flow during a
short time period after one of its packets has been targeted by the AQM algorithm.

We can use the signaling latency caused by on-demand state maintenance to our
advantage in the following way. Consider the time delay between the decision to
target a given flow and the opportunity to send the congestion signal, when the
router finds a matching ACK packet in the reverse flow from which to extract the
state variables for the spoofing ACKs. If the congestion problem at the router has
cleared itself during the time, then this congestion signal was not really needed—
and sending it now might even be harmful if it causes the bottleneck link to become
underutilized. In this case, ACK Spoofing naturally2 gives us an opportunity to
reevaluate the packet-marking decision, and to cancel the congestion signal if later
conditions indicate that it is not needed, i.e., if the buffer occupancy at the router
drops below some threshold.

A

D

F H E

G

C

Timeout

TCP Receiver

Router

TCP Sender
B

Fig. 1. Feedback latencies of different congestion signaling methods

Figure 1 provides an example to illustrate the operation of ACK Spoofing, and to
compare the path lengths for different congestion signaling mechanisms. For ex-
ample, suppose the router decides to drop a packet at point A. Then the TCP sender
will discover the packet loss at either point B, if a timeout occurs, or at point C,
if it can be detected using the Fast Retransmission algorithm. Conversely, if the
router instead uses ECN to mark the packet at point A, then the congestion sig-
nal would pass through the destination at point D before reaching the sender at

2 Although signal cancellation could be combined with ECN signaling, it would drastically
increase its implementation complexity (because of the need for reverse-flow matching)
without doing anything to improve ECN’s intrinsic deployment problems.

4



point E. Finally, suppose the router uses ACK Spoofing as its congestion signaling
mechanism. In the ideal case the router would send the spoofing ACKs at point
A, as soon as its AQM algorithm decided to mark the packet, causing the sender
to respond to the congestion signal at point F . However, a more practical imple-
mentation would rely on the on-demand state maintenance algorithm to reduce its
processing overhead, in which case the router would just begin searching for the
next matching ACK packet belonging to the target flow at point A. In this example,
the matching ACK packet arrives at point G, which triggers the router to check the
signal cancellation policy to make sure that the congestion signal is still needed. If
so, it immediately generates the associated spoofing ACKs, then stops tracking this
flow. Finally, the congestion signal reaches the sender at point H .

Clearly, since ACK Spoofing is just another signaling method (similar to packet
dropping and ECN) that can be used by any AQM algorithm to rate-control respon-
sive TCP flows, we must ask ourselves whether this choice of methods has a mean-
ingful effect on performance. To address this question, we have conducted a series
of careful simulation experiments to investigate the sensitivity of two well-known
AQM algorithms to different signaling methods: Random Early Detection (RED)
[2] and Random Exponential Marking (REM) [4] (Please refer to the original pub-
lications for algorithm details). For each AQM algorithm, we use the parameter
values given in Table 1.
Table 1
Simulation parameters for buffer size 120

RED Parameter minth maxth maxp

RED 10 90 0.02

RED/ECN 10 90 0.10

RED/Spoofing 10 90 0.05

REM Parameter φ α γ b∗

Value 1.001 0.1 0.001 40

Due to space limitations, we can only show one experiment to illustrate our results;
for more details, please see [16][15]. We used the commercial simulation package
CSIM-18 [17] to construct our simulator, and our implementation of TCP Reno
faithfully follows the model by Stevens et al. [18]. The simulation network used
here is given in Fig.2, where all link speeds are 100Mbps and the propagation time
(in milliseconds) is shown on each link. In this experiment, we set up four groups
of 10 individual TCP flows, including 10 flows from H0 to H5, 10 flows from H1
to H4, 10 flows from H2 to H4, and 10 flows from H3 to H5 respectively. Here, the
bottleneck is the link from R2 to R3, so only the simulation results related to the
bottleneck link will be given.

Fig.3 shows the dynamics of queue sizes with different signaling methods. From
the graphs, we can find that Tail Drop suffers from the full-queue problem, and the

5



0.5

0.5 2

2

4 2

0.5 0.5

0.5

0.5

H0

H1

H3

H2

R1

R0
H4 H5

R3 R4

R2

Router End Node

Fig. 2. The simulation network

AQM algorithms can solve this problem. We also find that signaling methods have
some impacts on the stability of queue sizes. ECN and ACK Spoofing (even without
signal cancellation) yield noticeably better control of queue sizes, no matter what
AQM algorithm it is associated with. Moreover, the congestion signal cancellation
mechanism is very useful in maintaining a much more stable queue size dynamics.
In the application of QoS, stable queue sizes are especially desired, because sta-
ble queue sizes mean stable queueing delays and thus could yield smooth packet
delivery (e.g. less jitter in video/audio streaming service).

0 500 1000 1500 2000 2500 3000 3500 4000
0

20

40

60

80

100

120

Time (ms)

Qu
eu

e 
Si

ze
 (p

ac
ke

ts)

0 500 1000 1500 2000 2500 3000 3500 4000
0

20

40

60

80

100

120

Time (ms)

Qu
eu

e 
Si

ze
 (p

ac
ke

ts)

0 500 1000 1500 2000 2500 3000 3500 4000
0

20

40

60

80

100

120

Time (ms)

Qu
eu

e 
Si

ze
 (p

ac
ke

ts)

(a) Tail Drop (b) RED (c) RED/ECN

0 500 1000 1500 2000 2500 3000 3500 4000
0

20

40

60

80

100

120

Time (ms)

Qu
eu

e 
Si

ze
 (p

ac
ke

ts)

0 500 1000 1500 2000 2500 3000 3500 4000
0

20

40

60

80

100

120

Time (ms)

Qu
eu

e 
Si

ze
 (p

ac
ke

ts)

0 500 1000 1500 2000 2500 3000 3500 4000
0

20

40

60

80

100

120

Time (ms)

Qu
eu

e 
Si

ze
 (p

ac
ke

ts)

(d) RED/Spoofing w/o Cancellation (e) RED/Spoofing w/ Cancellation (f) REM

0 500 1000 1500 2000 2500 3000 3500 4000
0

20

40

60

80

100

120

Time (ms)

Qu
eu

e 
Si

ze
 (p

ac
ke

ts)

0 500 1000 1500 2000 2500 3000 3500 4000
0

20

40

60

80

100

120

Time (ms)

Qu
eu

e 
Si

ze
 (p

ac
ke

ts)

0 500 1000 1500 2000 2500 3000 3500 4000
0

20

40

60

80

100

120

Time (ms)

Qu
eu

e 
Si

ze
 (p

ac
ke

ts)

(g) REM/ECN (h) REM/Spoofing w/o Cancellation (i) REM/Spoofing w/ Cancellation

Fig. 3. Dynamics of queue sizes for different signaling methods and AQM algorithms

In other experiments not shown here, we also found that different signaling methods
exhibit different fairness properties in terms of convergence speeds and stabilities

6



of bandwidth allocation. While packet dropping has significant oscillation in band-
width and ECN has better performance but still exhibits slow convergence in some
cases, ACK Spoofing (both with and without signal cancellation) yields much more
consistent performance across all simulated cases, including superior convergence
speed and stability properties.

In addition, we have studied the impact of lost congestion signals under ECN or
ACK Spoofing. We found that even with about 25-35% of ACK packets losses,
ACK Spoofing and ECN can still maintain very high goodput and reasonable fair-
ness among flows, while packet dropping begins to exhibit severe unfairness of
bandwidth allocation at ACK packet loss rate of about 15-25%. The good perfor-
mance of ACK Spoofing on resisting ACK packet losses is very important, since
its congestion signal is carried on the (spoofing) ACKs and ACK packet losses is
unavoidable due to congestion in the Internet.

3 Characterizing the “Short Circuit” Signaling Path using Internet Traces

In this section we address the following question. For a busy Internet core router,
how much reduction of the congestion feedback latency can we possibly gain by
implementing ACK Spoofing? By studying two very different bi-directional Internet
traces, we will now show that significant latency reductions, as described in fig. 1,
should be possible using ACK Spoofing in the real world.

0 5 10 15 20 25
−150

−100

−50

0

50

100

150

200

250

Time (seconds)

C
os

t

Cost = 1 * data_pkt# − 2 * ack_pkt#
trends : 1.5%, 8%, 0.2%

Fig. 4. Relationship between data and ack packet numbers

Fig.4 shows a trace of a single very large bi-directional TCP flow recorded on an
OC-48 link monitored by CAIDA. This flow spanned the entire duration of a 25-
second trace file, during which the flow carried approximately 6,800 data packets
and 3,800 ACK packets [19]. Although typical large TCP flows are rarely able to
sustain such high bandwidth across the Internet, it is an excellent illustration of the
chaotic network conditions experienced by a TCP session in the absence of QoS
support.

7



In this figure, we show an estimate as a function of time for the current number of
unacknowledged TCP segments belonging to this flow. Most TCP implementations
adopt a mechanism called delayed ACK [20], in which the TCP receiver sends one
ACK after receiving each pair of data packets (unless a timeout expires, or the ar-
riving packet is out of order). Thus, we add one to the estimate each time we see a
data packet, and subtract two from the estimate each time we see an ACK packet.
We can see trends in the data at two different scales. First, at the local time scale
we see an alternating pattern of “peaks” and “valleys.” For example, it takes ap-
proximately 0.5 seconds for the curve to rise from the leftmost “valley” to adjacent
“peak”, during which time we saw 258 data packets, but only 55 ACKs returned.
However, during the next 0.5 second period, we saw only 91 data packets, while 88
ACKs returned. Since the final result is to (almost) return the estimate to its previ-
ous level, we conclude that there must large numbers of unacknowledged packets
(perhaps as many as 150 in this case) between our measurement point and the TCP
destination during those “peak” periods. On the other hand, if we follow the esti-
mate over global time scales, there is a clear long-term increasing trend in the data.
We attribute this long-term trend to packets that are dropped downstream from the
measurement point, for which we never see an acknowledgement. Moreover, the
slope of the trend line changes over different regions of the graph. In the best case
(where each ACK signals the arrival of two additional data packets), these slopes
correpsond to respective packet loss rates of 1.5%, 8% and 0.2%. Conversely, in
the worst case (where each ACK signals the arrival of one out-of-order data packet)
these slopes would correspond to packet loss rates of more than 50%. In any case,
this flow is clearly experiencing a significant amount of congestion and/or packet
loss somewhere downstream from the measurement point. Moreover, ACK Spoof-
ing would provide a significant performance advantage for routers attempting to
control this flow, by allowing their congestion signals to “jump ahead” by dozens
of packets during its peak traffic periods.

Let us now look at the well-known LBL-TCP-3 trace, which consists of approxi-
mately 1.8 million TCP packets collected by V. Paxson[21] in 1994. This trace cov-
ers two hours of bi-directional traffic recorded at the gateway between Lawrence
Berkeley Laboratory (LBL) and the global Internet. Although it is quite old, it is
one of the few publicly available traces online that records bi-directional traffic
traveling in enough detail to calculate the latency distributions and analyze their
relationships.

The LBL gateway connects their local area network to the wide-area Internet. Thus,
we must distinguish between two kinds of flows passing through this gateway. In-
ward flows correspond to remote TCP senders, which may be located anywhere
throughout the global Internet, establishing connections to local TCP receivers lo-
cated within LBL’s local network. Conversely, outward flows correspond to local
TCP senders within the LBL local network establishing connections to remote TCP
receivers located somewhere else in the global Internet. From the viewpoint of the
gateway, TCP packets coming from the hosts inside the LBL network should ex-

8



10
−6

10
−4

10
−2

10
0

10
2

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Time/Latency (seconds)

C
um

ul
at

iv
e 

F
re

qu
en

cy

Single Data Inter−Arrival
Double Data Inter−Arrival
ACK Latency
Round−Trip Delay
200ms Line

10
−6

10
−4

10
−2

10
0

10
2

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Time/Latency (seconds)

C
um

ul
at

iv
e 

F
re

qu
en

cy

Single Data Inter−Arrival
Double Data Inter−Arrival
ACK Latency
Round−Trip Delay
200ms Line

Fig. 5. Inter-arrival time and latency distributions of inward and outward flows

hibit similar delay characteristics because the distances spanned by the LBL local
network are quite small and the available bandwidth each local link tends to be high.
However, packets from outside nodes should exhibit significantly higher latencies,
together with a much wider variance of delay.

Fig. 5 shows the cumulative distribution functions for the data packet inter-arrival
time, ack latency, and round-trip delay for inward (left) and outward (right) TCP
flows. In each graph, the round-trip delay between the gateway and TCP receiver
represents the sum of the one-way delivery times from the gateway to the TCP
receiver and from the TCP receiver back to the gateway. To avoid biasing the mea-
surements due to processing delays at the TCP receiver, it is calculated during
TCP’s opening three-way handshake by measuring the elapsed time between the
arrivals of the initial SYN packet and middle SYN/ACK packet. The ack latency
is defined as the elapsed time between the arrival of a data packet in the forward
direction and the arrival of the next ACK packet belonging to the same flow in the
reverse direction. The single and double data packet interarrival times represent the
elapsed time between either the kth and k+1st data packets, or the kth and k+2nd
packets, respectively, belonging to the same flow.

From the graphs, we can find that two kinds of flows exhibit different distributions.
Obviously, the network distance between the gateway and any host inside the LBL
local network must be quite small, whereas the path between the gateway and an
outside host may be much longer. Hence, inward flows have small and consistent
round-trip delay, but the round-trip delays for outward flows are much less pre-
dictable and their mean is nearly two orders of magnitude greater. The difference
of locations also affects the distributions of ACK latencies, which is more important
in estimating the performance of our ACK Spoofing scheme. However, the distri-
butions of the ACK latencies for both kinds of flows have a similar shape, but with
different means.

Now we need to determine whether the distribution of the ack latency might be
small enough to allow reverse flow matching to give us a significant reduction in

9



congestion signaling delay. In the case of inward flows, this clearly is not the case,
since the round-trip delay is an order of magnitude smaller than the ack latency,
which is itself noticeably smaller than the single data packet interarrival time. What
this tells us is that no significant reduction in congestion signaling is possible for
the inward flows because we are flow-matching the ACK packet associated with
our marked packet, which is the same ACK packet that would have carried the
ECN bit. The data also shows that the LBL servers must be using the delayed ack
mechanism [20]: notice how the ACK latency distribution seems to be interpolating
between the distributions for the round-trip delay and single data packet interarrival
time because half the time the TCP receiver waits for another data packet to arrive
before generating an ACK packet. As expected, the ACK latency distribution shows
a steep increase near the delayed-ACK timeout of 200 msec. (shown as a vertical
line in the figure), corresponding to delayed ACKs sent for a single data packet after
the timeout for the next data packet expired. In addition, the long tail forming the
last 10% of the distribution for ACK latency, together with an even longer tail for
the single packet interarrival time distribution (dominated by a pair of large jumps
at approximately 1 and 2 seconds, which are likely the result of retransmission
timeouts) provides strong evidence of significant packet losses within the LBL local
network.

On the other hand, the ACK latency from outward flows is much smaller than the
round-trip delay, so the first ACK packet we see is associated with an earlier data
packet that must have passed through the router before our marked packet. In fact,
the speedup in congestion signaling appears to be approximately 4–5 times faster
than waiting for the same ACK to return within the second quartile of the distribu-
tion. Note, also, that the initial jumps in the single and double packet interarrival
time distribution functions at approximately 500 µsec. and again at 1 msec. can also
be used to estimate the average size of the TCP congestion window that applies to
fig.5. As we already discussed previously, the relatively large initial jump in the
single data packet interarrival time distribution at 500 µsec. is likely because of
the delayed ack mechanism, which means that the TCP sender can transmit two
back-to-back data packets after receiving a single ACK packet. 3 However, this
mechanism does not explain the small jump in the double data packet interarrival
time distribution at approximately 1 msec. Instead, that is caused by the additive
increase phase of TCP’s congestion avoidance algorithm, which opens the con-
gestion window by one packet after completing the successful transmission of an
entire window’s worth of other data. Since the height of this initial jump is approx-
imately 15%, we can conclude that the average window size is about 7 packets.
Since almost all of the outstanding packets from a given TCP session’s congestion
window will be somewhere beyond the LBL gateway in the global Internet, we can
conclude that the LBL gateway will be on the “wrong” side to make them targets

3 At the time that this trace file was recorded, many TCP implementations used the Internet
default Maximum Segment Size of 576 bytes, which corresponds to a packet transmission
time of about 500 µsec. on a 10 Mbps Ethernet link.

10



for ACK spoofing. However, if the characteristics of the inward and outward flows
were mirror images of each other, it would mean that the LBL gateway would be
able to “skip ahead” by an average of about 3 ACK packets (i.e., because of de-
layed acks, we must use half the average congestion window size, in units of a data
packet) when it attempts to use reverse flow matching to rate control TCP flows
carrying data from an internal LBL sender to an outside receiver.

Based on the above analysis of packet interarrival time distributions, we can see that
ACK Spoofing is most effective for allowing a router to control a nearby sender
trying to send data to a distant receiver. Since an Internet core route is likely to
be far away from most hosts, ACK Spoofing should be generally very effective in
the Internet backbone. In the following sections, we will describe some extended
techniques for ACK Spoofing, which could further reduce the overall feedback
latency and thus gain more even when the destination is close to the router.

4 Packet Forwarding in IP Routers

Each time an IP router receives a packet through one of its input ports, it must
execute a series of packet processing functions in order to determine how to forward
that packet one step closer to its final destination [22]. Before the packet leaves the
input port, the IP header fields are updated to reflect the reduction in its time-to-live
by one “hop”, and the packet classifier extracts the relevant fields from the packet
header by which it determines the fate of this packet. In general, the classifier needs
to identify (at least) the destination IP address, and possibly also such additional
information as the Protocol (e.g., TCP, UDP, ICMP, or some other protocol), its
DiffServ/TOS tag, its Application type (based on well-known port numbers), the
presence of certain flags (SYN, ACK, etc), or its unique flow ID (i.e., the 4-tuple
consisting of the source IP address and port number, plus the destination IP address
and port number). 4 This packet header information is then used as the input to the
IP routing lookup function (i.e., longest common prefix matching in the routing
table) to select the appropriate output port, and to the access control and/or QoS
classification policies (if any) to decide whether to block this flow or assign it to
one of the available priority classes at the output port.

Once the packet classification is completed, the IP datagram will be transferred
from the input port to the output port through the router’s internal switching fab-
ric (eg., crossbar, TDM bus, shared memory, banyan-type interconnection network,
etc). A discussion of the many implementation choices available for creating this

4 Although we could also consider some fields from the Layer 2 header during the packet
classification process — such as the source and destination MAC addresses, VLAN tag —
under normal circumstances this Layer 2 information is only of local significance to the
single IP subnet/VLAN that is directly adjacent to the input port.

11



internal fast data path is well beyond the scope of this paper. The key point is simply
that the transfer of responsibility for this packet to the output port triggers the asso-
ciated AQM algorithm to execute one iteration of the packet marking algorithm.

As we discussed in section 1, the marking algorithm looks at the current state of
the output buffer at each packet arrival event and decides whether to: (i) simply
accept this packet and append it to the appropriate output queue, (ii) discard this
packet, or some other randomly-chosen “victim” packet already in the queue (either
because there is no free space available in the queue or simply to serve as a rather
harsh congestion notification signal), or (iii) mark the arriving packet, or some other
randomly-chosen “victim” packet already in the queue, causing the source for that
flow ID to receive a (more gentle form of) congestion notification signal and hence
to respond by reducing its transmission rate. Thus, after the marking algorithm
completes its iteration, the packet simply waits in the assigned queue until it is
either transmitted over the output link or subsequently chosen to be the “victim”
packet during another iteration of the marking algorithm.

4.1 Route Caching is Not Practical for Internet Core Routers

Packet classification is a relatively complex operation, which requires different
fields within the packet header to be evaluated according to multiple sets of rules.
Some packet classifier implementations use route caching to reduce the workload
associated with packet arrival event. In this case, the full classification algorithm is
only executed once for each flow — or at least once per flow between routing up-
dates. Thereafter results produced by executing the packet classification rules (i.e.,
output port number, priority class, access rights, or other policy decision) associ-
ated with a set of recently-seen destination IP addresses and/or flow IDs are saved in
a cache. Thus, subsequent packets belonging to the same flow can be quickly clas-
sified, using a simple table lookup, without having to execute the complete packet
classifier algorithm again. The existence of a route cache would also trivialize our
reverse flow matching problem, since we could simply add a boolean “spoofing
flag” to the existing set of packet classifier outputs that form the route cache data
for this flow ID.

Route caching represents a tradeoff between reducing the cost of the packet clas-
sifier (since it doesn’t need to execute at wire speed), versus the additional cost
of having to store information about a large number of individual flows in fast
memory. For routers designed to serve the users within a single building (i.e., an
“edge router”), or even a single organization (i.e., an “enterprise router”), the size
requirements for an effective route cache are easily met with current hardware. 5

5 For example the YAGO Systems/Cabletron/Enterasys SSR series routers, which have
been part of authors’ network since 1998, use a chassis-based architecture with separate
“Layer 3/4” route caches (i.e., packet classification based on individual flow IDs) integrated

12



However, the situation for an Internet core router may be quite different because
the number of individual flows being multiplexed over a single link must surely
be an increasing function of the physical distance spanned by that link (making it
a more attractive “short cut” along the paths between a greater number individual
source-destination pairs) and its data rate (making it possible to support a greater
number of individual source-destination flows before it reaches saturation). Thus,
a single cross-country link between two core routers in the Internet backbone will
surely carry a much greater number of simultaneous flows than any link connected
to a typical edge or enterprise router. But how large is large, and will the number of
simultaneous flows be so large that a route cache would be too large/slow/expensive
to be practical?

We looked at several sources of Internet measurements to learn more about the kind
of flow patterns we should expect to find on current Internet backbone links. One
excellent source of detailed Internet traffic statistics is the traffic archive maintained
by the WIDE Project [24], through its Measurement and Analysis on the WIDE
Internet (MAWI) Working Group [25]. Their monitored links carry a mixture of
general Internet traffic across the Pacific, so their workload should not be biased to-
wards any particular class of traffic. In addition, their traffic archive provides easy
access to a detailed statistical summary of the traffic characteristics for large num-
bers of trace files collected over several years. We found that a typical 15-minute
trace file generated by their monitoring point on a 100 Mbps trans-Pacific link
(which has an average utilization of approximately 15-20%) only contains about
250,000 unique “flows”. 6 The flow sizes are highly skewed, such that the top 10
individual flows account for almost 20% of the total bytes even though the average
number of packets per flow is consistently between 15 and 20 packets. Thus, since
almost all the flows are so short lived, we expect the number of simultaneously
active flows to decrease in direct proportion to the length of the sampling period
while we reduce the measurement time by a factor of 100. Such a flow pattern
seems easily within the flow caching capabilities of the author’s existing enterprise
router.

into each port module. Each single 16-port Fast Ethernet module has an internal route cache
with a capacity to store 256,000 individual flow ID entries [23], and a fully-expanded 16-
slot chassis has an aggregate route cache capacity to store 4 million individual flow ID
entries, and to support wire-speed layer 2 switching and/or flow ID-based Layer 3/4 routing
up to a maximum of 48 million packets/sec.
6 They define a “flow” to be a unique IP source/destination address pair, without distin-
guishing between port numbers. Had they followed our definition for a unique flow ID,
which also uses the source and destination port numbers to distinguish between flows, then
there might have been a small increase in the total number of flows, together with an equiv-
alent decrease in the number of packets sent per flow. However, since the average number
of packets per flow is already very low, even without distinguishing on the basis of port
numbers, we do not expect this discrepancy to change the statistical properties of the flow
patterns significantly.

13



Fomenkov et al. [26] have recently analyzed the flow patterns in Internet traffic, as
one facet of a longitudinal study about long term trends in the evolution of Internet
traffic. Their analysis is based on a series of traffic measurements, obtained from
20 high performance sites, 7 between 1998 and 2001. According to their results, a
typical 90-second trace file rarely contained more than about 10,000 distinct flows,
which is surprisingly consistent with the MAWI data considering the differences
between the workloads in these two environments. In addition, they found that the
number of active flows increased very slowly as a function of link speed. Indeed,
they concluded that maintaining per-flow state in routers seems to be coming easier
over time:

“While the packet rate scales almost linearly with the bit rate, the counts of flows
and IP pairs grow considerably slower than the bit rate. This observation indi-
cates a potential possibility of storing these parameters as part of a router’s state:
the memory necessary for storage should grow slower than the CPU power re-
quired to process traversing packets.” [26]

Unfortunately, these measured flow patterns at best represent some approximation
to the “average case” workload for the packet classifier in an Internet core router.
The router must also be capable of surviving the “worst case” workload it is likely
to face in the real world. This is particularly important for our work, since the whole
reason for adding sophisticated active queue management policies to the router in
the first place was to maintain QoS support for the high priority services despite
excessive service demands from low priority services.

4.2 Modeling Worst-Case Traffic as Aggregate Flows

Networking researchers have recently come to realize that choosing the “worst
case” traffic workload is a lot more complicated than just increasing the arrival
rate beyond the capacity of the link. In other words, if the excessive traffic is gen-
erated by one mis-behaving source, we can solve the problem in the packet clas-
sifier, either by passing the mis-behaving traffic through a separate rate-limiter, or
by applying a specific access control rule to the input port which blocks that flow.
Conversely, if the link is simply incapable of supporting its normal workload, and
there is no way to bypass the link through simple routing changes, then nothing can
solve the problem short of redesigning the network.

Thus, we must consider a new type of “worst-case” traffic pattern, called an aggre-

7 Note that “high performance site” in this context refers to an organization that hosts su-
percomputers and/or giant data repositories used for academic research and enjoys a direct
high bandwidth connection to Internet 2. Such organizations experience a very different
traffic mix than a major commercial Internet service used by the general public, such as
eBay, the CNN home page, online gaming systems, etc.

14



gate flow, which can suddenly overwhelm all normal traffic flows on a particular
router link [27]. A high-volume aggregate flow is characterized by a large number
of coordinated low-volume flows that: (a) occur simultaneously, and (b) originate
from distinct sources but share a common destination. For example, a flooding-style
distributed denial of service (DDoS) attack against a particular network-accessible
service (such as a particular web server, the Internet’s root name server, etc) would
create aggregate flows in router links adjacent to its target.

Clearly DDoS attacks represent yet another variation on the mis-behaving traffic
source problem, and everyone would be very happy if we could quickly find a way
to distinguish the DDoS traffic from normal traffic so it can be controlled through
the selective application of rate limiting and/or access control rules [27]. However,
there is also a second type of flow aggregate, known as a flash crowd, which con-
sists of a sudden spike of legitimate traffic, so it cannot simply be thrown away like
a DDoS attack, and hence represents a very interesting model for the “worst-case”
traffic pattern for a packet classifier with a routing cache. Flash crowds occur when
a global trigger event causes large numbers of legitimate users to try to access the
same network-accessible service simultaneously. The trigger event may have been
planned well in advance — except for (vastly) underestimating the magnitude of
the response it generates. For example, after the release of Independent Counsel
Ken Starr’s report on President Clinton to the public in September 1998, a CNN
poll showed that an estimated 20 million people attempted to download the docu-
ment from a government website (which normally handles 200,000 hits per month)
within 48 hours of its release [28], and at the same time CNN’s own website experi-
enced a peak rate of 340,000 hits/minute [29]. Similarly, the 1999 Victoria’s Secret
Webcast of a live video broadcast event attracted 1.5 million hits [30].

Thus, to determine whether it is feasible to incorporate a route cache into the packet
classifier for an Internet core router, we now present the following näıve perfor-
mance model of the performance requirements for a single port to survive a flash
crowd. If we assume that the layer 2 framing is based on Ethernet-like packet sizes,
then we can approximate the size of each “large” data packet as 10,000 bits (since a
1,500 byte maximum length Ethernet packet corresponds to 12,000 bits excluding
framing overhead), and the size of each “small” ACK packet as 500 bits (since a 64
byte minimum length Ethernet packet corresponds to 512 bits excluding framing
overhead). In this case, the capacity of a single link would be sufficient to carry ap-
proximately 1 million “large” data packets per second at 10 Gbps, or approximately
4 million data packets per second at OC-768. If we further assume that the mini-
mum bandwidth requirement to support a single participant in the flash crowd is to
provide him/her with a data rate of about 10 Kbps (i.e., an average of one “large”
data packet per second — equivalent to a fairly poor quality dialup modem connec-
tion), then a single router link can support approximately 1–4 million members of
the flash crowd at the same time.

Meanwhile, the reverse link will be carrying the ACK traffic associated with each

15



of those simultaneously active flows, together with an assortment of TCP control
packets as other members of the flash crowd attempt to establish new connections
to the target service, the service tries to limit the load by sending RESETs, and
so on. Thus, in the worst case the reverse link may become heavily loaded with
“small” control packets, which would require up to 20 million route cache lookups
per second at 10 Gbps, or approximately 80 million route cache lookups per sec-
ond at OC-768. Even worse, since the total size of the flash crowd could be much
larger than the capacity of either the target service or this link, 8 every one of those
“small” control packets could represent an attempt to establish a new flow that is
not already stored in the route cache, no matter how large we make it. Based on
these worse-case estimates, the performance requirements for the route cache are
not very encouraging:

• The route cache must be fast enough to support tens of millions of lookup oper-
ations per second.

• Since the majority of the arriving packets represent doomed attempts to establish
a new flow, the packet classifier must be fast enough to route every packet without
any help from the route cache.

• To be effective, it must be large enough to hold millions of useful flow ID entries,
representing the set of active flows, along with many more useless entries.

• A useful cache entry may only have one “hit” per sec.

Thus, if an Internet core router needs to be robust enough to survive the disrup-
tive effects of a flash crowd, while continuing to offer suitable QoS levels to high
priority applications, then the packet classifier should not rely on route caching to
reduce its workload.

5 Comparison of Reverse Flow Matching and IP Routing

Despite the fundamental limitations of route caching, which work against its effec-
tiveness in Internet core routers, we will now explain why reverse flow matching
is a much simpler task than route caching. Consequently, we will show that these
differences make reverse flow matching feasible in today’s fastest Internet core
routers. Thus, let us now focus our attention on two specific events in the packet
forwarding process that form the key steps in the reverse flow matching algorithm
at port i:

(1) The execution of one iteration of the AQM packet marking algorithm at port i,
which is triggered by the arrival of an outgoing packet from some other router
port, j say, across the internal interconnection fabric. Depending on its current

8 Think of the Starr report, where the demand was so high that it took two days for the
flash crowd to dissipate.

16



estimate of output buffer congestion at port i, the marking algorithm may
decide to turn on the “spoofing flag” for one flow ID that currently has a packet
waiting in that output buffer. Notice that this event happens asynchronously
from (and can be handled in parallel to) any external packet arrival events
experienced by port i. In addition, since the packet has just gone through the
packet classification process at port j, we can assume that it carries with it all
the relevant attributes from its route cache entry (if such a thing existed).

(2) The arrival of an incoming packet to port i through its interface to the external
link. In addition to the normal steps in the packet classification process, we
now add a simple reverse flow matching test, to see whether the incoming
packets represents an ACK for any flow ID that currently has its “spoofing
flag” turned on at this port. Since an ACK packet merely has a particular flag
bit set in its TCP header, it is very easy to identify all the incoming ACK
packets as part of the packet classification process. Determining whether an
incoming ACK packet is also a target for ACK spoofing is equivalent to testing
for an exact match between a single flow ID “key” (derived from the incoming
ACK) and any member of target list of flow IDs (representing the set of flows
that currently have their “spoofing flag” turned on).

Although the flow ID matching in step (2) make look remarkably similar to a or-
dinary route cache lookup, the effect is really quite different when you look more
closely at the details. First, as we will see below, lookup speed is not a significant
problem for such structures as long as we can control the size of the target list. This
was not possible for route caching (at least, not under the “worst case” traffic condi-
tions of a flash crowd), because the route cache loses its effectiveness as the cache
miss rate increases. On the other hand, the target list for reverse flow matching
is naturally restricted in size because the AQM algorithms normally select only a
small fraction of the traffic passing through the output buffer to receive a congestion
signal. Thus, the number of “spoofing flag” turn on events per second generated by
the AQM algorithm that is executing at port i should be at least an order of magni-
tude smaller than the number of outgoing packets transmitted per second through
its external interface. Second, even the implication of “failing to find a match” in
the lookup table is completely reversed, since finding that the “spoofing flag” is
turned off for this flow ID is a good thing because it allows us to do nothing, other
than allowing this packet to follow the fast path through the router as usual. Third,
even if the reverse flow matching does succeed, we still don’t need to disturb the
fast path through the router: the matched ACK packet can be redirected through a
“detour”, where an asynchronous process (perhaps even external to router) can use
it for a template for creating a set of spoofing ACKs, before it returns to the normal
data stream. Alternatively, if reverse flow matching is combined with ECN to short
circuit the congestion signaling delay, then the “detour” would merely set the ECN
flag and return the matched packet to the normal data stream.

17



5.1 Using Content Addressable Memory for Reverse Flow Matching

Having now explained why reverse flow matching is a different, and simpler prob-
lem than route caching, it remains to show how it can be implemented inexpen-
sively. In particular, we believe that reverse flow matching can be carried out us-
ing the same commodity hardware that is widely used to implement the transpar-
ent bridging algorithm that forms the basis for high performance Layer 2 Ethernet
switches [31]. Recall that the basic operation of a Layer 2 switch consists of two
things. First, the switch must build a filtering database, which contains every ac-
tive 48-bit MAC address that is observable from the switch, by passively listening
to the source addresses from every packet it can hear on the network. These source
addresses are used to create and/or update its database of port numbers through
which each of those MAC addresses can be reached. In parallel with its database
maintenance, the switch also executes a simple packet filtering algorithm each time
it receives another incoming packet, to determine whether or not it should discard
that packet or relay it to one or more other port(s). Thus, each iteration of the
packet filtering algorithm is nothing more than extracting the 48-bit destination ad-
dress field from each incoming packet, and then attempting to use it as the “key”
for finding an exact match among the list of other 48-bit addresses stored in the
filtering database.

If we compare a single application of the Layer 2 packet filtering algorithm to a
single application of the reverse flow matching algorithm, the only major difference
is that the “key” for reverse flow matching is a 96-bit flow ID instead of a 48-bit
MAC address! However, it is very easy to partition the single 96-bit lookup for
solving the reverse flow matching problem into two parallel lookups using a pair
of disjoint 48-bit “keys”, representing the source IP address and its associated port
number as one “key” and the destination IP address and its associated port number
as the other “key” respectively. In theory, by splitting the reverse flow matching
problem into two independent parts we have introduced the possibility of creating
“false positives”, where both 48-bit halves of the flow ID are included in the reverse
flow matching lookup, but they were not paired with each other.

(a) CASE 1 (b) CASE 2 (c) CASE 3

A

C

B

Fig. 6. Three cases of flow overlapping

If the probability of “false positives” goes too large, then partitioning 96-bits match-
ing into two 48-bits matchings would create some problems. Fortunately, after we
analyzed several traces from the MAWI repository [25], we are convinced that such

18



a partitioning will not cause any serious problems. Each MAWI trace file we have
studied ran for 15 minutes some time in 2002 or 2003, and recorded about 2 mil-
lion packets at point B. Typically, about 2/3 of recorded packets are TCP packets,
and there are about 10,000 TCP flows identified from each trace. We drew a flow-
matching graph for each trace, where we regarded each distinct (IP, port) pair as
one vertex in the graph and drew one line to connect two pairs if both appear in
one packet. In each graph, we found that about half of the flows overlap with other
flows. Three patterns of flow overlapping are possible, as illustrated in fig.6.

In the first case, many clients connect to one server, which cannot cause any “false
positives”. The second case has multiple conflicting pairs forming a connected sub-
graph, but the lifetime of overlapping flows are disjoint. Thus, if we add time as a
third dimension in the flow-matching graph, this case cannot cause any “false pos-
itives” either. Finally, in the third case, we consider overlapping flows in which the
conflicting pairs are also overlapping in time. Although case 3 overlapping clearly
has the potential to create “false positives”, these situations occurred very rarely in
the MAWI traces. Furthermore, the conditions for generating a “false positive” on
flow B are very unlikely: both of its conflicting endpoints (represented by the two
keys x and y, say) must be loaded in the cache at the same time because of other
overlapping marked flows flows A and C say (which are represented the keys w and
x, and the keys y and z, respectively). Moreover, even though a “false positive” will
mean that ACK Spoofing sends a congestion signal to a different source than the
one selected by the AQM algorithm, this mistaken identity does not cause a serious
problem because the congestion signal can only be sent if the router is congested
and the accidental target is actively using this link.

It is normally expected that a good Layer 2 switch can update its filtering database
and/or carry out packet filtering in any combination at wire speed across all ports
simultaneously, which is equivalent to a processing rate of 148,810 packets per sec-
ond per 100 Mbps port or almost 1.5 million packets per second per Gigabit port.
The key to achieving such high performance is to use special-purpose hardware to
speed up the packet filtering algorithm. This hardware, known as a Content Ad-
dressable Memory (CAM) or associative memory, is a storage device that can be
addressed through its own contents. Each bit of CAM storage comes equipped with
its own comparison logic [32]. Thus, whenever you present some data as an input
“key” to the CAM, its value is simultaneously compared with all the data currently
stored within the CAM. If a match is found, then the address of the matching data
is returned as a result. Of course, since that addresses and data are treated inter-
changably, in the event of a match the CAM gives us back another copy of our
original input “key”; otherwise we get nothing. The ternary CAM is a generaliza-
tion of this basic concept in which some parts of the input “key” can be encoded
as “don’t care” values, allowing the CAM to return new information that was not
part of our original key, such as the port number, priority class, or other information
associated with a given address.

19



Today, high performance CAMs that are optimized for Ethernet switching appli-
cations are widely available from various semiconductor vendors. For example,
SwitchCore offers a high performance CAM 4 Mbit device [33], which can store up
to 32,000 entries on a single chip (each up to 80 bits wide) or be chained together
to form a 3-level hierarchy that can store up to 224,000 entries, while offering a
sustained processing rate of 75 million lookups per second. It is interesting to note
that this existing SwitchCore CAM can already be scaled to meet the demands of
the reverse path matching algorithm under the naive worst-case traffic model for
a 10 Gbps link that we described in section 4.1, i.e., up to 20 million lookups per
second (assuming the link is saturated with “short” packets), and 100,000 entries
(assuming 10% of the 1 million flows have been marked by the AQM algorithm).

6 Conclusions

ACK Spoofing, particularly in combination with signal cancellation, represents a
very attractive means for congestion feedback signaling in IP routers. The basic
ACK Spoofing algorithm offers significant performance advantages over other con-
gestion signaling methods, such as packet dropping and ECN. It delivers congestion
signals more quickly than other signaling methods because of its “short circuited’
signaling path. It is compatible with the installed base of TCP implementations.
And, it avoids the negative side effects caused by needlessly dropping packets,
such as stalled connections because of timeouts and additional retransmissions.
Moreover, once we adopt the basic ACK Spoofing algorithm, we can easily add
several performance-enhancing features which add almost no extra complexity to
the method, such as signal cancellation and latency reduction by applying “over-
booking” to the packet marking process while limiting the signals to the quickest
matches. We could even apply the all of the same methods to ECN signaling, sim-
ply by setting its ECN flag instead of using it as the template for generating a set
of spoofing ACKS when we identify a suitable reverse ACK using reverse flow
matching,

However, the practicality of ACK Spoofing, and its associated enhancements, de-
pends critically on our ability to carry out the associated reverse flow matching
problem quickly, across high volumes of network traffic, and using only a modest
amount of additional hardware support. Our results show that reverse flow match-
ing can be implemented at reasonable cost, using essentially the same hardware
as the packet filtering logic commonly employed in Layer 2 transparent bridges.
Moreover, it can accommodate worst-case traffic patterns, including flow aggre-
gates such as flash crowds and distributed denial-of-service attacks, that would ren-
der ordinary route caching algorithms completely ineffective.

We also examined a variety of Internet trace files to obtain realistic estimates for the
total size of the lookup table that would be required for reverse flow matching, the

20



false hit probability if we implemented the lookup table as a pair of 48-bit lookups
into a standard Ethernet CAM instead of a single 96-bit lookup into a purpose-
built flow ID table, and the latency reduction from adopting the “short circuited”
congestion signaling path.

Finally, we note that the list of flow IDs that currently have their spoofing flags
turned on — which allows us to carry out reverse flow matching in support of ACK
spoofing — is essentially equivalent to the identification data for the aggregate-
based congestion control (ACC) algorithm proposed by Mahajan et al. [27], and
that the same techniques we use to carry out reverse flow matching could also be
used to handle the local ACC problem. In their algorithm, they first construct a
profile for the flow IDs associated with a particular high-bandwidth flow aggregrate
by using the packet marking algorithm to obtain a random sampling of the output
queue. The individual samples are then combined to create a smaller set of more
general rules by prefix matching. But replacing a pair of adjacent 24-bit IP address
prefixes by a single 23-bit IP address prefix is equivalent to combining the two
entries in a ternary CAM by setting bit 24 to the “don’t care” state. Thus, by adding
some additional bits to the result field, we can distinguish between a simple request
for ACK spoofing versus a standing order to divert all traffic associated with the
given flow aggregate into some sort of rate limiter. Hence, the only extra features
we would need to add to our implementation of ACK Spoofing so that it can also
handle local ACC problem would be certain “higher level” policy decisions that
occur outside the main packet forwarding path, such as determining whether the
router is currently under attack by some flow aggregate, and building an appropriate
set of aggregate signatures through prefix matching (i.e., [27] section 3.1).

References

[1] B. Braden, et al., Recommendations on queue management and congestion avoidance
in the Internet, http://www.ietf.org/rfc/rfc2309 (April 1998).

[2] S. Floyd, V. Jacobson, Random early detection gateways for congestion avoidance,
IEEE/ACM Transactions on Networking 1 (4) (1993) 397–413.

[3] W.-C. Feng, D. D. Kandlur, D. Saha, K. G. Shin, BLUE: A new class of active queue
management algorithms, Technical Report, CSE-TR-387-99, University of Michigan.

[4] S. Athuraliya, S. H. Low, Optimization flow control, II: Random exponential marking,
preprint, http://netlab.caltech.edu, May 2000.

[5] T. J. Ott, T. V. Lakshman, L. Wong, SRED: Stablized RED, in: Proc. INFOCOM ’99,
New York, 1999, pp. 1346–1355.

[6] D. Lin, R. Morris, Dynamics of random early detection, in: Proc. SIGCOMM ’97,
Nice, France, 1997, pp. 127–137.

21



[7] J. S. Ahn, P. Danzig, Z. Liu, L. Yan, Evaluation of TCP Vegas: Emulation and
experiment, in: Proc. SIGCOMM ’95, 1995, pp. 185–205.

[8] S. Floyd, TCP and explicit congestion notification, ACM Computer Communication
Review 24 (5) (1994) 10–23.

[9] K. Ramakrishnan, S. Floyd, D. Black, The addition of explicit congestion notification
(ECN) to IP, RFC 3168.

[10] D. Wischik, How to mark fairly, in: Workshop on Internet Service Quality Economics,
MIT, 1999.

[11] S. Kunniyur, R. Srikant, A time scale decomposition approach to adaptive ECN
marking, in: Proc. INFOCOM ’01, Anchorage, Alaska, 2001, pp. 1330–1339.

[12] I. Yeom, A. Reddy, Marking for QoS improvement, Computer Communications 24 (1)
(2001) 35–50.

[13] W.-C. Feng, D. D. Kandlur, D. Saha, K. G. Shin, A self-configuring RED gateway, in:
Proc. INFOCOM ’99, New York, 1999, pp. 1320–1328.

[14] S. Athuraliya, V. H. Li, S. H. Low, Q. Yin, REM: Active queue management, IEEE
Network 15 (3) (2001) 48–53.

[15] Z. Xu, M. Molle, TCP congestion control via ack spoofing, Technical Report, UCR
Computer Science Dept.

[16] Z. Xu, M. Molle, Red with ack spoofing, in: Proc. Allerton Conference on
Communication, Control, and Computing, 2003, pp. 120–129.

[17] Mesquite Software, CSIM18 documentation: User guides,
http://www.mesquite.com/htmls/guides.htm (2001).

[18] G. R. Wright, W. R. Stevens, TCP/IP Illustrated, Volume 2: The Implementation,
Addison-Wesley, 1995.

[19] T. Karagian, (private communication), UCR Department of Computer Science and
Engineering, 2003.

[20] W. R. Stevens, TCP/IP Illustrated, Volume 1: The Protocols, Addison-Wesley, 1994.

[21] V. Paxson, S. Floyd, Wide-area traffic: The failure of poisson modeling, IEEE/ACM
Transactions on Networking 3 (3) (1995) 226–244.

[22] D. E. Comer, Network Systems Design using Network Processors, Peason Prentice
Hall, 2004.

[23] Enterasys Networks, Ssr-htx32-16 fast ethernet t-series module data sheet, http:
//www.enterasys.com/products/routing/SSR-HTX32-16/ (2001).

[24] K. M. K. Cho, A. Kato, Traffic data repository at the WIDE project, in: Proc. Freenix
’00, San Diego CA, Usenix, 2000, pp. 263–270.

[25] MAWI working group traffic archive, http://tracer.csl.sony.co.jp/mawi/.

22



[26] D. M. M. Fomenkov, K. Keys, k claffy, Longitudinal study of Internet traffic from
1998-2001: a view from 20 high performance sites, http:
//www.caida.org/outreach/papers/2003/nlanr/index.xml (April 2003).

[27] R. Mahajan, S. M. Bellovin, S. Floyd, J. Ioannidis, V. Paxson, S. Shenker, Controlling
high bandwidth aggregates in the network, ACM Computer Communications Review
32 (3) (2002) 62–73.

[28] CNN.com, 20 million Americans see Starr’s report on
Internet, http:www.cnn.com/TECH/computing/9809/13/internet.starr/ (September 13
1998).

[29] CNN.com, Starr report causes Internet slowdown, but no meltdown,
http://www.cnn.com/TECH/computing/9809/11/internet.congestion/ (September 11
1998).

[30] F. Douglis, M. F. Kaashoek, Scalable Internet services, IEEE Internet Computing 5 (4)
(2001) 36–37.

[31] IEEE Computer Society, Media Access Control (MAC) Bridges, Vol. ANSI/IEEE Std
802.1D, IEEE, 1998.

[32] M. Defossez, Content addressable memory (CAM) in ATM applications, http:
//www.xilinx.com/xapp/xapp202.pdf (January 2001).

[33] SwitchCore AB, CXE-5000 32k entries multi-protocol content addressable memory,
http://www.switchcore.com/products/cxe-5000/ (2003).

23


