ASPIRE

Exploiting **As**ynchronous **P**arallelism in **I**terative Algorithms using a **Re**laxed Consistency based DSM

Keval Vora, Sai Charan Koduru, Rajiv Gupta

OOPSLA' 14 – Portland, Oregon October 24, 2014

Motivation

- Iterative algorithms
 - PDE Solvers: Heat Simulation
 - Graph Analysis: PageRank, Community Detection
- Real-world datasets are typically large
 - Social Networks, Genome Graphs
- > Processing on distributed memory machines
 - Performance
 - Programmability

Outline

- Iterative Algorithms
- Overview of ASPIRE
- Existing Weak Memory Models
- > Relaxed Consistency Protocol
- > Evaluation
- Conclusion

Iterative Algorithms

- Data Centric
 - Computation written for a single element
 - Terminate when values converge
 - Highly parallel execution
- Network Bound
 - Computation is simple

Iterative Algorithms

- Data Centric
 - Computation written for a single element
 - Terminate when values converge
 - Highly parallel execution
- Network Bound
 - Computation is simple

Fetch(c)
Fetch(a)
Fetch(b)
c' = f (c, a, b)
Store(c, c')

Execution Models

- > Bulk Synchronous Parallel (BSP) [CACM'90]
 - Disjoint computation and communication
 - Computation based on previous iteration
- Asynchronous Parallelism [Baudet 1978]
 - Overlap computation and communication
 - Computation based on current iteration
 - Known to be faster than BSP

ASPIRE

- Improve asynchronous execution
 - Make them faster
- Tolerate network latencies
 - > Tardis: remote fetch is ~2.3 times of local fetch
- > Relaxing consistency
 - Allow use of stale values
- Without affecting convergence
 - Minimize use of stale values

ASPIRE

- > Improve asynchronous execution
 - Make them faster
- Challenge: Relax consistency without delaying convergence
- keraxing consistency
 - > Allow use of stale values
- > Without affecting convergence
 - Minimize use of stale values

- Delta Consistency [SPAA'97] [PPoPP'03]
 - Controls staleness using static threshold

7

- Delta Consistency [SPAA'97] [PPoPP'03]
 - Controls staleness using static threshold

7

- Delta Consistency [SPAA'97] [PPoPP'03]
 - Controls staleness using static threshold

- Delta Consistency [SPAA'97] [PPoPP'03]
 - Controls staleness using static threshold

Delayed updates affect convergence

- Delta Consistency [SPAA'97] [PPoPP'03]
 - Controls staleness using static threshold

Delayed updates affect convergence

- Tracks staleness to exploit it
 - Cached objects have a staleness value
- > Best efforts to minimize stale objects
 - Refresh cached objects based on access pattern

- > Provides programming support
 - Local writes must be immediately visible
 - Once an object is read by a thread, no earlier writes to it can be read by the same thread

- > Current-hit
 - object in cache; staleness = 0
- > Stale-hit
 - > object in cache; 0 < staleness <= *t*
- > Stale-miss
 - \rightarrow object in cache; staleness > t
- Cache-miss
 - object not in cache

Relaxed Consistency Protocol

Relaxed Consistency Protocol

Relaxed Consistency Protocol

Relaxed Consistency Protocol

Relaxed Consistency Protocol

Relaxed Consistency Protocol

Relaxed Consistency Protocol

Implementation

- Similar to dyDSM [Koduru et al. 2013]
 - Object based
 - Protocol relaxes strict consistency
 - Graphs are distributed using METIS [SISC 99]
- > Runtime
 - Single Writer Model
 - Refresh strategy using producer-consumer model
 - Termination semantics

Experimental Setup

- Tardis @ UCR
 - > 16-node cluster running CentOS 6.3
- > 8 benchmarks
 - > WS, HS, PR, SSSP, CC, CD, NP, GC
- > 10 real-world inputs
 - SNAP dataset collection
 - UFL sparse matrix collection

Execution Time

Pokec:

30M edges 1.6M vertices

AtmosModl:

10M edges 1.4M vertices

RCP 48.7% faster than SCP+RW and 56% faster than best Stale-n

Remote Fetches

RCP blocks on 41.8% of remote fetches (7.5% for PR, WS & HS)

Best Stale-n blocks on 85.6% of remote fetches

Iterations

RCP requires 49.5% more iterations

Stale-2/Stale-3 require 146/176% more iterations

Staleness Percentage

97.4% of values have staleness 0; 2.2% of values have staleness 1

Graph Processing Frameworks

- Distributed memory
 - GraphLab [VLDB'12], Pregel [SIGMOD'10], PowerGraph [OSDI'12]
- Shared memory
 - Ligra [PPoPP'13], Grace [CIDR'13], Galois[PLDI'07]
- > Out-of-core
 - GraphChi [OSDI'12], X-Stream [SOSP'13]

GraphLab

		SSSP	PR	GC	CC	NP
Orkut	RCP	161.88	822.95	92.79	90.31	2.35
	GraphLab	239.4	829.3	248.66	102.02	140.5
LiveJournal	RCP	21.73	343.96	17.44	22.09	133.43
	GraphLab	15.7	295.1	X	66.99	150.2
Pokec	RCP	9.47	169.47	8.81	7.1	1.74
	GraphLab	8.7	159.9	173.47	40.52	76.4
HiggsTwitter	RCP	2.5	15.64	3.59	4.1	0.48
	GraphLab	5.5	X	263.45	16.21	32.5
RoadNetCA	RCP	49.47	7.70	0.93	56.96	16.51
	GraphLab	60.3	88.4	50.22	220.9	37.4
RoadNetTX	RCP	44.21	5.05	0.53	50.94	15.83
	GraphLab	18.3	78	60.76	115.6	X

- RCP compares favorably with GraphLab
- RCP is orthogonal to these frameworks
 - Can be used in their asynchronous engines

Other Experiments

- Different inputs
- Overhead study
- Design choices
 - Invalidates v/s updates
 - Sensitivity to object size
 - Sensitivity to writes
 - Sensitivity to communication delay
- Different cluster sizes

Conclusion

- Relaxing consistency is useful
 - With controlled use of staleness
 - Using refresh strategy
- > Efficient than prior DSMs based on
 - Strict consistency
 - Delta consistency
- > Processing Frameworks
 - Easier to code (Pregel)
 - Compares favorably (GraphLab)

Thanks

- GRASP
 - http://grasp.cs.ucr.edu

Acknowledgements

