
A Relaxed Consistency based DSM
for Asynchronous Parallelism

Keval Vora, Sai Charan Koduru, Rajiv Gupta

SoCal PLS - Spring 2014



Motivation

Graphs are popular

Graph Mining: Community Detection, Coloring

Graph Analytics: PageRank, Shortest Paths

Real-world graphs are large

Orkut: 234M edges, 3M vertices

LiveJournal: 68M edges, 4.8M vertices

Processing on distributed memory machines

Performance

Programmability



Graph Algorithms

Vertex Centric

Computation written for a single vertex

Highly parallel execution

Iterative

Terminate when values
converge

Network Bound

Computation is simple 

Fetch(c)
Fetch(a)
Fetch(b)
c’ = f(c, a, b)
Store(c, c’)



Our Work

Improve asynchronous execution

Make them faster

Relax consistency to tolerate latencies

Tardis: remote fetch is ~2.3 times of local fetch

Allow use of stale values



Our Work

Improve asynchronous execution

Make them faster

Relax consistency to tolerate latencies

Tardis: remote fetch is ~2.3 times of local fetch

Allow use of stale values 

Challenge: Tolerate latencies without 
delaying convergence



Delta Consistency [SPAA’97] [PPoPP’03]

Controls staleness using static threshold

Weak Memory Models

It
er

at
io

n
s

Remote Fetches

High 
Threshold

Low 
Threshold



Delta Consistency [SPAA’97] [PPoPP’03]

Controls staleness using static threshold

Weak Memory Models

It
er

at
io

n
s

Remote Fetches

Low 
Threshold

High 
Threshold



Delta Consistency [SPAA’97] [PPoPP’03]

Controls staleness using static threshold

Weak Memory Models

It
er

at
io

n
s

Remote Fetches

High 
Threshold

Low 
Threshold



Delta Consistency [SPAA’97] [PPoPP’03]

Controls staleness using static threshold

Delayed updates affect convergence

Weak Memory Models

It
er

at
io

n
s

Remote Fetches

High 
Threshold

Low 
Threshold



Delta Consistency [SPAA’97] [PPoPP’03]

Controls staleness using static threshold

Delayed updates affect convergence

Weak Memory Models

It
er

at
io

n
s

Remote Fetches

High 
Threshold

Low 
Threshold?



Relaxed Consistency Protocol

Tracks staleness to exploit it

Cached objects have a staleness value

Best efforts to minimize stale objects

Refresh cached objects based on access pattern

Provides programming support

Local writes must be immediately visible

Once an object is read by a thread, no earlier writes 
to it can be read by the same thread



Current-hit

object in cache; staleness = 0

Stale-hit

object in cache; 0 < staleness <= t

Stale-miss

object in cache; staleness > t

Cache-miss

object not in cache

Relaxed Consistency Protocol



Relaxed Consistency Protocol

Shared

Stale

Cache-Miss / Write
[Local Node]
Staleness = 0

Evict
[Local Node]

Hit / Write
[Local Node]

Invalidate
[Directory]
++Staleness

Stale-Hit
[Local Node]

Invalidate
[Directory]
++Staleness

Evict
[Local Node]

Stale-Miss
[Local Node]
Staleness = 0

Uncached

Shared

Write
do = do U {mi} 

Evict
do = do \ {mi} 

Read
do = do U {mi} 

Refresh
[Local Node]
Staleness = 0



Invalidate
[Directory]
++Staleness

Relaxed Consistency Protocol

Shared

Stale

Cache-Miss / Write
[Local Node]
Staleness = 0

Evict
[Local Node]

Hit / Write
[Local Node]

Stale-Hit
[Local Node]

Invalidate
[Directory]
++Staleness

Evict
[Local Node]

Uncached

Shared

Write
do = do U {mi} 

Evict
do = do \ {mi} 

Read
do = do U {mi} 

Stale-Miss
[Local Node]
Staleness = 0

Refresh
[Local Node]
Staleness = 0



Relaxed Consistency Protocol

Shared

Stale

Cache-Miss / Write
[Local Node]
Staleness = 0

Evict
[Local Node]

Hit / Write
[Local Node]

Stale-Hit
[Local Node]

Invalidate
[Directory]
++Staleness

Evict
[Local Node]

Uncached

Shared

Write
do = do U {mi} 

Evict
do = do \ {mi} 

Read
do = do U {mi} 

Invalidate
[Directory]
++Staleness

Stale-Miss
[Local Node]
Staleness = 0

Refresh
[Local Node]
Staleness = 0



Relaxed Consistency Protocol

Shared

Stale

Cache-Miss / Write
[Local Node]
Staleness = 0

Evict
[Local Node]

Hit / Write
[Local Node]

Stale-Hit
[Local Node]

Invalidate
[Directory]
++Staleness

Evict
[Local Node]

Uncached

Shared

Write
do = do U {mi} 

Evict
do = do \ {mi} 

Read
do = do U {mi} 

Invalidate
[Directory]
++Staleness

Stale-Miss
[Local Node]
Staleness = 0

Refresh
[Local Node]
Staleness = 0



Relaxed Consistency Protocol

Shared

Stale

Cache-Miss / Write
[Local Node]
Staleness = 0

Evict
[Local Node]

Hit / Write
[Local Node]

Stale-Hit
[Local Node]

Invalidate
[Directory]
++Staleness

Evict
[Local Node]

Uncached

Shared

Write
do = do U {mi} 

Evict
do = do \ {mi} 

Read
do = do U {mi} 

Invalidate
[Directory]
++Staleness

Stale-Miss
[Local Node]
Staleness = 0

Refresh
[Local Node]
Staleness = 0



Relaxed Consistency Protocol

Shared

Stale

Cache-Miss / Write
[Local Node]
Staleness = 0

Evict
[Local Node]

Hit / Write
[Local Node]

Stale-Hit
[Local Node]

Invalidate
[Directory]
++Staleness

Evict
[Local Node]

Uncached

Shared

Write
do = do U {mi} 

Evict
do = do \ {mi} 

Read
do = do U {mi} 

Invalidate
[Directory]
++Staleness

Stale-Miss
[Local Node]
Staleness = 0

Refresh
[Local Node]
Staleness = 0



Relaxed Consistency Protocol

Shared

Stale

Cache-Miss / Write
[Local Node]
Staleness = 0

Evict
[Local Node]

Hit / Write
[Local Node]

Stale-Hit
[Local Node]

Invalidate
[Directory]
++Staleness

Evict
[Local Node]

Uncached

Shared

Write
do = do U {mi} 

Evict
do = do \ {mi} 

Read
do = do U {mi} 

Invalidate
[Directory]
++Staleness

Stale-Miss
[Local Node]
Staleness = 0

Refresh
[Local Node]
Staleness = 0



Relaxed Consistency Protocol

Shared

Stale

Cache-Miss / Write
[Local Node]
Staleness = 0

Evict
[Local Node]

Hit / Write
[Local Node]

Stale-Hit
[Local Node]

Invalidate
[Directory]
++Staleness

Evict
[Local Node]

Uncached

Shared

Write
do = do U {mi} 

Evict
do = do \ {mi} 

Read
do = do U {mi} 

Invalidate
[Directory]
++Staleness

Stale-Miss
[Local Node]
Staleness = 0

Refresh
[Local Node]
Staleness = 0



Relaxed Consistency Protocol

Shared

Stale

Cache-Miss / Write
[Local Node]
Staleness = 0

Evict
[Local Node]

Hit / Write
[Local Node]

Stale-Hit
[Local Node]

Invalidate
[Directory]
++Staleness

Evict
[Local Node]

Uncached

Shared

Write
do = do U {mi} 

Evict
do = do \ {mi} 

Read
do = do U {mi} 

Invalidate
[Directory]
++Staleness

Stale-Miss
[Local Node]
Staleness = 0

Refresh
[Local Node]
Staleness = 0



Relaxed Consistency Protocol

Shared

Stale

Cache-Miss / Write
[Local Node]
Staleness = 0

Evict
[Local Node]

Hit / Write
[Local Node]

Stale-Hit
[Local Node]

Invalidate
[Directory]
++Staleness

Evict
[Local Node]

Uncached

Shared

Write
do = do U {mi} 

Evict
do = do \ {mi} 

Read
do = do U {mi} 

Invalidate
[Directory]
++Staleness

Stale-Miss
[Local Node]
Staleness = 0

Refresh
[Local Node]
Staleness = 0



Relaxed Consistency Protocol

Shared

Stale

Cache-Miss / Write
[Local Node]
Staleness = 0

Evict
[Local Node]

Hit / Write
[Local Node]

Stale-Hit
[Local Node]

Invalidate
[Directory]
++Staleness

Evict
[Local Node]

Uncached

Shared

Write
do = do U {mi} 

Evict
do = do \ {mi} 

Read
do = do U {mi} 

Invalidate
[Directory]
++Staleness

Stale-Miss
[Local Node]
Staleness = 0

Refresh
[Local Node]
Staleness = 0



Relaxed Consistency Protocol

Shared

Stale

Cache-Miss / Write
[Local Node]
Staleness = 0

Evict
[Local Node]

Hit / Write
[Local Node]

Stale-Hit
[Local Node]

Invalidate
[Directory]
++Staleness

Evict
[Local Node]

Uncached

Shared

Write
do = do U {mi} 

Evict
do = do \ {mi} 

Read
do = do U {mi} 

Invalidate
[Directory]
++Staleness

Stale-Miss
[Local Node]
Staleness = 0

Refresh
[Local Node]
Staleness = 0



Implementation

Similar to dyDSM [Koduru et al. 2013]

Object based

Protocol relaxes strict consistency

Graphs are partitioned using METIS [SISC 99]

Runtime

Single Writer Model

Refresher threads block on refresh-queues

Compute threads populate refresh-queues



Performance

Pokec:
30M edges
1.6M vertices

AtmosModl:
10M edges
1.4M vertices

RCP 48.7% faster 

than SCP and

56% faster than

best Stale-n



Performance

RCP blocks for

41% of remote

fetches

Best Stale-n blocks

for 85% of remote

fetches



Performance

RCP requires

49% more

iterations

Stale-2/Stale-3

require 146/176%

more iterations



Performance

97.4% of values have staleness 0; 2.2% of values have staleness 1



RCP performs better for non power-law graphs

RCP is orthogonal to GraphLab

GraphLab



Conclusion

Relaxing consistency is useful 

With controlled use of staleness

Prior DSMs:

Efficient (delta coherence & strict consistency)

Graph Processing Frameworks

Easier to code (Pregel, GraphLab & PowerGraph)




