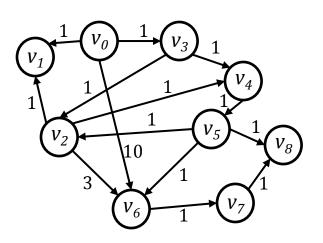
Efficient Processing of Large Graphs via Input Reduction

Amlan Kusum, **Keval Vora**, Rajiv Gupta, Iulian Neamtiu

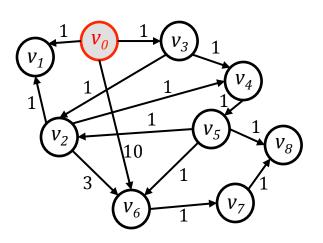
> HPDC'16 – Kyoto, Japan 04 June, 2016

- Iterative graph algorithms
 - Vertices are processed over continuously
 - Highly parallel execution



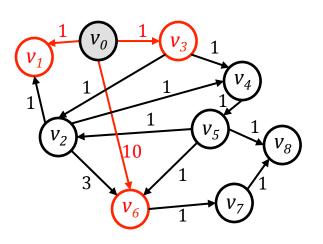
	ı								
t	v_o	<i>v</i> ₁	v_2	v_3	v_4	v_5	v_6	v_7	v_8
t_0	0	∞	∞	∞	∞	∞	∞	∞	∞
t_1	0	1	∞	1	∞	∞	10	∞	∞
t_2	0	1	2	1	2	∞	10	11	∞
t_3	0	1	2	1	2	3	5	11	12
t_4	0	1	2	1	2	3	4	6	4
t_5	0	1	2	1	2	3	4	5	4
t_6	0	1	2	1	2	3	4	5	4

- Iterative graph algorithms
 - Vertices are processed over continuously
 - Highly parallel execution



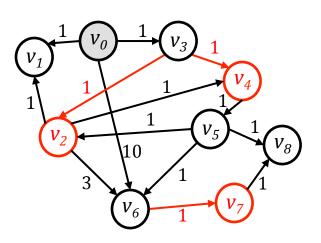
t.	$ v_0 $	V.	V _o	V _o	ν.	v.	V.	v-	V _o
t_0	0	∞	∞	∞	∞	∞	∞	∞	∞
t_1	0	1	∞	1	∞	∞	10	∞	∞
<i>t</i> _	0	1	2	1/	2	00	10	11	00
t_3	0	1	2	1	2	3	5	11	12
t_4	U	1	Z	1	Z	3	4	6	4
t_5	0	1	2	1	2	3	4	5	4
t_6	0	1	2	1	2	3	4	5	4

- Iterative graph algorithms
 - Vertices are processed over continuously
 - Highly parallel execution



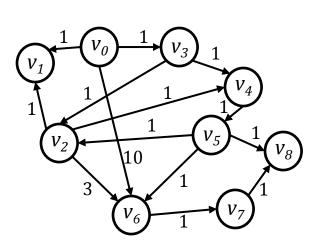
_									
t	v_{o}	<i>v</i> ₁	v_2	v_3	v_4	<i>v</i> ₅	<i>v</i> ₆	v_7	<i>v</i> ₈
t_0	0	∞	∞	∞	∞	∞	∞	∞	∞
t_1	0	1	∞	1	∞	∞	10	∞	∞
t_2	0	1	2	1	2	∞	10	11	∞
t_3	0	1	2	1	2	3	5	11	12
t_4	0	1	2	1	2	3	4	6	4
t_5	0	1	2	1	2	3	4	5	4
t_6	0	1	2	1	2	3	4	5	4

- Iterative graph algorithms
 - Vertices are processed over continuously
 - Highly parallel execution



	I								
	v_{o}								
t_0	0	∞							
	0								
t_2	0	1	2	1	2	∞	10	11	∞
	0								
	0								
t_5	0 0	1	2	1	2	3	4	5	4
t_6	0	1	2	1	2	3	4	5	4
t_6	0	1	2	1	2	3	4	5	4

- Iterative graph algorithms
 - Vertices are processed over continuously
 - Highly parallel execution
- > Challenging due to ever-growing graph sizes



	ı								
t	v_{o}	<i>v</i> ₁	v_2	v_3	v_4	v_5	<i>v</i> ₆	v_7	v_8
t_0	0	∞	∞	∞	∞	∞	∞	∞	∞
t_1	0	1	∞	1	∞	∞	10	∞	∞
t_2	0	1	2	1	2	∞	10	11	∞
•	0	1	2	1	2	3	5	11	12
	0					3	4	6	4
t_5	0	1	2	1	2			5	
t_6	0	1	2	1	2	3	4	5	4

- Iterative graph algorithms
 - Vertices are processed over continuously
 - Highly parallel execution
- Challenging due to ever-growing graph sizes
- Convergence speed is dependent on initializations



t	v_0	v_1	v_2	v_3	v_4	v_5	v_6	v_7	v_8
t_0	0	∞	∞	∞	∞	3 3 3 3	∞	∞	∞
t_1	0	1	∞	1	∞	3	4	∞	4
t_2	0	1	2	1	2	3	4	6	4
t_3	0	1	2	1	2	3	4	6	4

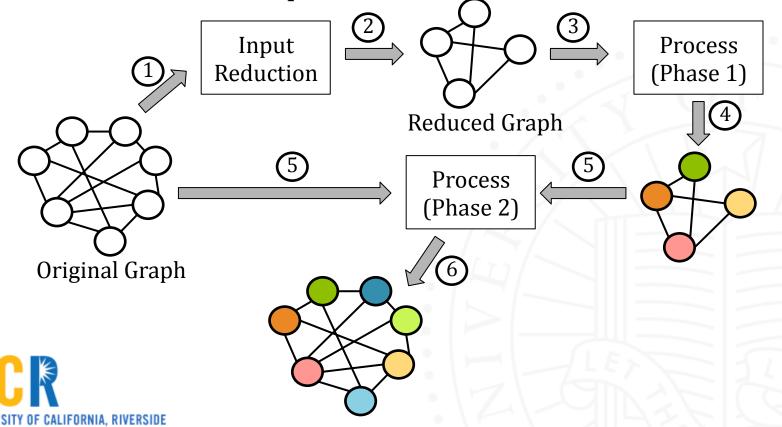
How to find better initializations?

Key Idea

- Compute initial values using a smaller signature of the original graph
 - Generate smaller graph using light-weight input reduction techniques

Key Idea

- Compute initial values using a smaller signature of the original graph
 - Generate smaller graph using light-weight input reduction techniques

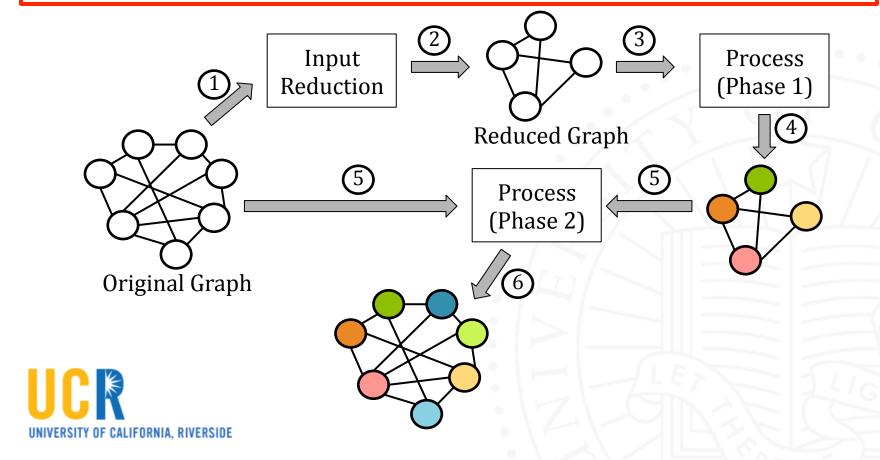


Key Idea

time(Input Reduction)

- + time(Phase 1)
- + time(Phase 2)

< time(Original)



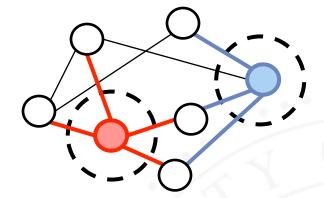
Outline

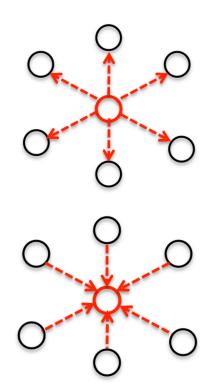
- Input Reduction
- Vertex Transformations
- Correctness of Results
- > Evaluation
- Conclusion

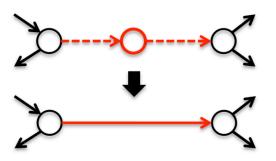
- Must be light-weight & general
 - Multilevel graph partitioning [SC'95, SC'01]
 - Matching based contraction [ICPP'95, JPDC'98]
 - Pruning based on edge costs affecting paths [ICDM'10]
 - Gate graph for shortest paths problem [ICDM'11]

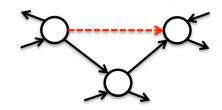
- Develop vertex level transformations
 - Easily parallelizable using the vertex centric graph processing systems

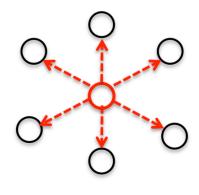
- Maintain structural integrity of the graph
 - Preserve the overall connectivity
- > Light-weight
 - Local
 - Non-interfering

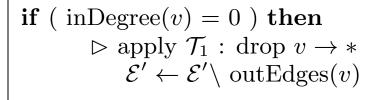






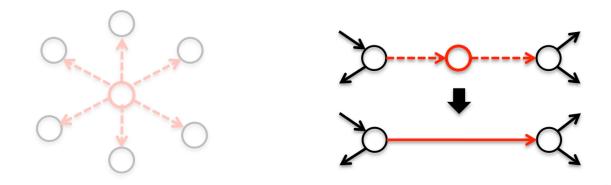








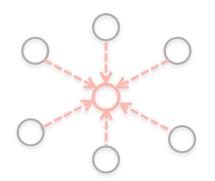
if (outDegree(
$$v$$
) = 0) then
 \Rightarrow apply \mathcal{T}_2 : drop $* \rightarrow v$
 $\mathcal{E}' \leftarrow \mathcal{E}' \setminus \text{inEdges}(v)$

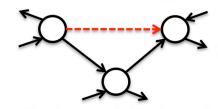


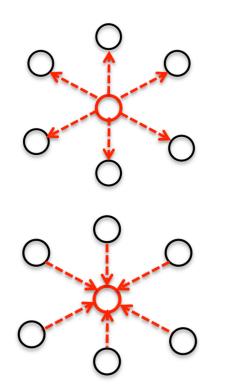
if (inDegree(v) = outDegree(v) = 1) then

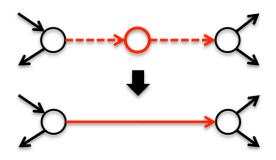
$$\Rightarrow$$
 apply \mathcal{T}_3 : bypass v
 $\mathcal{E}' \leftarrow (\mathcal{E}' \setminus \{u \rightarrow v, v \rightarrow w\}) \cup \{u \rightarrow w\}$
where $\{u \rightarrow v, v \rightarrow w\} \subseteq \mathcal{E}'$

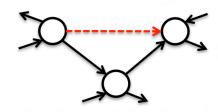
if $(w \in \text{outNeighbors}(v) \text{ s.t. } w \text{ is unchanged and } \text{outNeighbors}(v) \cap \text{inNeighbors}(w) \neq \phi)$ then $\triangleright \text{apply } \mathcal{T}_5 : \text{drop } v \rightarrow w$ $\mathcal{E}' \leftarrow \mathcal{E}' \setminus \{(v \rightarrow w)\}$







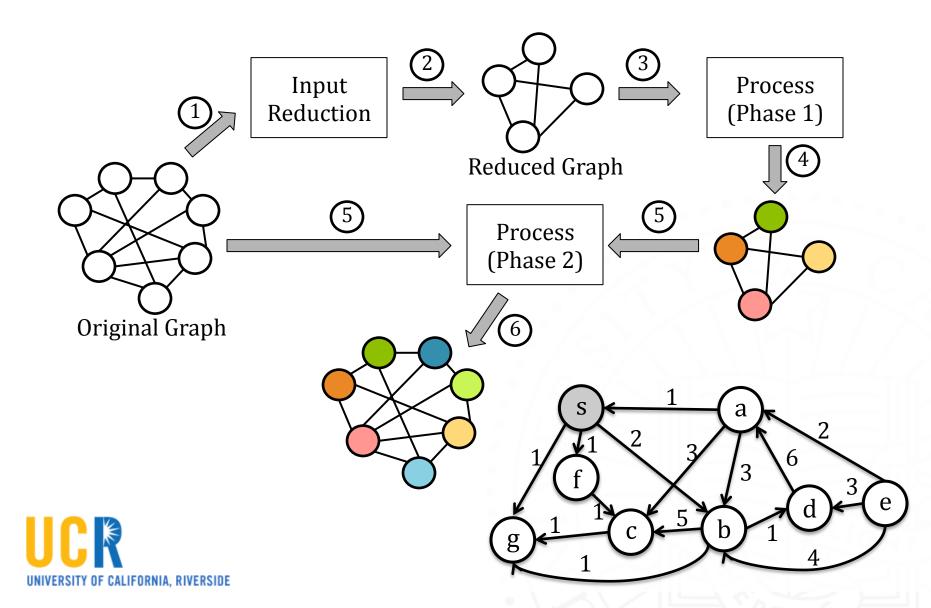




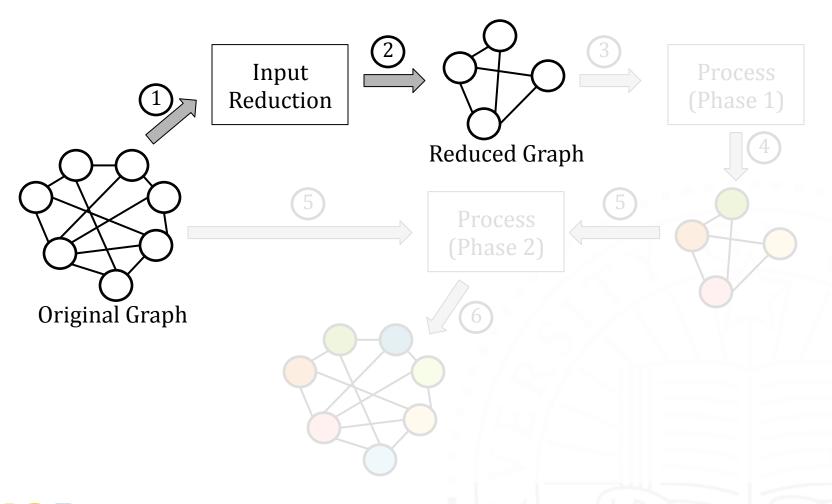
Other Details

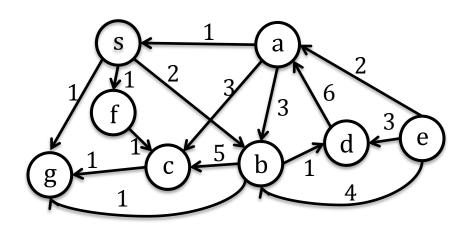
- More vertex transformations
 - Some relax structural integrity
- Order of transformations
 - Unified graph reduction algorithm

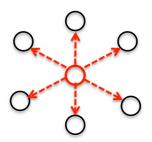
Processing workflow

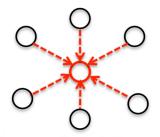


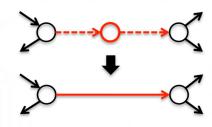
Processing workflow

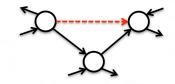


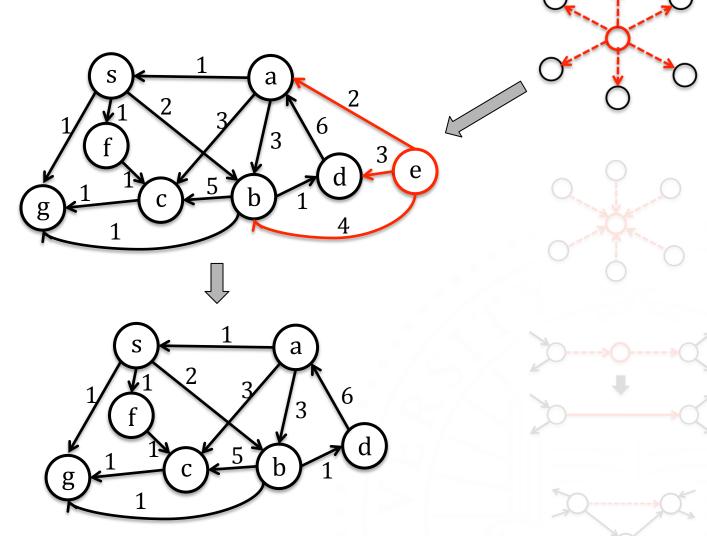


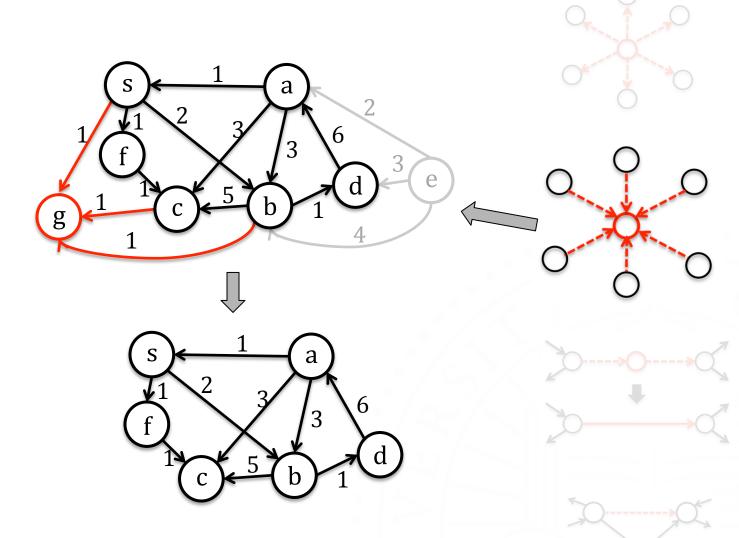


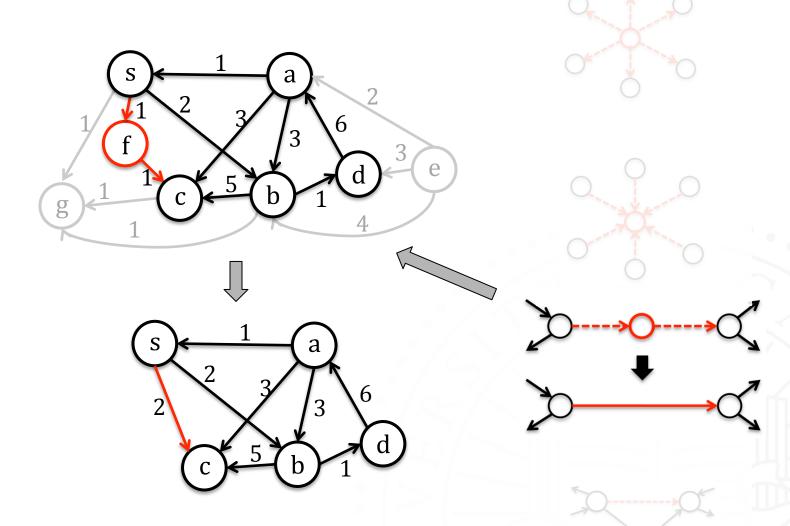


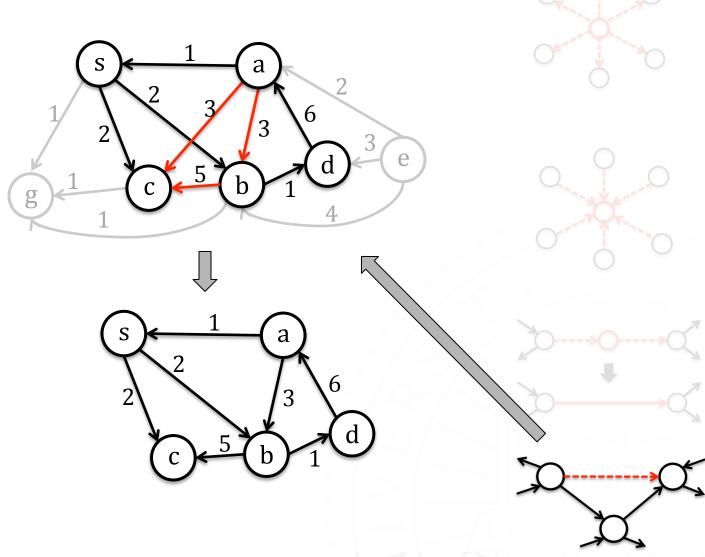


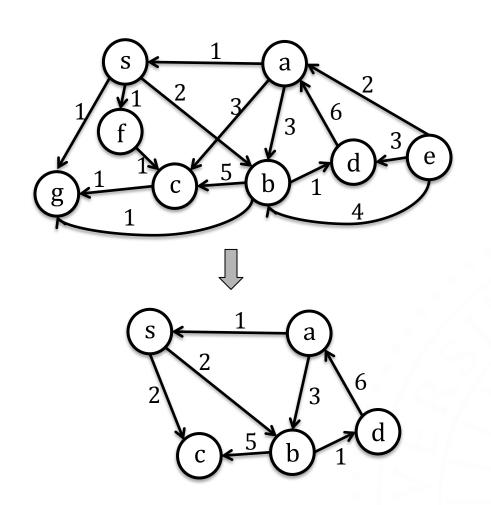


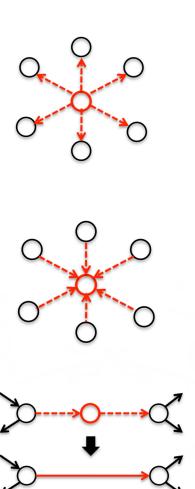




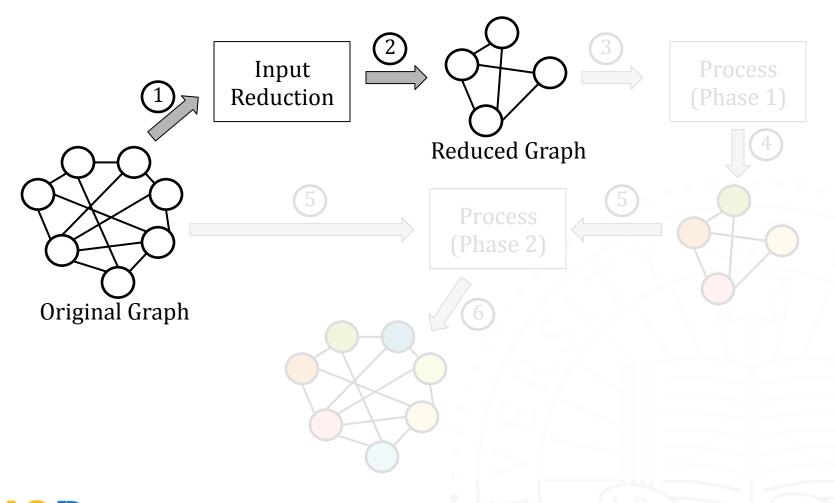




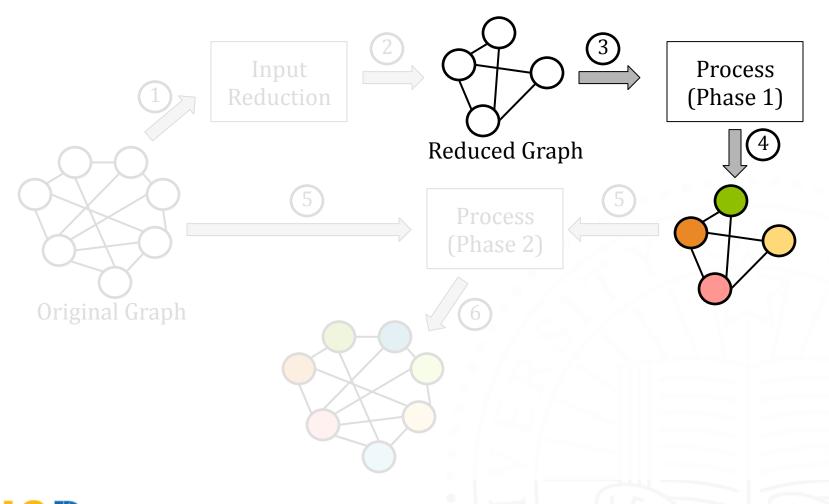




Workflow

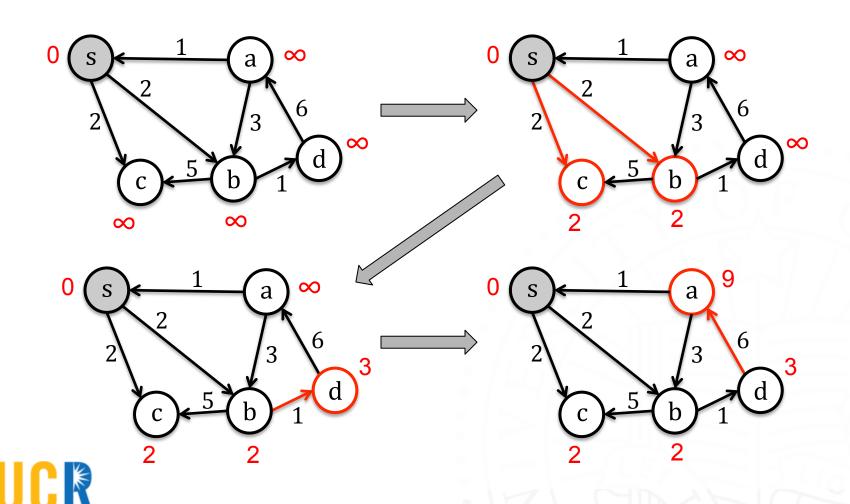


Workflow

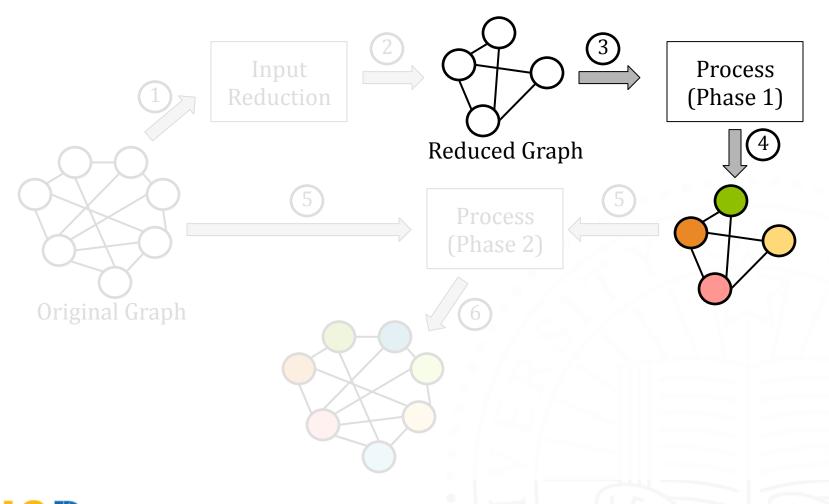


Processing Reduced Graph

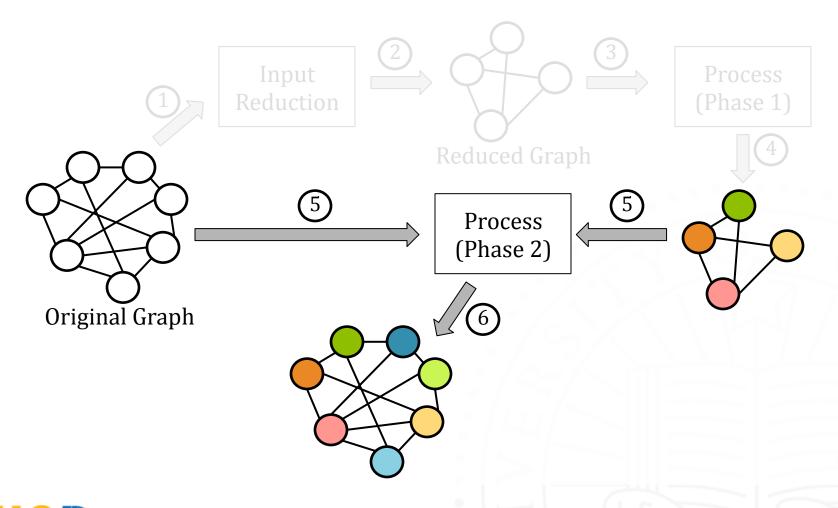
> Use the original iterative algorithm



Workflow

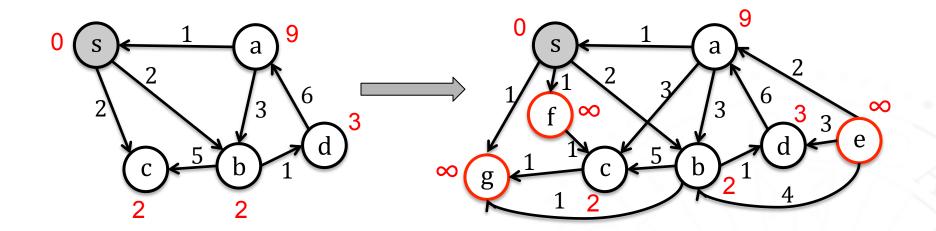


Workflow

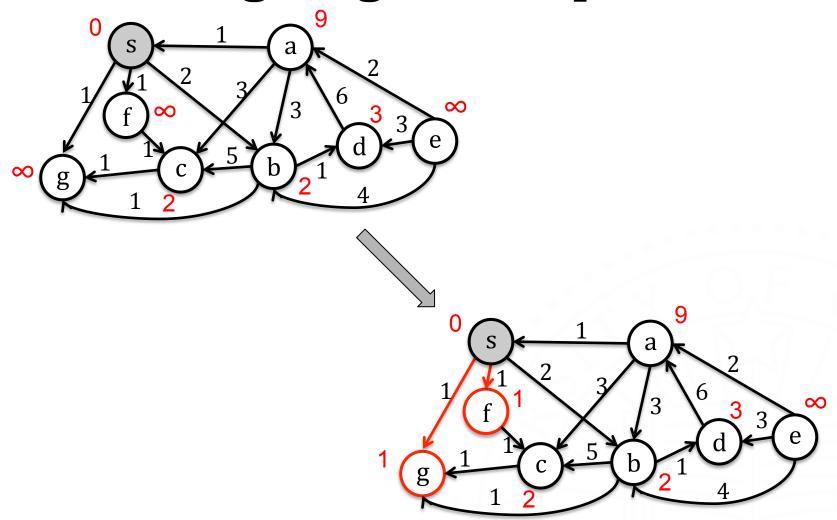


Mapping Results

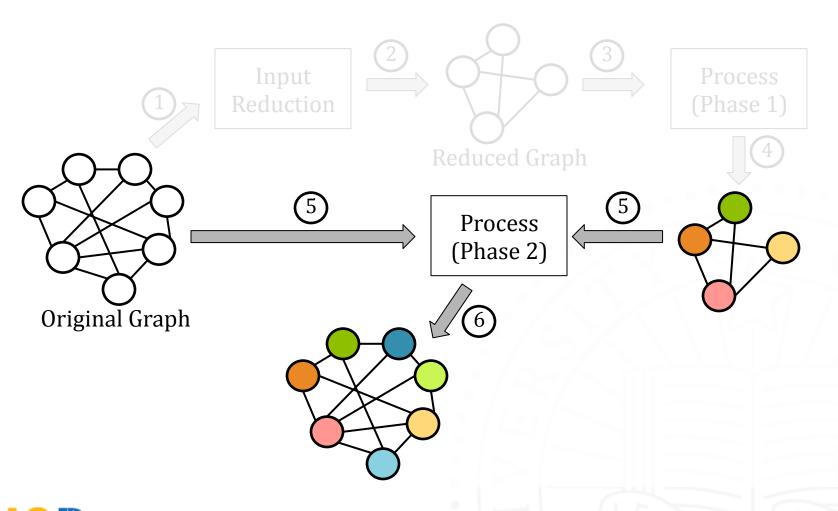
Use default values for missing vertices



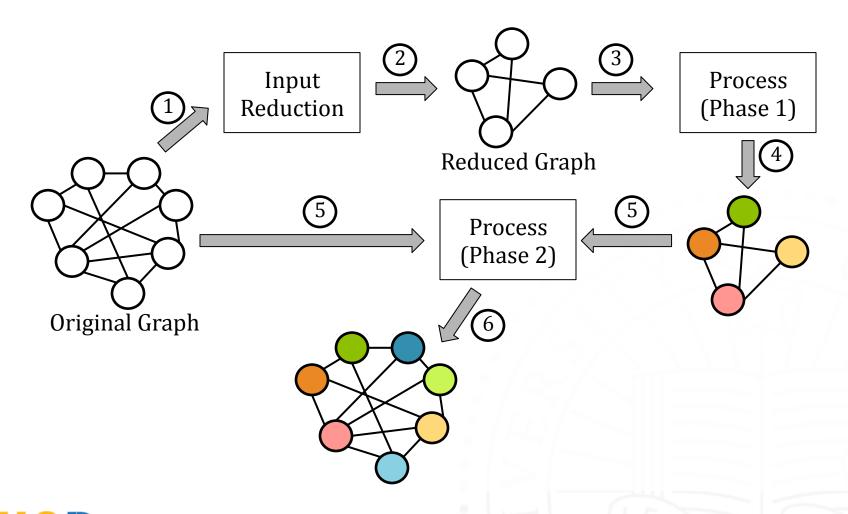
Processing Original Graph

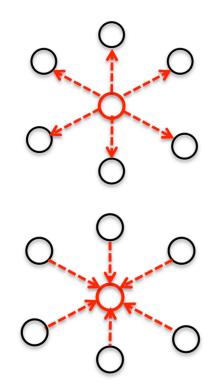


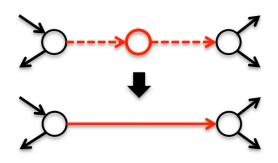
Workflow

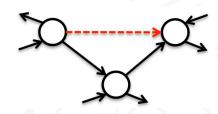


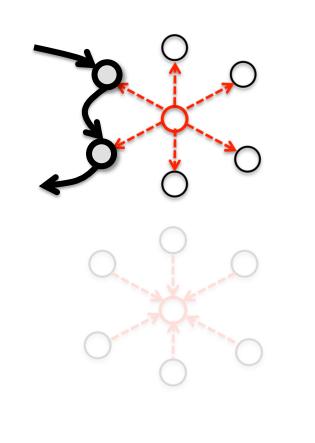
Workflow

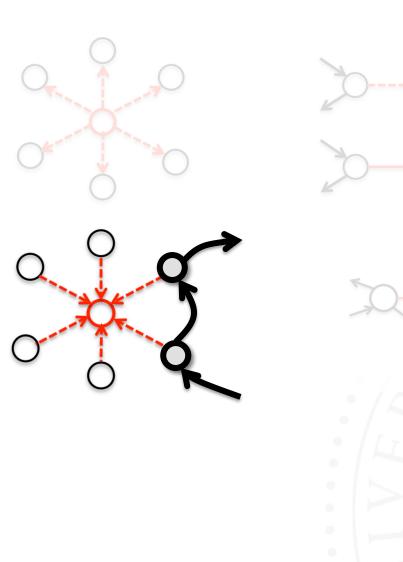


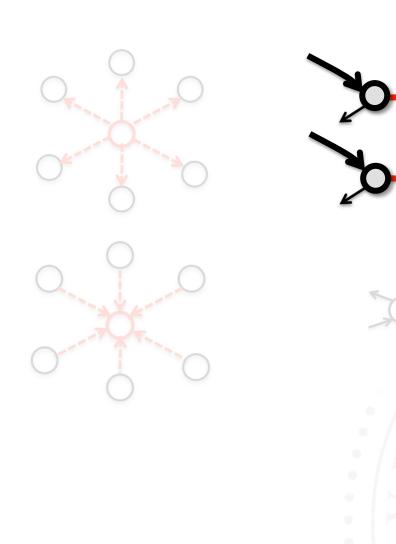


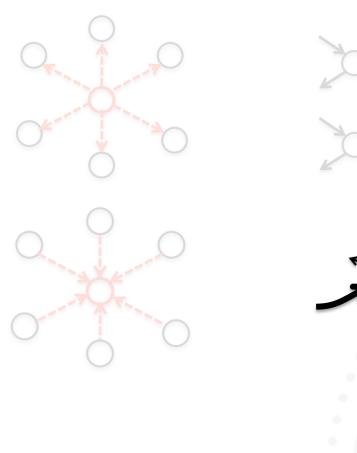


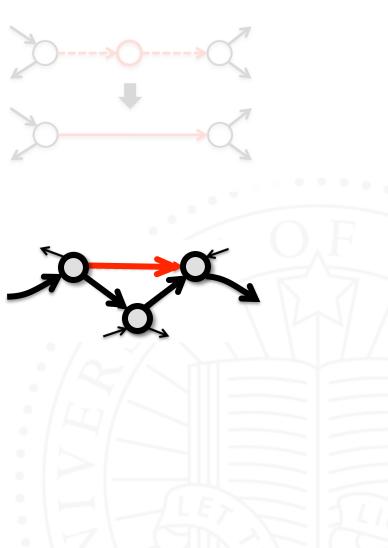












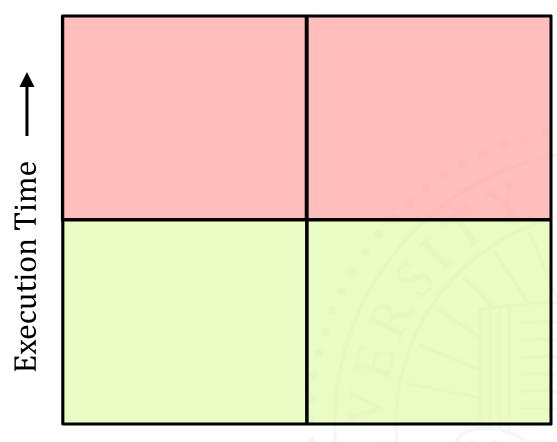
Correctness

- Transformation properties
 - Level of vertices, edges and components
 - Allow developing & reasoning for new transformations
- Algorithm behavior can be reasoned
 - Phase 2 initializations
 - Properties of aggregation function
- Correctness argued for algorithms used
 - 5 accurate and 1 approximate

Evaluation

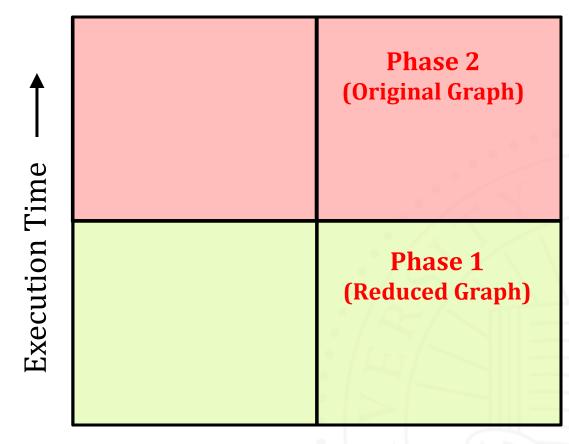
- Techniques independent of frameworks & processing environment
 - Incorporated in Galois [PLDI'11]
 - Single machine: 24-core, 32GB RAM
- > 6 benchmarks
 - PR, SSSP, SSWP, CC, GC, CD
- 4 input graphs
 - Friendster (|E| = 2.6B), Twitter (|E| = 1.5B),
 UKDomain (|E| = 936M), RMAT-24 (|E| = 268M)

 $ERP = \frac{|E_{REDUCED}|}{|E_{ORIGINAL}|} \times 100$



Reduction --->

 $ERP = \frac{|E_{REDUCED}|}{|E_{ORIGINAL}|} \times 100$



Reduction --->

$$ERP = \frac{|E_{REDUCED}|}{|E_{ORIGINAL}|} \times 100$$

Execution Time —

Phase 1 (Reduced Graph)

Phase 2 (Original Graph)

Phase 2 (Original Graph)

Phase 1 (Reduced Graph)

Reduction —

$$> ERP = \frac{|E_{REDUCED}|}{|E_{ORIGINAL}|} \times 100$$

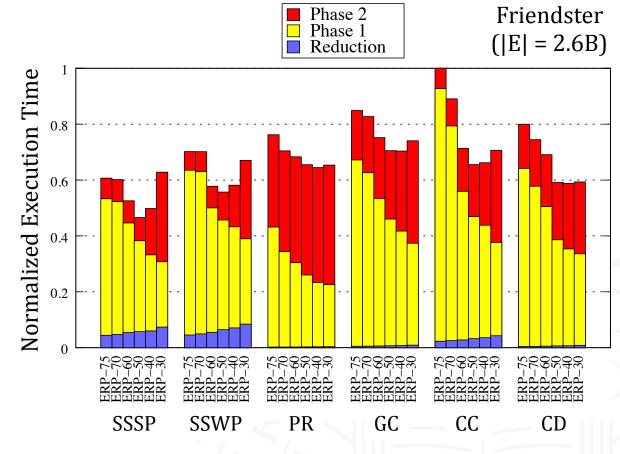
Execution Time —

Phase 1	Phase 2
(Reduced Graph)	(Original Graph)
	Reduction
Phase 2	Phase 1
(Original Graph)	(Reduced Graph)
Reduction	

Reduction ---

Execution Time

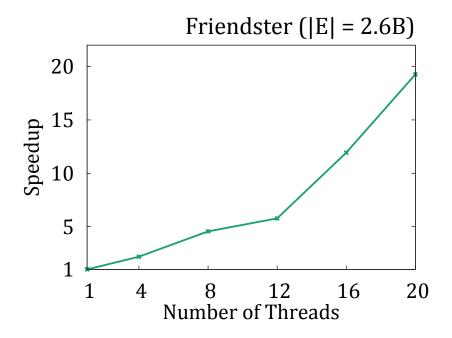
- Speedups over parallel versions
- Speedups
 increase as ERP
 decreases up to
 an extent
- 1.3x 1.7x for75% 50%
- Structural dissimilarity for very low ERP

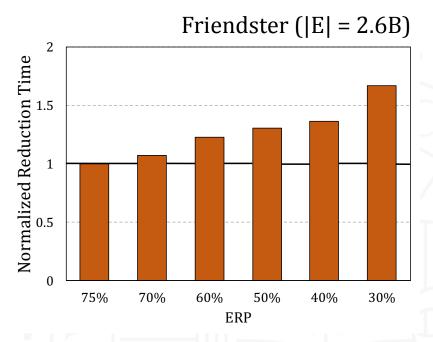


$$ERP = \frac{|E_{REDUCED}|}{|E_{ORIGINAL}|} \times 100$$

Input Reduction

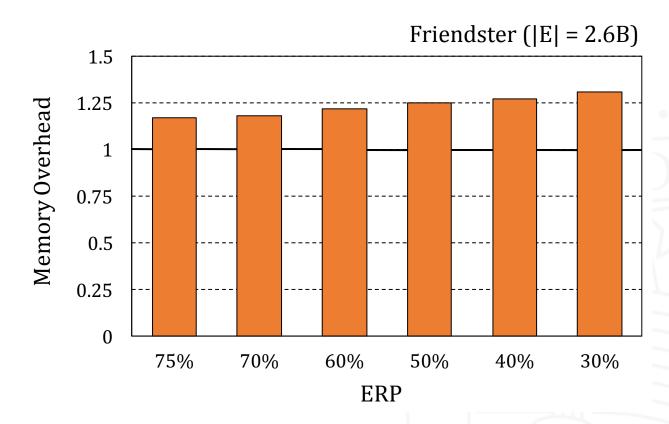
- Transformations are local, i.e., parallelizable
- > Higher reduction requires more work



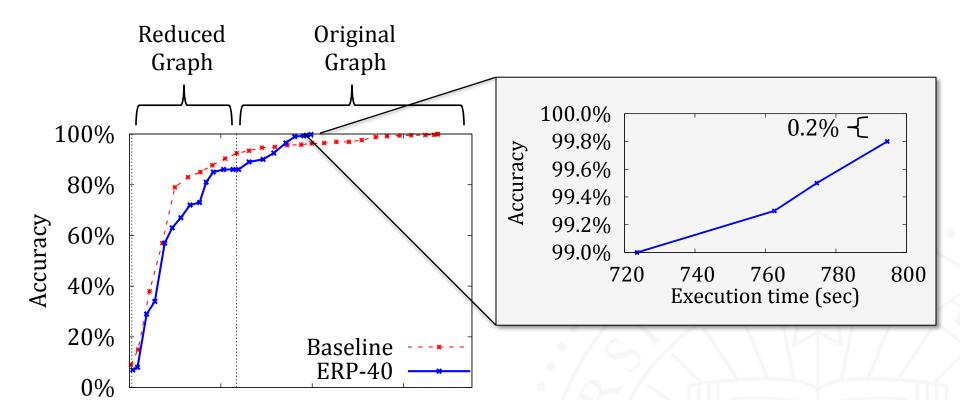


Memory Overhead

- Tracking dissimilar elements
 - Newly added vertices & edges



Community Detection



Friendster (|E| = 2.6B)

Execution time (sec)

800

1200

400

More Results

- Contribution of individual transformations
 - Some transformations more useful than others
 - Different graphs benefit from different transformations
- Improvement in scalability
- Results for all inputs

Conclusion

- Input reduction using transformations that are
 - Light-weight
 - Parallelizable
 - General
- Correctness reasoned using fine-grained transformation properties
- Achieve 1.25-2.14x speedups

Thanks

- GRASP
 - http://grasp.cs.ucr.edu/

