
OCL Constraints Automatic Generation for UML Class Diagram

Li Tan, Zongyuan Yang and Jinkui Xie
Department of Computer Science and Technology

East China Normal University
Shanghai, China

darkwhite29@gmail.com, {yzyuan, jkxie}@cs.ecnu.edu.cn

Abstract—As a standard modeling language of software
architecture design, UML lacks formal semantics on account of
its informal graphical notation. To further provide refined
description of UML, OCL is primarily and widely employed.
Generally, OCL constraints are written manually, which may
cause incorrectness and extra overhead. Therefore, generating
OCL constraints template for UML models is a superior solution.
The OCL constraints template automatically generated can be
used as a reference for software designers. First of all, the
significance of automatic generation of OCL constraints was
emphasized, and then the application domain of OCL was shown,
followed by a lexical analysis of how to extract the target objects
in UML models where OCL constraints were needed to build and
an algorithm of extraction. Eventually, this extraction algorithm
was implemented by Perl. In our way, the overall quality and
efficiency of software design is enhanced and thus contributions
are made for the automation of Software Engineering.

Keywords-UML class diagram; XMI; OCL; automatic
generation; lexical analysis

I. INTRODUCTION

From the point of view of the software life cycle in
Software Engineering, software architecture is the core of the
structure and behavior of software. Thus software architecture
design is bound to be the core of the software design, and the
basis for the subsequent code development as well. The
significance of software architecture design is self-evident. As
software architecture design itself is a kind of modeling activity,
one problem is raised: how to model precisely? That is, the
model should be built without ambiguity and lost information.
UML (Unified Modeling Language), the standard modeling
language of software architecture design, is a kind of graphic
notation which hardly has formal semantics, resulting lack of
preciseness. Therefore, some formal methods are employed to
describe UML mathematically and evaluate it an equivalent
formal semantics in formal languages. Among them, OCL
(Object Constraint Language) is one major method. As a
standard sub-language of UML [1], OCL can make up for what
UML cannot present and also provide UML a precise
description in semantics. Nevertheless, in general, OCL
constraints need to write manually, so the correctness and
overhead on personnel are necessary to be considered. Thereby
automatically generating OCL constraints template for UML
models is badly required. The output may be referred by
software designers. Eventually, the overall efficiency of
Software Engineering could be improved.

The rest of this paper is organized into four sections. Firstly,
OCL formalism and verification in previous work of others

will be simply reviewed in Section 2. In Section 3, brief
introduction to XMI for UML description and OCL will be
given. Then, our approach of lexical analysis based OCL
constraints automatic generation is elaborated in Section 4.
Finally, the conclusion and future work are put forwarded in
Section 5.

II. RELATED WORK

OCL has been widely studied since it was proposed. Some
of them are indeed good jobs and the core concepts of them are
accepted in a large scale. OCL formalism is one initial research
objective on OCL. Reference [2] points out the semantics of
OCL constraints is in general not precisely defined and firstly
presents a formal semantics for OCL which facilitates
verification, validation and simulation of models. Furthermore,
OCL is extended with temporal operators to formulate
temporal constraints [3]. On the other hand, some work is
fulfilled in verifying OCL via size analysis and model checking
[4][5]. Since identifying design errors before the
implementation stage is cost effective, an automatic
verification theory and relevant tool are set up to check the
correctness of OCL specifications [4]. Moreover, properties of
UML class diagram with its OCL constraints, such as class
liveliness and redundancy of integrity constraints are checked
by translating both the class diagram and the OCL constraints
into a logic representation, and then verifying whether these
properties hold [5].

Among the work above, there are few ideas on OCL
constraints automatic generation. Therefore, this paper is to
work at generating OCL constraints by algorithm we proposed
and thus some effective hints of building OCL constraints can
be provided for software designers.

III. BACKGROUD KNOWLEDGE

A. UML in an XMI Way
In order to generating OCL constraints for UML, analysis

of UML models is necessary. UML itself, as a graphic way,
can hardly facilitate the process of analysis, while, UML
expressed in a plain text way is easily to parse. Therefore, we
need to consider how to transform UML into a format easy to
analyze and extract information needed.

In this era of daily changing Internet and knowledge
explosion, XMI (XML Metadata Interchange) [6], which
attempts to describe system model in the syntax of XML
(eXtensible Markup Language) [7], was introduced to express

This work is supported by grants from Natural Science Fund of Shanghai
Municipality under Grant No. 09ZR1409500 and Key Project in Basic
Research of Science and Technology Commission of Shanghai Municipality
under Grant No. 09JC1405000.

392

978-1-4244-6053-3/10/$26.00 ©2010 IEEE

context Faculty
inv: facultyID >= 0 and facultyID <= 999999
inv: courseNum.oclIsTypeOf(int)
context Faculty::deleteID()
post: facultyID = null

and communicate the design of software efficiently on the
Internet. From the initial idea of the founder and introducer,
XMI is a framework for defining, interchanging, manipulating
and integrating XML data and objects, typically used as
interchange format for UML models. With the popularity of
XML proposed in 1996, XMI which was put forward in 1999
has been also accredited and set up as an international standard
[8]. Nowadays, it is getting popular to describe UML, the
graphic notation, via XMI, a kind of semi-structured text, and
communicate UML through the Web. Hence the drawbacks of
UML on data sharing and platform independence are overcome.

Fortunately, there are lots of UML modeling tools which
provides easy and automatic transformation from UML
diagrams into XMI. Thus, as a unified internal data expression,
XMI makes the system design become independent from
modeling tools. When XMI is employed, the function of data
model saving and loading could be given in a higher abstract
level, which is exactly the essence of MDA (Model Driven
Architecture) [9].

B. OCL
Based on First Order Logic and Set Theory in

Mathematical Logic, OCL is a formal specification language
which is used to provide extra precise description and
limitation for UML. It firstly appeared in the chapter 7 of the
UML specification version 1.3 issued in March, 2000.
Afterwards, OCL specification is separate from UML
specification and current version is 2.2 [10].

By means of adding OCL constraints to UML models to
precisely describe the elements of UML like classes, interfaces,
attributes and operations, it is very convenient to show some
information hard to express in graphic UML models such as
invariables and integrity and consistency constraints among
elements. Besides, the ambiguity in UML semantics can be
eliminated efficiently. In addition, as a formal specification
language, OCL has no side effects. That is, adding OCL
constraints into UML models will not change elements as well
as relationship among elements in the model. In a word,
building appropriate OCL constraints into UML models will
definitely do good to the optimization of software design.

The general format of OCL constraints is as follows:

• Start with a context identifier “context”, followed by
the name of element which OCL constrains.

• Under the line of “context”, invariables would be given,
if necessary.

• Under the line of “context”, pre-conditions and/or post-
conditions would be given, if necessary.

The elements constrained by OCL must satisfy all the
conditions of invariables, pre-conditions and/or post-conditions
when situation changes, such as operation executed and object
founded. Thus, the attributes and/or operations of elements are
well constrained by OCL constraints. According to the
definition above, a simple piece of OCL constraints statements
fragment are given as follows:

IV. LEXICAL ANALYSIS BASED OCL CONSTRAINTS
AUTOMATIC GENERATION

After showing evidence of significance and feasibility of
OCL constraints automatic generation, this section is to make it
real. The main idea of this section is using lexical analysis to
find the element of UML where OCL constraints need to build,
and then an OCL constraints target extraction algorithm is
given, so finally an OCL constraints template for UML models
can be generated automatically.

Our OCL constraints template is considered as a good
reference for software designers. On one hand, this template
could remind software designers of building OCL constraints
for some important elements, in case that they neglect. On the
other hand, this template could help software designers
improve the OCL constraints they have written by themselves
to achieve a more complete OCL constraints of higher quality.

A. The Application Domain of OCL Constraints
According to the introduction of OCL in Section 3, it is

necessary to consider the application domain of OCL constraint
in this paper. Generally speaking, the application targets of
OCL are classes, interfaces, attributes and operations. These
elements are widely used in UML class diagram. As is known
to all, UML class diagram is the core structure of whole system
and the foundation of other UML diagrams. It is reasonable
and necessary to provide UML class diagram some OCL
constraints where needed. For the simplicity, in this paper we
only consider generating OCL constraints template for UML
class diagram.

The elements of UML class diagram for which we generate
OCL constraints include: attributes and operations. As for
domain-related OCL constraints, that is, OCL constraints
which need to understand the semantics of UML class diagram
before building them, are not discussed here.

B. Extracting OCL Constraints Targets
In the process of generating OCL constraints automatically,

the key step is to find targets, that is, the elements for which
need to build OCL constraints. The essence of solution of this
problem is refined as how to locate the OCL constraints targets.
We use the lexical analysis technology of compiling. To sum
up, the OCL constraints targets are chosen by means of
lexically analyzing the XMI file which contains all information
of UML models when traversing the DOM (Document Object
Model) [11] of XMI file, and then some corresponding OCL
constraints are added for the chosen targets. Eventually, a
whole OCL constraints template for one UML class diagram is
generated after traversing.

1) Definition of OCL Constraints Targets

393

Based on the discussion above, several characteristics of
targets for which need to build OCL constraints are shown as
follows:

• The Identifier Attributes of a Class

In general, as identifiers, there are two basic attributes
defined in all the classes: “name” and “ID” (attributes name
may be different slightly but are based on the two words). Thus,
attributes “name” and “ID” (or in the similar name) can be
considered as targets for which need to build OCL constraints.

• The “New” and “Delete” Operations of the Identifier
Attributes of a Class

In UML class diagram, if there are “name” and “ID”, two
basic attributes defined as identifiers in one class. The “New”
and “Delete” operations are indispensable (“Modify” operation
could be implemented by “New” first and then “Delete”). Thus,
operations “New” and “Delete” (or in the similar name) of
attributes as identifiers can be considered as targets for which
need to build OCL constraints.

• The “Add” and “Remove” Operations of a Class as a
Set/Container

As for a class itself as a set or container, like a “transcript”
class, its object, that is, a piece of transcript, can own lots of
entries. Each of the entries is a score of one subject tested. It is
evident that the “Add” and “Remove” operations of entries are
indispensable as well (“Edit” operation could be implemented
by “Add” first and then “Remove”). Thus, operations “Add”
and “Remove” (or in the similar name) of a class as a set or
container can be considered as targets for which need to build
OCL constraints.

2) Algorithm of Extracting OCL Constraints Targets

Based on the previous definition of OCL constraints targets,
an algorithm of key steps for extracting these OCL constraints
targets is summarized below.

Algorithm 1: Extracting OCL Constraints Targets
Procedure abstract(Oi)
1: for (each attribute in CDj) do
2: if (attribute.id match patterna1) then
3: addOCL(idOCL);
4: end if
5: if (attribute.name match patterna2) then
6: addOCL(nameOCL);
7: end if
8: end for
9: for (each operation in CDj) do

10: if (operation.name match patterno1) then
11: addOCL(newOprOCL);
12: end if
13: if (operation.name match pattern o2) then
14: addOCL(deleteOprOCL);
15: end if
16: if (operation.name match pattern o3) then
17: addOCL(addEntryOprOCL);
18: end if

19: if (operation.name match pattern o4) then
20: addOCL(removeEntryOprOCL);
21: end if
22: end for

This algorithm is implemented by Perl, a script language
with powerful and efficient capability of text parsing and
operating [12]. Due to page limitation, code will not be listed
here.

C. Case Study
A specific case in an academic system is given below to

demonstrate the effect of the algorithm of extracting OCL
constraints targets. First, a UML class diagram is designed as
follows:

Figure 1. UML class diagram of an academic system.

With regard to this UML class diagram, we generate an
OCL constraints template automatically based on the algorithm
of extracting OCL constraints targets proposed above. A piece
of OCL constraints statements sample generated is shown
below.

In it, 3 OCL constraints are generated for the class
“student”. Firstly, the attribute “studentID” is restricted as an

student

studentID: int

newID(n:int): void
register(): void
drop(): void

transcript

transcriptID: int
course: course
grade: int

newID(n: int): void
deleteID(): void
addEntry(): void
removeEntry(): void
query(): void

1..*
scores

1..*

context student
inv: studentID >= 0 and studentID <=
99999999
context student::newID(n:int)
pre: n >= 0 and n <= 99999999
post: studentID = n
context student::deleteID()
post: studentID = null
context transcript
inv: transcriptID >= 0 and transcriptID <=
99999999
context transcript::newID(n:int)
pre: n >= 0 and n <= 99999999
post: transcriptID = n
context transcript::deleteID()
post: transcriptID = null
context transcript::addEntry(e:string)
pre: scores->excludes(e)
post: scores = scores@pre->including(e)
context transcript::removeEntry(e:string)
pre: scores->includes(e)
post: scores = scores@pre->excluding(e)

394

integer between 0 and 99999999 by defining an invariable
regarding “studentID”; Secondly, the pre-conditions and post-
conditions of operation “newID” are generated to define a
range/effect of “newID”; Similarly, the post-conditions of
operation “deleteID” are given as well.

Besides, 5 OCL constraints are generated for the class
“transcript”. Firstly, the attribute “transcriptID” is restricted as
an integer between 0 and 99999999 by defining an invariable
regarding “transcriptID”; Secondly, the pre-conditions and
post-conditions of operation “newID” are generated to define a
range/effect of “newID”; Similarly, the post-conditions of
operation “deleteID” are given as well; Finally, since
“transcript” is set/container class, the pre-conditions and post-
conditions of operation “addEntry” and “removeEntry” are also
taken into consideration, respectively.

V. CONCLUSION AND FUTURE WORK

OCL is a primary formal specification language for UML
precise description and restriction. With the help of OCL, some
information unable to express in UML are shown successfully,
such as invariables and constraints among UML elements.
OCL is already considered as the standard sub-language of
UML for some auxiliary work in UML which is indispensable
for completeness and preciseness of modeling. Nevertheless,
OCL is generally written manually, resulting errors and extra
overhead. Therefore, automatically generating OCL constraints
for UML models as a template for software designers’
information should be a superior solution. Nowadays, this kind
of work has not done very much. Theoretically, OCL
constraints automatic generation is an excellent way to enhance
the overall efficiency of software design. Thus, the process of
Software Engineering is optimized as well.

This paper proposes a novel algorithm of OCL constraints
automatic generation typically for UML class diagram. We
define the features of several kinds of OCL constraints targets
to provide the pathway of how to locate them, and then use
lexical analysis technology to extract OCL constraints targets
from XMI file which contains all information in a UML class
diagram. In this way, corresponding OCL constraints are added
for these targets extracted. Finally, a case of academic system
proves the feasibility of our method in practice.

There is still much work for further research of OCL
constraints automatic generation. First, the application domain
should be extended. More OCL constraints targets in UML
class diagram and other UML diagrams need to consider, like
guard in UML state diagram. Secondly, the algorithm of
extracting OCL constraints targets should be optimized on the
aspect of efficiency, or the framework of algorithm can just be
changed for a more efficient way. As for tool implementation,
a prototype system for this paper has been built in a Web-based
and user-friendly way.

REFERENCES

[1] Object Management Group (OMG), UML Specification, Version 1.3,
2000.

[2] M. Richters and M. Gogolla, “On Formalizing the UML Object
Constraint Language OCL,” the 17th International Conference on
Conceptual Modeling (ER’98), Springer LNCS, vol. 1507, pp. 449–464,
1998.

[3] P. Ziemann and M. Gogolla, “OCL Extended with Temporal Logic,”
Springer LNCS, vol. 2890, pp. 351–357, 2003.

[4] F. Yu, T. Bultan, and E. Peterson, “Automated Size Analysis for OCL,”
the 6th joint meeting of the European Software Engineering Conference
and the ACM SIGSOFT Symposium on the Foundations of Software
Engineering (ESEC/FSE'07), Dubrovnik, Croatia, pp. 331–340, 2007.

[5] A. Queralt and E. Teniente, “Reasoning on UML Class Diagrams with
OCL Constraints,” the 25th International Conference on Conceptual
Modeling (ER’06), Springer LNCS, vol. 4205, pp. 497–512, 2006.

[6] Object Management Group (OMG), MOF 2.0/XML Metadata
Interchange Mapping Specification, Version 2.1.1, 2007.

[7] World Wide Web Consortium (W3C), Extensible Markup Language
(XML) 1.0 (Fifth Edition), 2008.

[8] International Organization for Standardization (ISO), XML Metadata
Interchange Specification, Version 2.0.1, 2005.

[9] J. D. Poole, “Model-Driven Architecture: Vision, Standards And
Emerging Technologies,” Position Paper, European Conference on
Object-Oriented Programming Workshop on Metamodeling and
Adaptive Object Models, 2001.

[10] Object Management Group (OMG), Object Constraint Language
Specification, Version 2.2, 2010.

[11] L. H. Philippe, “The W3C Document Object Model (DOM),” World
Wide Web Consortium (W3C), http://www.w3.org/2002/07/26-dom-
article, 2002.

[12] P. M. Nugues, An Introduction to Language Processing with Perl and
Prolog, Springer-Verlag, 2006.

395

