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Graph Processing

» Iterative graph algorithms
Vertices are processed over continuously
Highly parallel execution
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Graph Processing

» Iterative graph algorithms
Vertices are processed over continuously
Highly parallel execution

> Challenging due to ever-growing graph sizes
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Graph Processing

» Iterative graph algorithms

Vertices are processed over continuously

Highly parallel execution

> Challenging due to ever-growing graph sizes

» Convergence speed is dependent on initializations
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R How to find better initializations?
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Key Idea
> Compute initial values using a smaller signature of
the original graph

Generate smaller graph using light-weight input
reduction techniques
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Key Idea

> Compute initial values using a smaller signature of
the original graph

Generate smaller graph using light-weight input
reduction techniques
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Key Idea
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Outline

> Input Reduction

> Vertex Transformations
> Correctness of Results
> Evaluation

> Conclusion
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Input Reduction

> Must be light-weight & general

Multilevel graph partitioning [SC’95, SC'01]
Matching based contraction [ICPP’95, JPDC’'98]
Pruning based on edge costs affecting paths [ICDM’10]

Gate graph for shortest paths problem [ICDM’11]

> Develop vertex level transformations

Easily parallelizable using the vertex centric graph
processing systems
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Vertex Transformations

» Maintain structural integrity of the graph
Preserve the overall connectivity

> Light-weight
Local

Non-interfering
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Vertex Transformations
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Vertex Transformations
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if ( inDegree(v) = 0 ) then
> apply 71 : drop v — x
E' « &'\ outEdges(v)

if ( outDegree(v) = 0 ) then
> apply T2 : drop * — v
g+ &'\ inEdges(v)




Vertex Transformations

0t
ot

if ( inDegree(v) = outDegree(v) = 1 ) then
> apply 73 : bypass v
E'+— (E'\{u—v,v—>w})U{u— w}
where {u — v,v — w} C &’
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Vertex Transformations

if ( w € outNeighbors(v) s.t. w is unchanged and
outNeighbors(v) N inNeighbors(w) # ¢ ) then

> apply 75 : drop v — w

E'+— &\ {(v—w)}
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Vertex Transformations
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Other Details

» More vertex transformations
Some relax structural integrity

> Order of transformations
Unified graph reduction algorithm
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Processing workflow
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Processing workflow
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Original Graph
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Input Reduction
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Input Reduction
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Input Reduction
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Input Reduction

IIIIIIIIIIIIIIIIIIIIIIIIIIIIIIII

11




Input Reduction

K

UNIVERSITY OF CALIFORNIA, RIVERSIDE

11



Input Reduction
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Workflow
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Workflow
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Processing Reduced Graph

> Use the original iterative algorithm
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Workflow
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Workflow
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Mapping Results

> Use default values for missing vertices
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Processing Original Graph
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Workflow
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Workflow
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Correctness: SSSP Example
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Correctness: SSSP Example
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Correctness
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: SSSP Example

18



Correctness: SSSP Example
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Correctness: SSSP Example

S

K

UNIVERSITY OF CALIFORNIA, RIVERSIDE

18



Correctness

> Transformation properties

Level of vertices, edges and components

Allow developing & reasoning for new transformations
> Algorithm behavior can be reasoned

Phase 2 initializations
Properties of aggregation function

> Correctness argued for algorithms used

5 accurate and 1 approximate
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Evaluation

> Techniques independent of frameworks &
processing environment
Incorporated in Galois [PLDI'11]
Single machine: 24-core, 32GB RAM

> 6 benchmarks
PR, SSSP, SSWP, CC, GC, CD

> 4 input graphs
Friendster (|E| = 2.6B), Twitter (|E| = 1.5B),
UKDomain (|E| = 936M), RMAT-24 (|E| = 268M)
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Reduction

> ERP = ErEpycep % 100
| FORIGINAL|

Execution Time —»

R Reduction —»
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Reduction

> ERP = Erepucep % 100
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Reduction
> ERrp — [ErepucEp| 0
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Reduction
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B Phase 2 Friendster

Execution Time

> Speedups over B Reduction (|E| = 2.6B)
1

parallel versions
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> Speedups
increase as ERP
decreases up to
an extent

> 1.3x-1.7x for
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Input Reduction

» Transformations are local, i.e., parallelizable
> Higher reduction requires more work

Friendster (|E| = 2.6B) Friendster (|E| = 2.6B)
2
20 | 2
=
1.5
= 15 + S
5 g .
2 10 ~
” 2
5r¢ 'Téo.s
o
1 Z
1 4 N % f%}% d 16 20 75% 70% 60% 50% 40% 30%
umber of Threads

R

UNIVERSITY OF CALIFORNIA, RIVERSIDE



Memory Overhead

» Tracking dissimilar elements
> Newly added vertices & edges

Friendster (|E| = 2.6B)
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Accuracy

Community Detection

Reduced Original
Graph Graph
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More Results

» Contribution of individual transformations
Some transformations more useful than others
Different graphs benefit from different transformations

> Improvement in scalability

> Results for all inputs
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Conclusion

> Input reduction using transformations that are
Light-weight
Parallelizable
General

> Correctness reasoned using fine-grained
transformation properties

> Achieve 1.25-2.14x speedups
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Thanks

> GRASP
http://grasp.cs.ucr.edu/
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