
Model Checking Large Network Protocol Implementations

Madanlal Musuvathi ∗, Dawson R. Engler

{madan, engler}@cs.stanford.edu

Computer Systems Laboratory

Stanford University

Stanford, CA 94305, U.S.A

Abstract

Network protocols must work. The effects of pro-
tocol specification or implementation errors range
from reduced performance, to security breaches, to
bringing down entire networks. However, network
protocols are difficult to test due to the exponential
size of the state space they define. Ideally, a protocol
implementation must be validated against all possi-
ble events (packet arrivals, packet losses, timeouts,
etc.) in all possible protocol states. Conventional
means of testing can explore only a minute fraction
of these possible combinations.

This paper focuses on how to effectively find er-
rors in large network protocol implementations us-
ing model checking, a formal verification technique.
Model checking involves a systematic exploration of
the possible states of a system, and is well-suited
to finding intricate errors lurking deep in exponen-
tial state spaces. Its primary limitation has been
the effort needed to use it on software. The pri-
mary contribution of this paper are novel techniques
that allow us to model check complex, real-world,
well-tested protocol implementations with reason-
able effort. We have implemented these techniques
in CMC, a C model checker [30] and applied the re-
sult to the Linux TCP/IP implementation, finding
four errors in the protocol implementation.

1 Introduction

Network protocols must work. The current state-of-
practice for automatically ensuring they do are var-
ious forms of testing — using a network simulator,
doing end-to-end tests on a live system, or as an in-
teresting twist, analyzing their traces to find anoma-
lies. The great strength of such testing approaches is

∗Supported by GSRC/MARCO Grant No:SA3276JB

that they are easily understood and give an effective,
lightweight way to check that the common case of
an implementation works. Unfortunately, protocols
define an explosively large state space. Implemen-
tors must carefully handle all possible events (lost,
reordered, duplicated packets) in all possible proto-
col and network states (with one packet in flight,
with two, with a just-wrapped sequence number).
It is only possible to test a minute fraction of the
exponential number of such combinations. Thus,
just at the moment implementors need validation
the most, testing works the least well. As a result,
even heavily-tested systems can have a residue of
errors that take days or even weeks to arise, making
them all but impossible to replicate.

When applicable, formal verification methods can
find such deep errors [26, 32, 37]. One approach
involves an explicit state model checker that starts
from an initial state and recursively generates suc-
cessive system states by executing the nondetermin-
istic events of the system. States are stored in a hash
table to ensure that each state is explored at most
once. This process continues either until the whole
state space is explored, or until the model checker
runs out of resources. When it works, this style
of state graph exploration can achieve the effect of
impractically massive testing by avoiding the redun-
dancy that would occur in conventional testing.

Most conventional model checkers, however, require
that an abstract specification (commonly referred
to as the “model”) of the system be provided. This
upfront cost has traditionally made model checking
completely impractical for large systems. A suffi-
ciently detailed model can be as large as the checked
system. Thus, implementors often refuse to write
them, those that are written have errors and, even
if they do not, they “drift” as the implementation
is modified but the model is not.

Recent work has developed model checkers that
work with the implementation code directly with-



out requiring an abstract specification. In prior
work, we developed an implementation-level model
checker, CMC [30], and used it to check three differ-
ent implementations of the AODV protocol (roughly
6K lines of code each). Model checking AODV in-
volved extracting the AODV processing code from
the implementation and running it along with an
input generating test harness. Using this approach,
CMC found errors every few hundred lines of code,
as well as an error in the underlying AODV protocol
specification [12].

This paper is about how to scale model checking up
to protocols a factor of ten larger. After the success
checking AODV we decided to check the hardest
thing we could think of: the Linux kernel’s widely-
used (and thus extremely thoroughly tested and vi-
sually inspected) implementation of TCP. The par-
ticular implementation we used (version 2.4.19) is
roughly 50K lines of code.

Scaling CMC to such a large system involved some
unusual challenges. First and foremost was the
“unit-testing” problem — model checking TCP re-
quires running the kernel implementation as a closed
system in the context of CMC. However, extract-
ing large pieces of code from a host system not de-
signed for unit testing is much, much harder than it
may seem. Any procedure this code calls must be
reimplemented in the model checker; real code has
a startling number of such procedures (the narrow-
est interface we could cut along in TCP had over
150 procedures). Worse, such procedures too-often
have unspecified interfaces, making it easy to get
their functionality slightly wrong. Model checkers
are excellent at finding slightly wrong code, and will
happily detect the resulting bogus effects, requiring
a laborious tracking back to the source of these false
errors. In many cases, this backtracking took days.

To avoid these problems, this paper presents an
unusual approach; instead of extracting the TCP
implementation, we run the entire Linux kernel in
CMC. To trigger TCP related behaviors, the sys-
tem contains an environment that interacts with
the kernel through well-defined interfaces, such as
the system call interface and the hardware abstrac-
tion layer. The semantics of these interfaces are well
understood and thus, easy to implement correctly.
The execution of the TCP code in the model checker
exactly mirrors the execution in the kernel, thereby
reducing false errors.

Running the entire kernel in CMC required us to
heavily optimize the model checker. The system
consists of two kernels communicating with each
other as TCP peers, and the size of the system state

is over two hundred kilobytes. This paper describes
techniques that enable CMC to scale to such a large
system and validates them by applying them to the
Linux TCP implementation, where we find four er-
rors. We believe that the approach we took and the
techniques we used are useful (and perhaps neces-
sary) to model check real code of any size.

This paper makes the following contributions:

1. It develops novel techniques to check code in
situ rather than requiring it to be extracted
from the system itself.

2. It develops ways for saving and restoring state
to be automatic, yet efficient, and for superficial
differences at the bit-level to be eliminated.

3. To the best of our knowledge, it is the first pa-
per to check software as complex as TCP; the
closest other efforts are an order of magnitude
smaller.

4. It demonstrates that the approach can find real
error in heavily inspected and tested, complex
code.

5. It provides a generic framework for testing
other protocols with much lower effort than any
other model checker.

2 CMC Overview

CMC is an explicit model checker that directly ex-
ecutes a given protocol implementation. One way
to understand the working of CMC is to consider it
as a backtracking network simulator. Like any net-
work simulator [25], CMC runs a protocol descrip-
tion along with a suitable environment that consists
of a network model and a user model. Instead of us-
ing a simplified protocol description, CMC executes
an actual implementation of the protocol (along the
lines of [7]). As in a network simulator, CMC en-
ables protocol behavior by triggering the events in
the environment, such as network interrupts, time-
outs, and user inputs.

However, the key difference between CMC and a
network simulator is that CMC checkpoints the sys-
tem state at specific points. This provides two im-
portant capabilities. First, CMC can backtrack to
a previous state and explore a different sequence
of events. In contrast, a network simulator is re-
stricted to exploring a single event sequence deter-
mined by the initial random seed provided to the



simulator. Second, CMC stores a signature of each
checkpointed state in a hash table. By doing so,
CMC avoids redundantly exploring a system state
more than once. This is particularly helpful when
exploring all event interleavings in the system.

CMC is implemented as a library that links with the
C (or C++) implementation of the network proto-
col. CMC models a given system as one or more
interacting processes. Each process can have one or
more threads. A CMC process behaves in many re-
spects like a normal operating system process; each
process has its own copy of global variables, heap,
and stacks for each of its threads. Processes do
not share state, but communicate with each other
through a region of shared memory. CMC along
with all the process in the system run as a single
operating system process. Internally, each process
is implemented as one or more user space threads.

The notions of processes and threads provide a
straightforward way to model network protocols.
Each process models a node in the network and exe-
cutes the implementation of the protocol. If the im-
plementation is multithreaded (as is the case with
the Linux TCP implementation), a CMC process
can allocate a thread for each threads of execution
in the implementation. The processes can communi-
cate with each other using a network modeled using
the shared memory region.

A user has to perform the following tasks before a
protocol can be model checked. First, the protocol
implementation should run as a closed system in a
CMC process. Typically, this involves extracting
the protocol specific parts from an implementation
and providing stubs or support functions to close
the system. This task is necessary for unit-testing
the protocol implementation, or to execute the im-
plementation as is in a network simulator [7].

Second, the user specifies the nondeterminism in the
system. This allows CMC to explore multiple exe-
cutions from a single state. In most cases, this in-
volves calling special functions in the CMC library.
For instance, CMC provides a send() function that
nondeterministically drops any packet sent to the
network. As a result, CMC explores two possible
executions for every packet; one in which the packet
is sent to the network, and the other in which the
packet is dropped.

Third, the user provides some correctness properties
about the protocol. The user specifies these proper-
ties as invariants implemented as boolean functions
(in C), which CMC evaluates at each state during
state space exploration. For instance, a user can

provide a function that checks if a TCP implemen-
tation reduces the congestion window in response to
a packet loss.

Given an appropriate system that includes the pro-
tocol implementation, CMC systematically enumer-
ates the possible states of the system. The system
state includes the state of all processes and the state
of the shared memory region. The state of process
consists of the contents of all the global variables,
the heap, and the stacks (and register contents) of
all the threads in the process.

CMC starts from the initial state of the system, and
recursively generates all its successors. From each
state, CMC executes a transition to generate a suc-
cessor state. A transition roughly corresponds to
the handling of a protocol event, such a packet re-
ception or a timeout, by some thread of a process
in the system. Due to nondeterminism in the sys-
tem, there can be more than one transition possible
from a state, each potentially leading to a different
successor state.

The state space is prohibitively large for most non-
trivial systems. As a result, it is impossible to enu-
merate all possible states of a given system with
limited resources. While not able to provide abso-
lute guarantees about a given protocol implementa-
tion, CMC focuses on exploring as many different
protocol behaviors as possible before running out of
resources (§5).

3 The Model Checking Framework

The first step in model checking a protocol is to run
the protocol implementation as a process in CMC.
In our case, this requires that the Linux kernel im-
plementation run as a closed system in user space.

3.1 Why the Conventional Approach
Fails

In our first attempt, we followed the conventional
wisdom: extract the TCP related code from the ker-
nel along the narrowest possible interface; and run
it with a kernel library that provides stubs for all
the kernel services the TCP code requires. Choos-
ing a narrow interface keeps the library simple. This
approach also has the advantage of minimizing the
state size of the model, as the kernel library can be
optimized by removing any redundant states.

Starting from the core set of TCP modules, we
conservatively added a few tightly coupled modules



(such as IP) to the model. To close the system, we
then manually provided stub implementations for
all the interface functions in the system boundary.

However, providing correct implementations for
these interface functions proved to be an extremely
difficult task. The TCP code interacts with the rest
of the kernel along complex and undocumented in-
terfaces. Our initial version of the kernel library
involved around 150 interface functions. Providing
stub implementations and understanding the sub-
tle interactions between various interface functions
required considerable understanding of the different
kernel modules. More often than not, our stubs were
buggy.

Faulty stubs typically result in false behaviors that
CMC will (falsely) flag as errors in the checked
code. These false positives can be very hard to
debug and fix. For instance, after days of debug-
ging we found that a memory leak of a socket struc-
ture was caused by incorrect stub implementation in
the timer module. The TCP implementation uses
a function mod timer() to modify the expiration
time of a previously queued timer. This function’s
return value depends on whether the timer is pend-
ing when the function is called. However, our initial
stub implementation did not capture this behavior.
This incorrect stub confused the reference count-
ing mechanism of the socket structures leading to
a memory leak. (As TCP timers are members of
the socket structure, a queued timer amounts to an
extra reference to the parent socket.)

During our initial runs, we progressively fixed bugs
in our implementations as we found them. After
spending months, we gave up. It is quite possi-
ble that after sufficient iterations of fixing errors in
the environment model, we would have converged
on a model that implemented all the interfaces ac-
curately. However, subsequent iterations involved
bugs that were more subtle and took longer to de-
bug.

3.2 Running the Entire Linux Kernel

The hard learned lesson from our previous approach
is that instead of choosing a narrow interface, the
model should involve well-defined interfaces. For
the Linux kernel, there are only two such interfaces:
the system call interface that defines the interface
between the kernel and the user processes; and the
“hardware abstraction layer” that defines the in-
terface between the kernel and the hardware archi-
tecture. Though Linux does not explicitly define a
hardware abstraction interface, such an interface is

implicitly defined for most kernels to simplify the
task of porting the kernel to different architectures.

Defining the TCP model along these two interfaces
requires that the entire kernel is run in user space as
a CMC process. While this might look like a daunt-
ing task, we heavily reused the user space imple-
mentation of the Linux kernel from [38]. This still
requires CMC to deal with the entire kernel state
which is orders of magnitude larger than the TCP
relevant state alone. Section 4 describes techniques
by which CMC in effect automatically extracts the
TCP relevant state from the kernel state.

Using the system call interface and the hardware
abstraction interface has another advantage. These
interfaces change very rarely during future revisions.
Thus, the effort required in building a TCP model
can be reused across multiple versions of the kernel.

3.3 The TCP Model

Once the TCP implementation can run in user
space, the next step involves constructing the actual
CMC model: allocating one or more CMC processes
to run the TCP implementation and designing an
environment to appropriately trigger the implemen-
tation.

In the kernel, the TCP code executes in three con-
texts: in user context when a user process makes a
system call, in the context of a network interrupt
handler when a TCP packet is received, and in the
context of a timer interrupt handler when a TCP
timer fires. To mimic this behavior a CMC pro-
cess running the Linux TCP implementation con-
tains the following three threads:

• An application thread that makes socket related
system calls to the kernel. Of the two applica-
tion threads one behaves as a standard TCP
server, while the other behaves as a standard
TCP client.

• A network thread that emulates a packet in-
terrupt and executes the code to handle packet
reception.

• A timer thread that emulates a timer interrupt
and fires one of the pending timer routines.

These threads once triggered can either execute to
completion or can block. These threads block by
yielding control to the kernel scheduler. In the
real kernel, the scheduler would then execute the
scheduling algorithm to determine the thread that



Size of a System Average Change
State (in KB) in a Transition (in KB)

Global Variables 78.28 11.37
Heap (average) 25.06 2.13
Stack 24.00 4.00
Total per Process 127.34 17.50
Network State 1.00 1.00
System State (Sum of two process
states and a network state)

255.68 18.50

Table 1: The state size for the TCP model described in Section 3.3. The second column shows the amount
that changes in a transition, on average. For the global variables and the stack, CMC can only detect changes
at page size (4KB) granularities. For the heap, CMC detects changes at individual object granularities.

is scheduled next. In our model, the scheduler is
modified to immediately transfer control to CMC.
This enables CMC to nondeterministically choose
the thread that is executed next, and explore mul-
tiple thread schedules from a given state.

Similarly, the kernel timer routine is modified to al-
low CMC to choose the timer that fires next when
multiple timers are enabled. Optionally, CMC can
fire timers out of order irrespective of their expira-
tion times. While this can lead to some behaviors
not possible in a real implementation, it has the
benefit of making the implementation behavior in-
dependent of the actual values of the timers.

The two kernels communicate through a network,
modeled as a list of messages in the shared memory.
The network model can lose, duplicate, reorder and
corrupt messages. Each kernel communicates with
the network through an appropriate network device
driver.

4 Handling Large States

Protocol implementations can have large states. For
the TCP model discussed in Section 3.3, each state
is around 250 kilobytes, which is shown in Table 1.
Note that a process in the TCP model runs the en-
tire Linux kernel. Thus, the process state consists
of all the global variables in the kernel (78KB), and
any memory dynamically allocated during the ker-
nel boot-up and the subsequent processing of TCP
events (25KB). Additionally, the process runs three
kernel threads (§3.3), each of which run in a sepa-
rate 8KB stack. 1 The system consists of two such

1This stack size is hard-coded in the Linux kernel imple-
mentation.

processes along with a model of the network, result-
ing in a state that is 250KB in size.

4.1 Managing Memory Resources

During the state space search, CMC maintains two
data structures: a hash table of states seen during
the search, and a queue of states seen but whose
successors are yet to be generated. It is not nec-
essary to store the entire state in a hash table [36].
CMC uses a hash compaction algorithm [36] to store
only a small signature (typically, 8 bytes) for each
state in the hash table. By doing so, the memory
requirements of the hash table depend only on the
number of states explored during model checking.

The queue, however, has to maintain the states in
their entirety, as all of the information in the state is
necessary to generate the successor states. However,
the queue has good locality of reference, so much of
it can be swapped to disk during model checking.
Moreover, the states in the queue can be efficiently
compressed; as states can simply be regenerated by
remembering the sequence of events that generated
them from the initial system state.

In practice, the large amount of memory available
in modern machines makes managing memory much
easier. For instance, a gigabyte hash table is more
than sufficient to explore 100 million states when us-
ing a 8 byte compacted signature for each state. The
remaining memory can be allocated for the queue.
As will be shown below, CMC is limited more by the
time required for the state space exploration than
by the memory available.



Time in microseconds
State Transition Hash State Total

Restore Execution Computation Store
Processing Entire States 656 305 17816 608 19385
With Incremental States 298 363 2927 64 3652
With Incremental Heap Canonicalization 305 365 1453 65 2188

Table 2: Time taken for a single CMC transition, averaged over the first million transitions. The experiment
involves CMC checking the TCP model in a server running a 800MHz Intel Pentium III processor with
256KB cache and 2GB of memory.

4.2 Time Taken for a Transition

The basic step of CMC consists of a transition,
which generates a single successor from a particular
state. A transition consists of the following steps.

1. State Restoring: First, CMC restores the
system to the desired start state of the tran-
sition.

2. Executing the Transition: After restoring
the state, CMC transfers control to one of the
enabled threads in the system. The thread ex-
ecutes the TCP code to process a specific input
event such as a packet reception or a timeout.

3. Computing the Hash: When the thread
yields control back to CMC, the implementa-
tion state, as modified by the thread, repre-
sents the successor state of the transition. To
store this state in the hash table, CMC com-
putes a signature and a hash value (that deter-
mines the location of the signature in the hash
table) for the state. Additionally, CMC might
perform state transformations (§5.1) before this
hash computation.

4. State Storing: If the successor state is not
present in the hash table, CMC queues a copy
of the successor state for further exploration.

Thus, each transition requires at least three traver-
sals of the state contents. When the state is hun-
dreds of kilobytes, naively performing these traver-
sals leads to a poor memory cache performance, con-
siderably slowing the model checker. Table 2 shows
the time taken for a transition when CMC processes
the entire state contents during the transition. In
this case, each transition takes around 20 millisec-
onds. At this rate, CMC can run for weeks with-
out running out of memory. (A gigabyte hash table
can easily store 100 million states, and for the TCP

model, only one in five transitions generate a new
state.)

From Table 2, we can see that the hash computation
is the most expensive step in a transition; CMC
spends more than 90% of its time computing the
signature and the hash value of the state. While
saving and restoring states involve simple memory
copies, hash computation requires performing a few
arithmetic operations for every byte of the state.

4.3 Incremental State Processing

It is possible to reduce the hash computation over-
head by using a simple, but crucial observation.
Even though the state is large, only small portions
of it change in a transition, as shown in Table 1.
There are a couple of reasons for this behavior. As
the environment triggers only TCP specific events,
parts of the kernel not relevant to TCP processing
do not change during model checking. Additionally,
a transition involves a specific event and thus, only
involves data structures related to the processing of
that event.

By processing only the incremental differences be-
tween states, CMC can considerably reduce the time
taken for a transition. The basic idea is to subdivide
an entire state into a set of smaller objects. CMC
computes the hash value and the signature for each
object separately and caches these values with the
object. CMC identifies the objects that are modified
in a transition, and only needs to process these ob-
jects during hash computations. The cached values
can be used for objects not modified in a transition.

To determine the objects modified in a transition,
CMC uses the virtual memory protection allowed
by the underlying operating system. This scheme is
similar to that used by distributed shared memory
systems (such as Treadmarks [23]). The entire state
is subdivided into a set of virtual memory pages.
Before a transition, CMC restores the system to the



desired start state and write protects all the pages
in the state. During the transition, a first write
to a protected page generates an access violation
signal. CMC traps this signal, marks the page as
dirty, and creates a copy of the page. This copy
represents the state of the page in the start state of
the transition. Once a page is dirty, CMC ensures
that subsequent writes to the page do not involve
an expensive signal delivery by removing the write
protection on the page.

Table 2 shows the performance improvement in this
incremental scheme. The cost of hash computation
reduces by more than a factor of 5, and the transi-
tion takes less than 4 milliseconds on average. There
is also an improvement in the state store and restore
phase, as CMC only needs to copy pages that differ
when switching between states. As expected, the
time for actually running the implementation code
increases due to the overhead of the access violation
signals.

Section 5.1 describes another mechanism to further
reduce the hash computation overhead.

5 Handling State Space Explosion

All model checkers have to handle the state explo-
sion problem, which refers to the unmanageable size
of state spaces even for moderately sized systems.
As CMC deals directly with protocol implementa-
tions rather than their abstract models, CMC con-
fronts much larger state spaces than conventional
model checkers.

CMC tackles the state space explosion problem by
following a best-efforts approach. CMC does not
guarantee a complete search of the state space, but
attempts to explore as many protocol behaviors as
possible before running out of resources. No cur-
rent approach can practically verify protocols of any
complexity, so we instead focus on exercising the
protocol as throughly as possible.

There are two ways in which CMC confronts the
state explosion problem. First, CMC (like all model
checkers) uses state transformations to recognize
states that are superficially different at the bit level
but are actually the same (or similar enough) at the
semantic level. These transformations enable CMC
to check only one out of a large (and exponential)
set of equivalent states. Second, CMC uses heuris-
tics to selective explore interesting portions of the
state space.

This section describes two techniques that are an

improvement of those previously described in [30].
Scaling CMC to TCP required that these techniques
be automated and made more efficient.

5.1 Incremental Heap Canonicalization

One problem in model checking software programs
is to handle heap canonicalization [22]. When ob-
jects are dynamically allocated in the heap, different
allocation orders can result in heap states that are
equivalent but differ in the memory locations of the
objects. For instance, consider two states in which
the TCP implementation receives the same two data
packets in order and out of order respectively. The
socket buffers will be allocated at different memory
locations in the two states but queued in the se-
quence number order in both states. Thus, the two
states differ in the bit level but are semantically the
same. CMC should identify such states and avoid
exploring them redundantly.

Equivalent heap states can be identified by trans-
forming a heap state to a canonical representation
shared by all equivalent heaps. Informally, the ob-
jects in the heap along with their pointers form a
heap graph. Equivalent heaps have the same under-
lying graph structure. A canonicalization algorithm
works by relocating each object to its canonical lo-
cation and modifying the contents of all pointers to
the object to reflect its new location.

The previously known algorithm [22] does not scale
to large heaps. This algorithm requires processing
large portions of the heap, which can reduce the
speed of state space exploration (§4.2). Specifically,
it performs a depth first traversal of the heap graph,
and the canonical location of each object depends
on its depth first ordering. Even small changes to
the heap, such as an object allocation or a deletion,
can change the depth first ordering for a large num-
ber of objects. This forces CMC to traverse and
compute the hash for large portions of the heap, as
shown in Table 3. During model checking, the heap,
on average, consists of 103 objects that total 25KB.
Note that the heap also includes non-TCP related
data structures allocated by the Linux kernel. A
TCP transition, on an average modifies 5 of these
objects. However, this change requires CMC to re-
compute the hash value of almost half the objects
in the heap.

Our contribution is an improved, incremental heap
canonicalization algorithm. We briefly describe this
algorithm; interested readers can refer [28] for more
details. The incremental algorithm generates the



Number of Objects Total Length in KB
Objects in the entire heap 102.7 25.06
Objects modified in a transition 5.1 2.14
Objects accessed during heap canon. 45.8 11.91
Objects accessed during incremental heap canon. 5.2 2.17

Table 3: Objects accessed during heap canonicalization. Every transition on an average modifies 5 heap
objects. The incremental canonicalization algorithm requires traversing only these objects in most cases.

canonical location of a heap object from the short-
est path of the object to some global variable in the
heap graph. When a transition makes small changes
to the heap structure, the shortest path of most
objects is likely to remain the same [19, 31]. Af-
ter a transition, CMC recomputes the hash only for
those objects whose shortest paths have changed in
a transition. This algorithm works well in practice,
as shown in Table 3; in most cases CMC traverses
only the objects that are modified in a transition.
This improves the performance of CMC by 40% as
indicated in Table 2.

5.2 Exploring Interesting Protocol Be-
haviors

Since CMC cannot exhaustively explore the state
space of real protocols it takes a different approach
and instead tries to explore the “most interesting”
portions of them. It does so by attempting to focus
on states that are the most different from previously
explored states. The intuition for this is that the
more different a state is from previous states the
more likely it is to have new behaviors and, as a
result, bugs. We describe two techniques CMC uses
below.

The first uses the abstract protocol state to find
states that will generate new behaviors. Conceptu-
ally, a protocol implementation state can be viewed
at two levels. There is the concrete state, which
is the heap, stack, global variables and registers
— all the memory values that define the current
computation. There is also the abstract, protocol
state encoded in the concrete state — for exam-
ple, whether TCP is in the LISTEN or CLOSED
state. Many different concrete states may in fact
define the same abstract state. We want to focus
on concrete states that correspond to new abstract
protocol states since they will generate new behav-
iors.

For TCP, the state of the reference model (§6) cor-
responds to the the abstract state of the protocol.
We can thus use it to preferentially explore system

states whose corresponding reference model state
has not been seen before. We further tune this pro-
cess by doing a series of symmetry reductions [10]
on the abstract state, which allow us to determine
when two superficially different abstract states will
in fact generate the same behavior. The simplest
example is sequence number standardization where,
a state with all sequence numbers at 256 can be
considered equivalent to a state with all sequences
numbers at 512 (which can be reached, for instance,
from the first state after successful data transfer of
256 bytes). While performing such reductions on
the concrete state is difficult the small size of the
abstract state (10 − 20 bytes) makes it relatively
easy.

The second technique also explores states that ap-
pear to be different from previous ones. It uses the
heuristic that on balance, a change in a variable
that never or rarely changed before is more inter-
esting than in one that changes often. CMC tracks
the values of all variables in the states generated.
If a particular variable (as determined by its byte
location in the state) takes on more than a thresh-
old number of distinct values, CMC eliminates those
variables from subsequent hash computations. Dif-
ferent CMC runs can use different threshold val-
ues (including infinity) to guard against cutting off
searches too soon.

A simple example of how this helps are the many
counters and and statistics variables present in pro-
tocol implementations that do not affect the exe-
cution of the protocol, but whose changed values
cause unnecessary blowup of the state space. Ide-
ally, a user would identify such variables and pro-
vide them to CMC as annotations. However, pro-
viding such manual annotations for the entire TCP
implementation (and in our case, the entire Linux
Kernel) is impractical. CMC’s variable pruning will
automatically weed out such counter variables.



6 Specifying Correctness Properties

During the state space exploration, CMC automat-
ically checks for certain generic properties such as
memory leaks and invalid memory accesses. Also,
CMC reports any deadlock states, in which the sys-
tem can make no progress. To check for protocol-
specific properties, the user has to provide addi-
tional invariants (written in C). CMC evaluates
these invariants in every state it generates.

There are two aspects to the correctness of a net-
work protocol. First, the protocol specification
should be correct. Second, the particular imple-
mentation should implement the specification cor-
rectly. By running the implementation, CMC can
simultaneously check for both specification and im-
plementation errors. Any specification error will be
promptly represented in the implementation. Given
the maturity of the TCP specification, however, it is
quite unlikely the specification contains errors and
our emphasis has been on detecting implementation
errors.

6.1 Checking Protocol Conformance

Checking that a TCP implementation conforms to
the protocol specification is a challenge. The speci-
fication itself [35, 6] is large and complex. Moreover,
the TCP specification is ambiguous at many places,
leaving room for the implementations to make their
own choices.

Along the lines of [33], we check for protocol confor-
mance by ensuring that every transition of the im-
plementation is allowed by a TCP reference model.
This reference model consists of the basic state ma-
chine transitions literally translated from [35] to
C, and is around 500 lines of code. During model
checking, CMC provides the same set of input events
(system calls, network and timer interrupts) to both
the implementation and the reference model, and
expects their states and the outputs (network pack-
ets and system call return values) to be consistent.

All inconsistencies between the TCP implementa-
tion and the reference model are not necessarily er-
rors. They can arise due to the ambiguities in the
TCP specification, known errors in the protocol [34],
and manual errors in the reference model. We itera-
tively modified our reference model when we found
such false error reports.

6.2 Checking for Resource Leaks

A TCP implementation should release all kernel re-
sources at the end of the connection. Failure to
do so can result in resource lockup, which subse-
quently reduces the performance and the availabil-
ity of the machine. The resource leaks are not nec-
essarily memory leaks, as these resources can still
have valid references to them. To check for such
resource leaks, CMC requires that the entire kernel
eventually reach the initial state after completing a
TCP connection. CMC reports any violation as a
potential resource leak.

There are, however, valid situations when the ker-
nel might not reach the initial state. First, some
resources can be cached either by the TCP imple-
mentation or by the Linux kernel. To account for
this fact, CMC traces through a few complete TCP
connections to generate a state in which the re-
sources are already cached. CMC performs the state
space exploration from this state. Second, the ini-
tial and final states of a TCP connection can still
differ due to the various statistics the protocol main-
tains. During the initial model checking iterations,
CMC progressively learns to factor out these vari-
ables from the state (after simple manual inspec-
tion).

6.3 Checking Implementation Robust-
ness

A TCP implementation should be robust against
malformed packets sent by a misbehaving peer. Ide-
ally, we would like to send all possible packets at
each implementation state and ensure that the im-
plementation handles them satisfactorily. However,
this requires trying a prohibitively large number of
transitions (exponential in the size of the packet) at
every state. Also, most of the packets thus gen-
erated will be invalid TCP packets that will be
dropped after a few simple checks.

We overcome this problem by generating well-
formed TCP packets that are only slightly different
from normal packets expected in a particular state.
The system consists of two (well-behaved) TCP im-
plementations communicating over an adversarial
network. Apart from losing, reordering and dupli-
cating packets, the network can slightly mutate a
packet when it is received by the implementation.
Mutating a packet includes toggling the control bits
in the packet and pruning the packet data to gen-
erate very small packets. After performing the mu-
tation, the network ensures that the packet is still



well-formed by recomputing the checksum and ap-
propriately modifying the sequence numbers when-
ever it toggles the SYN and FIN control bits in the
packet.

7 Results

The effectiveness of CMC can be measured using
two metrics. One is the number of bugs CMC is able
to find. The second measure is how well the given
system is tested. This section describes our results
of model checking the Linux TCP implementation
using these two metrics.

7.1 Bugs Found

CMC found four instances where the Linux im-
plementation fails to meet the TCP specification.
These errors amply reflect the kind of corner cases
CMC is able to test.

The first bug CMC found involves the processing
of RST packets. The Linux implementation fails
to honor a RST packet in SYN RCVD state un-
less the ACK bit is also set. The TCP specifica-
tion requires that in response to a RST packet an
implementation free any resources held by the con-
nection and gracefully inform the application. Fig-
ure 1 shows the code containing this bug. The func-
tion tcp check req processes incoming packets in
the SYN RCVD state. The bug was inadvertently
introduced while trying to handle a case of a mali-
ciously generated packet. The fix causes the func-
tion to prematurely exit before processing the RST
flag. This bug can potentially lead to lockup of ker-
nel resources long after the TCP connection is dead.

The second bug involves incorrect handling of a du-
plicate SYN ACK packet. While the specification
requires that any duplicate packets be ignored, the
Linux implementation fails to do so and faithfully
uses the acknowledgment to open its congestion win-
dow. The error happens because of an incorrect se-
quence number check in the ESTABLISHED state.

CMC also found that the implementation fails to im-
plement one transition in the TCP state diagram.
If an application prematurely closes in SYN RCVD
state, the specification requires the implementation
to gracefully close the connection using the FIN

handshake. An acceptable alternative is to perform
an abnormal close by sending a RST packet. CMC
found that in this case, the Linux implementation
dropped the connection without notifying its peer.

// net/ipv4/tcp_minisocks.c

// Process an incoming packet for SYN_RECV

// sockets represented as an open_request.

struct sock *tcp_check_req(...) {

...

/* You would think that SYN crossing is

impossible here, since we should have

a SYN_SENT socket (from connect()) on

our end, but this is not true if the

crossed SYNs were sent to both ends by

a malicious third party. We must defend

against this,

...

Note: This case is both harmless, and

rare. Possibility is about the same

as us discovering intelligent life on

another plant tomorrow.

...

*/

if (!(flg & TCP_FLAG_ACK))

return NULL;

/// BUG: Should have checked the RST field

/// before checking the ACK field

// Invalid ACK: reset will be sent by listening

// socket

if (TCP_SKB_CB(skb)->ack_seq != req->snt_isn+1)

return sk;

...

// RFC793: "second check the RST bit" and

// "fourth, check the SYN bit"

if(flg & (TCP_FLAG_RST|TCP_FLAG_SYN))

goto embryonic_reset;

...

}

Figure 1: The Linux TCP implementation (ver-
sion 2.4.19) does not honor the RST flag in the
SYN RECV state unless the ACK bit is set. The
bug was inadvertently introduced while fixing a
“harmless and rare” case. The code prematurely
returns when the ACK field is not set on an incom-
ing packet.



Line Protocol Branching Additional
Model Description Coverage Coverage Factor Bugs

1 Standard server and client 47.4 % 64.7 % 2.91 2
2 Model 1 + simultaneous connect 51.0 % 66.7 % 3.67 0
3 Model 2 + partial close 52.7 % 79.5 % 3.89 2
4 Model 3 + message corruption 50.6 % 84.3 % 7.01 0

Combined Coverage 55.4 % 92.1 %

Table 4: Coverage achieved during model refinement. The branching factor is a measure of the state space
size.

On examining the source later, we found a com-
ment that acknowledges the incorrect handling of
this case.

The final “bug” involves a subtle processing of ACK
packets. A TCP implementation is required to
abort a connection by sending a RST packet when
it receives data that cannot be transferred to the
application. This can happen, for instance, when
the application closes the connection before the data
transfer is complete. The bug involves the case
when the implementation receives a packet contain-
ing both data and an ACK after the application has
closed the connection. The Linux implementation
blindly processes the ACK field before processing
the data. If the ACK opens the congestion window,
the implementation exhibits a peculiar behavior. It
sends a stream of data packets and immediately fol-
lows with a RST packet aborting the connection.
While we are not sure if we should count this as a
bug, we found this behavior interesting to report.

CMC also detected one instance where the TCP
specification might be ambiguous. This concerns
the transmission of a FIN packet on a zero window.
When the receiver advertises a zero window, the
Linux implementation queues a FIN packet, even
if no data is queued. This is definitely the behavior
expected by the TCP specification as the sequence
number of FIN lies outside the send window. How-
ever, it seems that an acceptable solution is to send
the FIN packet as zero window probe.

7.2 Coverage Metrics

While one measure of the effectiveness of a tool like
CMC is the number of bugs it finds, another mea-
sure is the extent to which a given implementation is
tested. We resort to two coverage metrics which are
described below. As CMC deals with tremendously
large state spaces, CMC typically runs out of re-
sources before completing the search. The coverage
metrics are very useful in evaluating the different

state space reduction techniques employed by CMC
as well as the various models provided by the user.

While various coverage metrics have been studied in
software testing [2], we use two metrics that are easy
and straightforward to compute. The first measure
is the line coverage achieved during model checking.
While this measure need not correspond to how well
the system has been tested, it is helpful in detecting
the parts that are not tested.

The second measure, which we call “protocol cover-
age,” corresponds to the behaviors of the protocol
tested by the model checker. We calculate protocol
coverage as the line coverage achieved in the TCP
reference model mentioned above. This roughly rep-
resents the degree to which the protocol transitions
have been explored.

Table 4 describes the coverage achieved while check-
ing four iteratively refined models. Apart from the
two coverage metrics, the table reports the branch-
ing factor of the state space as a measure of its (ex-
ponential) size. The branching factor is calculated
from the number of states seen at a particular depth
from the initial state.

The first model described in Table 4 consists of a
standard TCP client connecting to a standard server
and performing bidirectional data transfer before
closing the connection. In the second model, the
server nondeterministically decides to initiate the
connection, thereby exploring the simultaneous con-
nect mechanism. The third model refines the sec-
ond model by allowing the client and the server to
nondeterministically close the connection before the
data transfer is complete. The fourth model intro-
duces an adversary to mutate packets in the net-
work. This tremendously improves coverage at the
cost of an increase in state space size. These re-
finements were made iteratively after investigating
the parts of the protocol not covered in a previous
model.

The combined coverage in Table 4 reports the cov-



erage achieved cumulatively over the four mod-
els. CMC achieves a combined protocol coverage of
92.1%, which represents almost complete coverage
of the properties being checked by the TCP refer-
ence model. The uncovered lines consist of error
condition checks that should not be triggered in a
correctly functioning protocol.

8 Related Work

We compare our approach to protocol verification
techniques, generic bug finding approaches, and
other model checking efforts.

Protocol reliability. Reliability of protocol imple-
mentations has been a long running theme in net-
working research.

One approach is to design a domain-specific lan-
guage aimed at making networking protocols con-
cise and easy to specify, thereby (hopefully) re-
ducing the chance of error. Examples include ES-
TEREL [5], LOTOS [4], and Prolac [24]. A draw-
back of language-based approaches is that, histori-
cally, the networking community rarely adopts them
— to our knowledge, all widely-used TCP imple-
mentations are written in C or C++.

A different but related method aims to reduce er-
rors by providing a more natural infrastructure for
networking implementations. Examples include the
x-kernel [21], Scout [27] and, to a degree, the Fox
project [3]. This approach mainly helps protocol
construction, rather than focusing on ways to find
errors in the implementation.

There have been numerous attempts to test a TCP
implementation. One approach involves transmit-
ting carefully designed packets to the implementa-
tion and observing its response [11, 14]. In contrast,
x-sim [7] executes an unmodified TCP implementa-
tion in a simulator to test for performance related
problems.

Complementary to the testing approaches, tcp-
analy [33] passively analyzes packet traces to detect
abnormal behavior of TCP implementations. While
this relies on large trace sets to achieve coverage of
TCP behavior, this approach has a particularly at-
tractive low up-front cost and scales well to large
number of instances.

As stated in the introduction, by using model check-
ing we have a higher up-front cost than these ap-
proaches but can explore protocol state spaces much
more deeply.

Generic bug finding. There has been much
recent work on bug finding, including both bet-
ter type systems [15, 18, 17] and static analysis
tools [13, 1, 9, 29, 16]. While the latter approaches
can be easier to apply than model checking (the for-
mer can require more manual labor), both are lim-
ited to checking relatively shallow rules (“lock must
be paired with unlock”). Model checking can do
end-to-end checks out of their reach (“the routing
table should not have loops”).

Software Model Checking. Several recent verifi-
cation tools use the idea of executing and checking
systems at the implementation level.

Java PathFinder [8] uses model checking to verify
concurrent Java programs for deadlock and asser-
tion failures. It relies on a specialized virtual ma-
chine that is tailored to automatically extract the
current state of a Java program.

SLAM [1] is a tool that converts C code into ab-
stracted skeletons that contain only Boolean types.
SLAM then model checks the abstracted program
to see if an error state is reachable.

Our goal is to do comprehensive, deep, end-to-end
checks of system correctness rather than checking
a limited number of properties (as in Pathfinder)
or relatively shallow, type-system level ones (as in
SLAM).

Verisoft [20] systematically executes and verifies ac-
tual code and has been used to successfully check
communication protocols written in C. We expect
that the techniques we have developed in this paper
could be applied to it as well.

As stated in the introduction, we used a prototype
version of CMC in prior work [30]. This paper ap-
plies it to protocols an order of magnitude more
complex, and has led to a complete overhaul of the
approach.

9 Conclusions

CMC is successfully able to scale to systems as large
and complex as the Linux TCP implementation.
Also, CMC has found four bugs in the implemen-
tation.

As described in Section 7 and Table 4, CMC is suc-
cessful in achieving a good coverage of the proper-
ties checked. We believe that the results reported in
this paper can be improved by using a better refer-
ence model that checks for a wider range of proper-
ties. For instance, the current model does not check



for congestion control properties (that the conges-
tion window should reduce on a packet loss) and
timer related properties (e.g. that a retransmission
timer is appropriately scheduled for every transmit-
ted packet).

To obviate the need for a separate hand-written ref-
erence model, we are currently exploring the possi-
bility of simultaneously executing two different TCP
implementations where one can check the behavior
of the other. However, there are additional chal-
lenges in ignoring acceptable differences in the two
implementations.

References

[1] Thomas Ball, Rupak Majumdar, Todd Mill-
stein, and Sriram K. Rajamani. Automatic
predicate abstraction of C programs. In Pro-
ceedings of the SIGPLAN ’01 Conference on
Programming Language Design and Implemen-
tation, 2001.

[2] Boris Beizer. Software Testing Techniques.
Electrical/Computer Science and Engineering
Series. Van Nostrand Reinhold, 1983.

[3] Edoardo Biagioni. A structured TCP in stan-
dard ML. In SIGCOMM, pages 36–45, 1994.

[4] T. Bolognesi and E. Brinksma. Introduction
to the iso specification language lotos. In
Computer Networks and ISDN Systems, pages
14:25–59, 1986.

[5] Frederic Boussinot and Robert de Simone. The
esterel language. Technical report, INRIA
Sophia-Antipolis, July 1991.

[6] R. Braden. Requirements for internet
hosts – communication layers. RFC 1122,
USC/Information Sciences Institute, October
1989.

[7] Lawrence S. Brakmo and Larry L. Peterson.
Experiences with network simulation. In Mea-
surement and Modeling of Computer Systems,
pages 80–90, 1996.

[8] G. Brat, K. Havelund, S. Park, and W. Visser.
Model checking programs. In IEEE Interna-
tional Conference on Automated Software En-
gineering (ASE), 2000.

[9] W.R. Bush, J.D. Pincus, and D.J. Sielaff. A
static analyzer for finding dynamic program-
ming errors. Software: Practice and Experi-
ence, 30(7):775–802, 2000.

[10] C.N. Ip and D.L. Dill. Better verification
through symmetry. In D. Agnew, L. Claesen,
and R. Camposano, editors, Computer Hard-
ware Description Languages and their Appli-
cations, pages 87–100, Ottawa, Canada, 1993.
Elsevier Science Publishers B.V., Amsterdam,
Netherland.

[11] Douglas Comer and John C. Lin. Probing TCP
implementations. In USENIX Summer, pages
245–255, 1994.

[12] C.Perkins, E. Royer, and S. Das. Ad Hoc
On Demand Distance Vector (AODV) Rout-
ing. IETF Draft, http://www.ietf.org/internet-
drafts/draft-ietf-manet-aodv-10.txt, January
2002.

[13] Manuvir Das, Sorin Lerner, and Mark Sei-
gle. Esp: Path-sensitive program verification
in polynomial time. In Conference on Pro-
gramming Language Design and Implementa-
tion, 2002.

[14] Scott Dawson, Farnam Jahanian, and Todd
Mitton. Experiments on six commercial TCP
implementations using a software fault injec-
tion tool. Software Practice and Experience,
27(12):1385–1410, 1997.

[15] R. DeLine and M. Fähndrich. Enforcing high-
level protocols in low-level software. In Proceed-
ings of the ACM SIGPLAN 2001 Conference
on Programming Language Design and Imple-
mentation, June 2001.

[16] C. Flanagan, K.R.M. Leino, M. Lillibridge,
G. Nelson, J.B. Saxe, and R. Stata. Extended
static checking for Java. In Proceedings of
the ACM SIGPLAN 2002 Conference on Pro-
gramming Language Design and Implementa-
tion, pages 234–245. ACM Press, 2002.

[17] Cormac Flanagan and Stephen N. Freund.
Type-based race detection for Java. In SIG-
PLAN Conference on Programming Language
Design and Implementation, pages 219–232,
2000.

[18] J.S. Foster, T. Terauchi, and Alex Aiken. Flow-
sensitive type qualifiers. In Proceedings of the



ACM SIGPLAN 2002 Conference on Program-
ming Language Design and Implementation,
June 2002.

[19] D. Frigioni, A. Marchetti-Spaccamela, and
U. Nanni. Incremental algorithms for single-
source shortest path trees. In Proceedings of
Foundations of Software Technology and Theo-
retical Computer Science, pages 112–224, 1994.

[20] P. Godefroid. Model Checking for Program-
ming Languages using VeriSoft. In Proceedings
of the 24th ACM Symposium on Principles of
Programming Languages, 1997.

[21] N.C. Hutchinson and L.L. Peterson. The x-
kernel: an architecture for implementing net-
work protocols. IEEE Trans. on Soft. Eng.,
17(1), January 1991.

[22] Radu Iosif. Exploiting Heap Symmetries in
Explicit-State Model Checking of Software. In
Proceedings of 16th IEEE Conference on Auto-
mated Software Engineering, 2001.

[23] P. Keleher, S. Dwarkadas, A. L. Cox, and
W. Zwaenepoel. Treadmarks: Distributed
shared memory on standard workstations and
operating systems. In Proc. of the Winter 1994
USENIX Conference, pages 115–131, 1994.

[24] Eddie Kohler, M. Frans Kaashoek, and
David R. Montgomery. A readable TCP in the
prolac protocol language. In SIGCOMM, pages
3–13, 1999.

[25] S. McCanne and S. Floyd. UCB/LBNL/VINT
network simulator - ns (version 2), April 1999.
http://www.isi.edu/nsnam/ns/.

[26] K.L. McMillan and J. Schwalbe. Formal verifi-
cation of the gigamax cache consistency proto-
col. In Proceedings of the International Sympo-
sium on Shared Memory Multiprocessing, pages
242–51. Tokyo, Japan Inf. Process. Soc., 1991.

[27] Allen Brady Montz, David Mosberger, Sean W.
O’Malley, Larry L. Peterson, Todd A. Proeb-
sting, and John H. Hartman. Scout:
A communications-oriented operating system
(abstract). In Operating Systems Design and
Implementation, page 200, 1994.

[28] Madanlal Musuvathi. CMC: A model
checker for network protocol implemen-
tations. Technical Report PhD The-
sis, Stanford University, January 2004.
http://verify.stanford.edu/madan/thesis/main.pdf.

[29] Madanlal Musuvathi and Dawson R. Engler.
Checking system rules using system-specific,
programmer-written compiler extensions. In
Proceedings of Operating Systems Design and
Implementation (OSDI), September 2000.

[30] Madanlal Musuvathi, David Park, Andy Chou,
Dawson R. Engler, and David L. Dill. CMC: A
Pragmatic Approach to Model Checking Real
Code. In Proceedings of the Fifth Symposium
on Operating Systems Design and Implementa-
tion, December 2002.

[31] Paolo Narvaez, Kai-Yeung Siu, and Hong-Yi
Tzeng. New dynamic SPT algorithm based on a
ball-and-string model. In INFOCOM (2), pages
973–981, 1999.

[32] G. Nelson. Techniques for program verifica-
tion. Available as Xerox PARC Research Re-
port CSL-81-10, June, 1981, Stanford Univer-
sity, 1981.

[33] Vern Paxson. Automated packet trace analysis
of TCP implementations. In SIGCOMM, pages
167–179, 1997.

[34] Vern Paxson and et.al. Known TCP Implemen-
tation Problems. RFC 2525, March 1999.

[35] J. Postel. Transmission control protocol.
RFC 793, USC/Information Sciences Institute,
September 1981.

[36] U. Stern and D. L. Dill. A New Scheme
for Memory-Efficient Probabilistic Verification.
In IFIP TC6/WG6.1 Joint International Con-
ference on Formal Description Techniques for
Distributed Systems and Communication Pro-
tocols, and Protocol Specification, Testing, and
Verification, 1996.

[37] U. Stern and D.L. Dill. Automatic verification
of the SCI cache coherence protocol. In Cor-
rect Hardware Design and Verification Meth-
ods: IFIP WG10.5 Advanced Research Work-
ing Conference Proceedings, 1995.

[38] The User-mode Linux Kernel. http://user-
mode-linux.sourceforge.net/.


