A Relaxed Consistency based DSM for Asynchronous Parallelism

Keval Vora, Sai Charan Koduru, Rajiv Gupta

SoCal PLS - Spring 2014

Motivation

- Graphs are popular
 - > Graph Mining: Community Detection, Coloring
 - Graph Analytics: PageRank, Shortest Paths
- > Real-world graphs are large
 - > Orkut: 234M edges, 3M vertices
 - LiveJournal: 68M edges, 4.8M vertices
- Processing on distributed memory machines
 - > Performance
 - > Programmability

Graph Algorithms

- Vertex Centric
 - > Computation written for a single vertex
 - > Highly parallel execution
- > Iterative
 - Terminate when values converge
- Network Bound
 - Computation is simple

Our Work

- > Improve asynchronous execution
 - > Make them faster
- > Relax consistency to tolerate latencies
 - > Tardis: remote fetch is ~2.3 times of local fetch
 - > Allow use of stale values

Our Work

- > Improve asynchronous execution
 - > Make them faster
- > Relax consistency to tolerate latencies
 - > Tardis: remote fetch is ~2.3 times of local fetch
 - > Allow use of stale values

Challenge: Tolerate latencies without delaying convergence

- > Delta Consistency [SPAA'97] [PPoPP'03]
 - > Controls staleness using static threshold

- > Delta Consistency [SPAA'97] [PPoPP'03]
 - > Controls staleness using static threshold

- > Delta Consistency [SPAA'97] [PPoPP'03]
 - > Controls staleness using static threshold

- > Delta Consistency [SPAA'97] [PPoPP'03]
 - > Controls staleness using static threshold

Delayed updates affect convergence

- > Delta Consistency [SPAA'97] [PPoPP'03]
 - > Controls staleness using static threshold

Delayed updates affect convergence

- > Tracks staleness to exploit it
 - > Cached objects have a staleness value
- > Best efforts to minimize stale objects
 - > Refresh cached objects based on access pattern

- > Provides programming support
 - > Local writes must be immediately visible
 - Once an object is read by a thread, no earlier writes to it can be read by the same thread

- > Current-hit
 - object in cache; staleness = 0
- Stale-hit
 - object in cache; 0 < staleness <= t</p>
- Stale-miss
 - object in cache; staleness > t
- Cache-miss
 - > object not in cache

Implementation

- Similar to dyDSM [Koduru et al. 2013]
 - > Object based
 - Protocol relaxes strict consistency
 - Graphs are partitioned using METIS [SISC 99]
- > Runtime
 - Single Writer Model
 - > Refresher threads block on refresh-queues
 - > Compute threads populate refresh-queues

Pokec: 30M edges 1.6M vertices AtmosModl: 10M edges 1.4M vertices RCP 48.7% faster

than SCP and 56% faster than best Stale-n

97.4% of values have staleness 0; 2.2% of values have staleness 1

GraphLab

		SSSP	PR	GC	CC
Orkut	RCP	161.88	822.95	92.79	90.31
	GL	239.4	829.3	248.66	102.02
Live-	RCP	21.73	343.96	17.44	22.09
Journal	GL	15.7	295.1	Х	66.99
Pokec	RCP	9.47	169.47	8.81	7.1
	GL	8.7	159.9	173.47	40.52
Higgs-	RCP	2.50	15.64	3.60	4.10
Twitter	GL	5.5	Х	263.45	16.21

- > RCP performs better for non power-law graphs
- > RCP is orthogonal to GraphLab

Conclusion

- > Relaxing consistency is useful
 - > With controlled use of staleness
- > Prior DSMs:
 - > Efficient (delta coherence & strict consistency)
- Scraph Processing Frameworks
 - Easier to code (Pregel, GraphLab & PowerGraph)

