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Abstract—Many next generation applications (such as
video flows) are likely to have associatedminimum data
rate requirements to ensure satisfactory quality as perceived
by end-users. While there have been prior approaches on
supporting quality-of-service (QoS) in mesh networks, they
have largely ignored the issues that arise due toself-
interference, the interference between different link layer
transmissions of a single flow along a multi-hop path. In
this paper, we develop a framework to address the problem
of maximizing the aggregate utility of traffic flows in wireless
mesh networks, with constraints imposedboth due to self-
interference and minimum rate requirements. The output of
our framework is a schedule that dictates which links are
to be activated simultaneously, and provides specifications of
the resources associated with each of those links. Utilizing the
proposed framework as a basis, we build an admission con-
trol module that intelligently manages the resources among
the flows in the network and admits as many new flows as
possible without violating the QoS of the existing flows. We
provide numerical results to demonstrate the efficacy of our
framework.

I. I NTRODUCTION

For many applications such as video, a minimum rate
requirement has to be met in order to ensure satisfactory
end-to-end quality [1]. In a shared wireless mesh network,
ensuring that application demands are met requires the
following inter-dependent functionalities: (a)rate or con-
gestion control: control the rates at which the various
traffic sources sharing the network inject traffic and (b)
resource allocation: allocate resources to the different
connections such that the minimum rate requirements of
each connection are met and (c)admission control:ensure
that newly admitted connections do not cause a violation
of the minimum rate requirements of existing flows. Our
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goal in this work is to design a framework towards jointly
facilitating these functionalities.

The problem of resource allocation and congestion
control in wired networks has received a lot of attention.
In their seminal work, Kellyet al. [2] have modelled the
problem of flow control as an optimization problem where
the objective is to maximize the aggregate utility of elastic
traffic sources subject to capacity constraints on the links
that compose the network. Inspired by Kelly’s work, there
has been follow up work [3]–[5], where TCP congestion
control is modelled a convex optimization problem, the
objective being the maximization of an aggregate user
utility; they propose distributed primal-dual solutions to
the problem.

There have been more recent efforts on extending the
above congestion cotnrol framework to wireless networks
(discussed later in Section II); examples include the work
in [6]–[12]. In contrast with wireline networks, the capac-
ity of a wireless link is not fixed. It varies dynamically and
depends on the other flows in the network (interference
effects). The dependencies between flows is regulated by
the protocols at both the link and transport layers. How-
ever, these prior efforts do not consider the provision of
quality-of-service in terms ofminimum ratesto the flows
that share the network. More importantly,self-interference
where the packets of a flow interfere with other packets
that belong to the same flow along a multi-hop path is
rarely considered. Our framework addresses the above two
important factors.

In more detail, we propose a framework for maximizing
the aggregate utility of traffic sources while adhering to
the capacity contraints of each link and the minimum
rate requirements imposed by each of the sources. The
framework takes into account the self-interference of flows
and assigns (a) channels (b) transmission power levels and
(c) time slots to each link such that the above objective is
achieved. It dictates the rates at which each traffic source
will send packets such that the minimum rate requirements
of all coexisting flows are met. If the minimum rate



requirements of all the flows cannot be met, the framework
rejects a subset of flows (based on fairness considerations)
and recomputes the schedule and allocates resources to
each of the remaining flows.

The major contributions of our work are as follows:

• We formulate a utility maximization problem to fa-
cilitate rate control with QoS support. Our formula-
tion accounts for constraints due to realistic wireless
transmission characteristics, i.e., the impact ofself-
interference. As a solution framework to the formu-
lated problem, we propose the distributed primal-
dual method which leverages the cross decomposition
technique in [13].

• The scheduling problem (a sub-problem of the util-
ity maximization problem) that assigns the optimal
channel and transmit power to set of active links is
known to be NP-hard [14]. Given the intractability
of the problem, we propose an efficient channel and
power allocation algorithm, and provide its theoret-
ical performance bound as compared to the optimal
solution.

• For cases where the QoS requirements cannot be met
if all connections were to be admitted, we propose
three different policies which drop a sub-set of flows
and reallocate the resources among the existing flows.
The proposed framework and the dropping policies
are then integrated towards building an admission
control module which makes our framework viable
in dynamic settings where flows enter and exit the
network. To the best of our knowledge, we are the first
to propose an admission control policy that jointly
addresses joint congestion control and resource allo-
cation in a multi-hop wireless network.

• We perform exhaustive numerical simulation experi-
ments to evaluate our proposed framework. We ob-
serve that our framework achieves better resource uti-
lization than with random channel assignment or with
fixed transmit powers. Our studies also demonstrate
the efficacy of our admission control module.

The remainder of the paper is organized as follows.
Related work is described in brief in Section II. In Sec-
tion III, we describe the system model being considered.
We formulate the problem for the rate control with QoS
requirements for wireless mesh networks (WMNs) in
Section IV. Our resource allocation framework and our
admission control framework are described in Section V
and Section VI, respectively. The performance evaluation
of the proposed framework is detailed in Section VII. We
conclude the paper in Section VIII.

II. RELATED WORK

In [2], Kelly et al., model flow control in a wireline
network as an optimization problem. Their objective is to

maximize the aggregate utility of a multiplicity of elastic
traffic sources. The work has been a basis for analyzing
various transport-level (including TCP-based) congestion
control algorithms. Follow up work appears in [3]–[5].
Recently, there has been a lot of research activity on
extending the above congestion control framework to wire-
less networks. In contrast to a wireline link, the capacity
of a link in wireless networks is not fixed. As discussed
earlier, it depends on the interference due to other flows,
which in turn is regulated by protocols at various layers.
Thus, congestion control in wireless networks has cross
layer dependencies.

Using mathematical decomposition techniques the
cross-layer optimization problem of congestion control can
be decomposed into two sub-problems: the rate control
problem to be solved at transport layer and the scheduling
problem at the lower link layer; the latter is tightly related
to the underlying resources to be managed. There have
been various approaches that have been proposed for
the two layers independently. In particular, congestion
control with power control has been studied in [15]. Link
scheduling with contention control has been looked at in
[6]–[9]. [16] considers the joint impact of link scheduling
and routing. Soldatiet al., formulate link scheduling with
power control as an optimization problem [17]. Channel
assignment, routing, and link scheduling has been con-
sidered in [18] while link scheduling, routing and power
control are considered in [19]. Resource management
at the lower layers has been considered in [10]–[12].
Design of scheduling algorithms and their performance
evaluations appear in [20]–[23].

None of the above efforts however, consider the problem
of resource allocation with QoS support in terms of
providing a minimum data rate to flows, in the presence
of self-interferencein mesh networks. In other words, they
ignore the constraints that arise due to competition among
the packets belonging to the same flow that spans multiple
wireless hops. This effect is taken into account in our
work.

III. SYSTEM MODEL

We consider a pre-planned WMN consisting of a set of
stationary wireless nodes (routers) connected by a setL of
unidirectional links. Some of the nodes are assumed to act
as gateways to the Internet. Each node is equipped with
a single network interface card (NIC) and is associated
with one of C orthogonal (non-overlapping) channels
for transmitting or receiving. A sender-receiver pair can
communicate with each other only if both of them are
tuned to the same channel. In this work dynamic channel
switching is assumed to be possible with the NIC. Nodes
operate in a half-duplex manner so that at any given
time a node can either transmit or receive (but not both).
The transmission powerpl on a link l is assumed to be
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chosen in[0, pmax
l ]. In order for the signal transmitted by

a sender to be decoded properly at a receiver, the signal
to interference and noise ratio (SINR) should be no less
than a thresholdβ 1. In addition, it is assumed that the
network operates in a time-slotted mode; time is divided
into slots of equal duration.

The network hasS elastic traffic sources and each
sources has an associated data raters. We assume that
each sources requires at the very least, a data raterreq

s

in order to satisfy its QoS requirement (among several
possible QoS metrics, the minimum rate is the primary
target of this work). Furthermore, the data rate that may be
provided tos is assumed to be upper bounded byrmax

s ; this
corresponds to the peak sending rate of sources, rmax

s , and
depends on the application requirements ats. For example,
the maximum sending rate of a real-time application can
be expected to be much lower than that of an elastic
application; the latter can greedily consume any available
bandwidth. Each sources has an associated utility function
Us(rs); the utility is assumed to directly reflect the QoS
provided to sources when it is injecting packets into the
network at a raters. We assume the utility function to
be positive, continuously differentiable, monotonicallyin-
creasing and strictly concave over[0, rmax

s ]. Our objective
is then, to find the optimal resource allocation in terms of
assigning channels, transmit powers, and time slots so as
to maximize the sum of the sources’ utilities; at the same
time, their QoS requirements in terms of minimal rates
have to be met. In the rest of the paepr, we interchangeably
useL (links), C (channels), andS (sources) to denote both
the corresponding set itself and the cardinality of the set.

IV. PROBLEM FORMULATION

In this section, we formulate the utility maximization
problem with our desired objectives and constraints. The
path that a sources uses in order to reach a gateway in the
WMN is represented by a routing vectorV, the elements
of which are given by:

v(l,s) =

(

1, If sources uses linkl

0, otherwise,
(1)

for l ∈ L ands ∈ S. We assume that the paths between the
routers and gateways are pre-determined (in this paper, we
focus on the impact of resource allocation).

We define a binary channel assignment vectorX with
elementsx(l,c) defined by:

x(l,c) =

(

1, If link l uses channelc
0, otherwise,

(2)

for l ∈ L andc ∈ C.

1β depends on characteristics of the physical layer of the underlying
system.

Since each node is equipped with a single NIC, the
number of channels that can be assigned to a link is at
most one. To this end, the following constraint should be
satisfied for each linkl:

C
X

c=1

x(l,c) ≤ 1, ∀ l ∈ L. (3)

Next, we impose constraints to account for theself-
interferenceamong links. In particular, each node can
either send to or receive from other nodes at any time.
Thus, two links that share a node are not permitted to be
active simultaneously. To represent this condition formally,
let E(l) be the set of neighboring links which share either
the sender or the receiver of linkl. Then, in order for linkl
to be active in a time slot, the following constraint should
be satisfied for linkl:

C
X

c=1

0

@x(l,c)

X

e∈E(l)

C
X

h=1

x(e,h)

1

A = 0, ∀ l ∈ L. (4)

By forcing the product within the summation to be zero,
we are essentially ensuring that no link that is adjacent to
the considered linkl is active at the same time asl.

The intersection of (1), (3) and (4) yields the setΠ, of
active links:

Π =



X|x ∈ {0, 1}
\X

c

x(l,c) ≤ 1

\X

c

 

x(l,c)

X

e

X

h

x(e,h)

!

= 0,∀ l ∈ L

ff

.

(5)

Based on the assumptions onrs and pl (described in
Section III), the following two sets are established for
source rates and transmit powers, respectively:

Ψ = {R|rreq
s ≤ rs ≤ rmax

s ,∀ s ∈ S} , (6)

Λ = {P|0 ≤ pl ≤ pmax
l ,∀ l ∈ L} , (7)

whereR andP are theS × 1 rate vector andL× 1 power
vector, respectively.

Unlike with links in a wired network, the capacity of a
link in a wireless network is not fixed due to the shared
nature of the wireless medium. We make the assumption
that the interference experienced by a link can be modeled
as a Gaussian random variable (when there a reasonably
large number of interfering links, we can invoke the central
limit theorem). Assuming that the channel is in addition,
exposed to additive white gaussian noise (AWGN), the
capacity of linkl, hl, can be expressed as

hl =
1

T
log(1 + K SINRl), (8)

whereT is the symbol period,K is a constant depending
on the modulation scheme used, andSINRl is the signal
to interference and noise ratio on linkl and is given by:

SINRl =
plgll

P

m6=l∈L
Xm ·XT

l pmglm + ηl

, (9)
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where pl is the transmit power of the sender on linkl,
glm is the link gain between the receiver on linkl and the
sender on linkm, Xl is the lth row vector ofX, andηl is
the additive thermal white noise power. Note that the link
capacity is a nonlinear function of the transmit powersP

and the assigned channelsX; we denote theL × 1 link
capacity vector(h1, . . . , hL)T by H (X,P).

The target resource allocation in a WMN can then be
formulated as the following utility maximization problem:

max 1
T ·U(R) (10)

s.t V ·R � H (X,P)

X ∈ Π

P ∈ Λ

R ∈ Ψ,

where U(R) is the S × 1 utility function vector
(U1(r1), . . . , US(rS))T and 1 is the 1 × S unit vector.
Note that the utility function can be varied depending
on the fairness that we want to achieve. For example,
− (log(ri))

2 /2 for Ui(ri) ∀i ∈ S with the additional
constraintsri ≤ rj, where the linksj represent the one-
hop neighbors of linki, achieves max-min fairness [24].
In this work we are interested in proportional fairness and
therefore, we choose the functionlog(ri) for Ui(ri) [25];
however, we point out that our framework is generic and
can be applied with other utility functions.

V. OUR RESOURCEALLOCATION FRAMEWORK

In this section, we present a framework to address the
utility maximization problem, defined by (10). We start
with introducing the application of traditional primal-dual
method to the utility maximization problem.

A. Traditional Primal-Dual Approach to Our Utility Max-
imization Problem

At the first step, the primal-dual technique separates
the problem defined in (10) into smaller sub-problems by
introducing the Lagrange multipliersλ = (λ1, λ2, . . . , λL)

with regard to the first constraint in (10) (the link capacity
constraint); theλ-multiplied constraints are then shifted to
the objective function to form the Lagrangian:

L(λ,R,P,X) (11)

= 1
T ·U(R) + λ · (H (X,P)−V ·R)

=
“

1
T ·U(R)− λ ·V ·R

”

+ λ ·H (X,P) .

Note thatλl can be interpreted to be the congestion price
of link l. The original problem then becomes:

max L(λ,R,P, X) (12)

s.t X ∈ Π

P ∈ Λ

R ∈ Ψ.

Due to its separable structure, problem (12) can be
decomposed into two sub-problems: thecongestion con-
trol problemand thescheduling problem. The congestion
control problem is defined by:

max 1
T ·U(R)− λ ·V ·R (13)

s.t R ∈ Ψ.

The objective here is the maximization of the sum of
each source’sutility gain by choosing the optimal sending
rate for each such source. This problem is typically solved
by a congestion control mechanism at the transport layer
(as with TCP).

The scheduling problem is given by

max λ ·H (X,P) (14)

s.t X ∈ Π

P ∈ Λ.

Givenλ, the problem is now to determine thebestusage
of the links that compose the network (i.e., transmission
time schedule, transmit power and channel assignments).
Note that a link will not be active if it is assigned
zero power or has received no channel assignment. Both
the PHY and link layers are involved when solving the
scheduling problem. Letq(λ) be the maximum value
of problem (12). Then, the dual problem to the primal
problem defined in (10), is

min q(λ) (15)

λ � 0.

Applying the traditioal distributed primal-dual approach
to our problem involves determining source rates, re-
sources (channel and transmit power), and link costs at
each iterationk, as follows:

• The data rates of the sources are determined by

R
(k) = argmax

R∈Ψ

“

1
T ·U(R)− λ(k) ·V ·R

”

. (16)

• The resources are determined by
“

X
(k),P(k)

”

= argmax
X∈Π,P∈Λ

λ(k) ·H (X,P) . (17)

• The implicit link costs are updated by

λ(k+1) =
h

λ(k) + γ
“

V ·R(k) −H

“

X
(k),P(k)

””i+

,

(18)
whereγ and [·]+ denote a positive step size and a pro-
jection onto the positive orthant, respectively. Note that
the link cost update above is the result of applying the
project gradient method [26] to (15).However, a näıve
application of the primal-dual method to (10) may not
work properly for the following reasons.First, the primal-
dual approach implicitly assumes that all the links on the
end-to-end path are simultaneously active while computing
the optimal end-to-end rate for the paths. Incorporating
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the self-interferenceconstraints in (5), however, results in
the activation of only a few links in each iteration, and
consequently, the rates computed for most of the paths
may simply be zero.Second, the primal-dual approach
assumes that the scheduling problem (14) can be solved
optimally. Given the characteristics of the setΠ in (5), the
problem is proven to be NP-Hard [14]. Thus, finding the
optimum at every iteration will cost prohibitive levels of
computational resources and time.

In order to address the first issue, we leverage thecross
decompositiontechnique [13]. In a nutshell, using this
technique we build a link schedule over multiple time slots,
conforming to the constraints. This module is discussed in
Section V-B. To address the second issue, we propose an
efficient resource allocation algorithm in Section V-C.

B. The Cross Decomposition Approach

In order to leverage the cross decomposition technique,
we reformulate (10) as

max ρ (H (X,P)) (19)

s.t X ∈ Π

P ∈ Λ,

where ρ (H (X,P)) = {max 1
T · U(R) | V · R �

H (X,P) and R ∈ Ψ}. For a fixed link capacity vector
H (X,P) whose elements are all positive,ρ (H (X,P))

is solved by using the traditional primal-dual method
introduced in Section V-A, and a corresponding link cost
vector λ is obtained. Then, the schedule is updated by
augmenting active links, which are found by solving the
scheduling problem (14) with the obtainedλ. Based on
the augmented schedule, an average link capacity (using
values up to the current time) is newly calculated and
input into the problem for maximizingρ. This procedure
repeats until the rates have converged or problem has
been classified as infeasible. The rationale behind the
schedule update procedure is thatλ is the subgradient to
ρ (H (X,P)) at H (X,P). The convergence of the cross
decomposition approach has been previously studied in
[17]; it has been proven that the method converges faster
than the mean value cross decomposition method in [27].

The primal-dual approach, revised with the proposed
cross decomposition, is summarized as pseudo-code in
Algorithm 1. Note here that during initialization, the link
schedule in the firstL slots is built using pure TDMA.
Algorithm 1 terminates when either the sending rates of
the sources converge to stable values or the problem is
classified as infeasible. The sending rate for a source is
deemed to have converged when the difference between
the sending rates in two consecutive slots is less than
a specified thresholdǫ, for σ consecutive time slots. A
problem is classified as infeasible when a positive increase

in link cost is observed duringχ consecutive slots for
any link which carries data from sources with converged
sending rates. The infeasible case will be discussed further
in Section VI.

Algorithm 1 Proposed Primal-Dual Approach
1: Initialization : Schedule links using pure TDMA for the first

L slots.k ← L + 1
2: while Rate has not converged or Problem has not been

classified infeasibledo
3: Calculateρ

“

H

“

X
(k),P(k)

””

by using the traditional

primal-dual approach forH
“

X
(k),P(k)

”

, and let λ(k)

be the obtained equilibrium link price;
4: Calculate

“

X
(k+1),P(k+1)

”

by solving the scheduling

problem (14) forλ(k), and augment the schedule with the
associated active links;

5: Calculate the average link capacity
H

“

X
(k+1),P(k+1)

”

=
Pk+1

t=1 H

“

X
(t),P(t)

”

/(k + 1);
6: k← k + 1;
7: end while

C. Our Resource Allocation Approach

The proposed primal-dual approach requires the
scheduling problem (14) to be solved at every iteration.
For simplicity, we assume that (i) theSINR on each link
is much larger than1, (ii) T = 1 andK = 1, and (iii) the
thermal noise term is negligible (interference dominated
setting). The scheduling problem (14) at iterationk is then
expressed as:

max
X∈Π
P∈Λ

X

l

λ
(k)
l

log

 

plgll
P

m6=l∈L Xm · XT
l

pmglm

!

= max
X∈Π
P∈Λ

X

l

λ
(k)
l

0

@log (plgll) − log

0

@

X

m6=l∈L

Xm · XT
l pmglm

1

A

1

A .

(20)

Unfortunately, solving (20) is not straightforward. The
major difficulties arise from the fact that it requires a
combinatorial decision in terms of channel and power
assignments; this is known to be NP-Hard [14]. Thus,
finding the optimum at every iteration will cost prohibitive
levels of computational resources and time. Given this, we
propose an efficient two phase approach towards finding an
approximate solution to (20). In the first phase, channels
are assigned to links as per a simple heuristic, and the
optimal powers are calculated for the links in the second
phase.

1) Channel Assignment:The proposed algorithm allo-
cates channels in a way that (a)self-interferenceis avoided
and (b) co-channel interferencelevels among links that
use the same channel are kept as low as possible. With
our algorithm, links with higher costs are assigned higher
priorities in terms of channel assignment over the links
with lower cost. This is because links with higher costs
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suffer from higher levels of congestion and thus, schedul-
ing these links is harder. The proposed channel assignment
algorithm starts by sorting links in the descending order
of their link costs. Then, channels are assigned to the
links in that order. The proposed algorithm avoidsself-
interferenceby not assigning a channel to any link whose
incident links have already been assigned channels. In
other words, a link is eligible for activation only if it has
no active neighbor links. In order to alleviate the effects
of co-channel interference, the channel that is assigned to
a link is selected based on the sum of link gains between
all the interfering senders using the same channel and the
receiver of the link. This sum is calculated for each of the
channels and the channel with the least associated value
is selected for the link. The proposed channel assignment
is summarized in Algorithm 2, where we defineQ(c) to
be the set of links that are assigned channelc. An active
link is then assigned a transmit power based on our power
assignment algorithm discussed next.

Algorithm 2 Channel Assignment
1: Initialization : x(l,c) ← 0, and Q(c) ← ∅, ∀ l ∈ L and ∀

c ∈ C;
2: Sort links by descending order ofλ, and labeli-th link in

the sorted list asli;
3: for j = 1 to L do
4: if

P

e

P

c
x(e,c) = 0, for e ∈ E(lj) then

5: Calculatedc =
P

q∈Q(c) gqlj , ∀ c ∈ C;
6: Allocate channelclj = argminc{d1, d2, . . . , dC} to

link lj ;
7: Assign lj to Q(clj );
8: end if
9: end for

2) Power Control: With channel assignment as de-
scribed in the previous subsection, we haveX

(k) specified
at the beginning of slotk. Let m′ be a member of the set

of links satisfyingX
(k)

m′ ·
“

X
(k)
l

”T

= 1 for m′ 6= l. The
scheduling problem (20) is then reduced to

max
P∈Λ

X

l

λ
(k)
l

 

log (plgll)− log

 

X

m′

pm′glm′

!!

. (21)

The problem (21) is non-convex, and thus, we apply
geometric programming [26] towards solving it. Geometric
programming transforms theseeminglynon-convex prob-
lem into a convex problem through a logarithmic change
of variables. Let̂pl = log pl for ∀l ∈ L. Then, (21) can be
written as:

max
P̂∈Λ̂

X

l

λ
(k)
l

 

log
“

ep̂lgll

”

− log

 

X

m′

ep̂
m′ glm′

!!

= max
P̂∈Λ̂

X

l

λ
(k)
l

 

p̂l + log (gll)− log

 

X

m′

ep̂m′ glm′

!!

,

(22)

whereΛ̂ =
n

P̂| −∞ ≤ p̂l ≤ log pmax
l ,∀ l ∈ L

o

.
Note that the objective function in (22), for each link

l, is a concave function; it consists of linear and concave
terms (log-exp-sum is known to be convex [26]) and the
sum of the concave functions is also a concave. The
transformed problem (22) is thus a concave optimization
problem for which solutions can be found with efficient
techniques such as the interior point method [26]. After
solving this optimization problem, the solution can be
mapped back to the original space (using the relation
pl = ep̂l).

3) Performance of Proposed Resource Allocation:
Next, we analyze the proposed resource allocation strategy
in terms of its convergence and efficiency. In particular,
we compare the performance of our approach with that of
an optimal schedule (produced by exhaustive search) and
discuss known properties with regards to its convergence.
We first begin with some preliminaries.

Preliminaries: The minimum SINR requirement for
successful decoding (discussed earlier in Section III) dic-
tates whether two distinct links using same channel can
be active simultaneously. If the SINR values measured at
the two receivers are simultaneously higher thanβ, the
two links can be active together; if not, the two links
are classified asinterfering links. Tl denotes the set of
interfering links for link l; if link l is not active, some
of the links in Tl can be active simultaneously on the
same channel; ifl is active, none of the links inTl can
be active. We define theopportunity costOl for link l

to be the maximum number of links inTl that can be
scheduled to be active simultaneously. This implies that a
transmission on linkl deprivesOl other links in terms of
being able to transmit.

To computeOl, we first find Tl with the maximum
cardinality. To do this, we assume that the transmitter
on link l is transmitting with the maximum powerpmax

l .
Then, any link that is unable to meet the SINR threshold
β even with the maximum transmit power, is a member
of Tl. Given Tl, the opportunity cost for linkl is said
to be ω if there areω links 2 in Tl (we call this set
T

ω
l = {m1, m2, · · · , mω}) such that every linkmj ∈ T

ω
l

satisfies the SINR requirement:

SINRmj
=

pmj
gmjmj

P

mi 6=mj∈Tl
pmi

gmjmi
+ ηmj

≥ β. (23)

In order to facilitate the computation ofOl, we use a
simple but powerful concept from matrix theory. In the
matrix form, the SINR requirements (23) can be expressed
as:

(I−F)P � u and P ≻ 0, (24)

2For the ease of presentation, we re-label the links as per thesequence
in which they were made members of the setT

ω
l

, instead of their original
link numbers.

6



where, I is the unit vector of sizeω × ω, P =

(pm1
, pm2

, · · · , pmω ) is the column vector of transmit pow-
ers,u = (

βηm1

gm1m1

,
βηm2

gm2m2

, · · · ,
βηmω

gmωmω
) is the column vector

of thermal noise powers scaled by the SINR threshold and
link gains, andF is theω × ω matrix with entries are:

f(j,i) =

(

0, If j = i
βgmjmi

gmimi

, otherwise.
(25)

According to the Perron-Frobenius theorem [28], if the
Perron-Frobenius eigenvalue ofF, ρF, is less than 1, i.e.,
ρF < 1, then, there exists a vectorP ≻ 0 (i.e., pmj

> 0

for all j) such that(I − F)P � u. Applying the Perron-
Frobenius theorem to all the combinations of links that
belong toTl, the opportunity cost of linkl, Ol, can be
readily found. From among the opportunity costs of all the
links in the network, we denote the maximum opportunity
cost byΩ.

Performance relative to an optimal scheduler: The
following proposition provides a performance bound on
our proposed scheduling algorithm.

Theorem 1: The proposed scheduling algorithm
achieves a performance ratio3 of ∆/(Ω + 2)Θ.

Proof: Let Xg(∈ Π) (or respectively,X∗(∈ Π)) and
Pg (or respectively,P∗) denote the channel assignment
and the power allocation resulting from the proposed al-
gorithm (or respectively, the optimal scheduler algorithm).
Then, in order to prove the proposition, we need to show
that:

λ ·H(Xg, Pg) �
∆

(Ω + 2)Θ
· λ ·H(X∗,P∗). (26)

Consider the linkl with the largestλ, which is chosen
first by the proposed channel assignment algorithm. If this
link is scheduled on channelc, then no link inTl can
be scheduled simultaneously, with linkl on channelc.
On the other hand, the optimal scheduler may select at
mostΩ links in its schedule in lieu of linkl. Due toself-
interferenceconstraints, if link l is scheduled, the links
incident on linkl cannot be scheduled. Thus, the optimal
scheduler can include at most 2 other links (i.e., one
incident on the sender and one incident on the receiver)
in addition to the previously chosenΩ links.

Let ∆ and Θ denote the minimum link capacity
achieved, from among the links scheduled by the proposed
algorithm and the potentially possible maximum link ca-
pacity, respectively.Θ is achievable when only the single
link whose link gain is the largest as compared to all the
other links, transmits using the maximum power. The max-
imum capacity gain with the optimal schedule is no greater
than Θ/∆ ·H(Xg,Pg). The value ofλ ·H(X∗,P∗) (with
the optimal schedule), which consists of at most(Ω + 2)

3This is the maximum ratio by which the results of an approximation
algorithm may differ from the optimal solution.

links, is therefore at most((Ω+2)Θ/∆) ·λ ·H(Xg,Pg). We
can then remove all the interfering links and the incident
links found above from the list of links to be scheduled
with both the proposed and optimal schedulers. Then,
applying the same argument inductively on the links that
are selected by the proposed scheduling algorithm, the
proof can be established.

Convergence: Lin et al., [20] study the convergence
of approximation algorithms with a performance ratio
α ∈ (0, 1]. They demonstrate that the user rate vector
R eventually converges to a small neighborhood of the
optimal rate. However, in many cases, the convergence
may lead to inadequate QoS (in terms of rate) for some of
the flows. In such a case, some of the flows will have to
bedroppedin order to satisfy the QoS for the other flows.

D. Implementation

The proposed cross decomposition approach can be im-
plemented either in a centralized fashion or in a distributed
manner. For centralized implementation, a coordinator
(in all likelihood one of gateway nodes) is responsible
for running Algorithm 1 and notifying the nodes of the
transmission schedule and the channel and transmit power
assignments. The original primal-dual approach can be
implemented in distributed manner with guaranteed con-
vergence [3], [17]. This is attributable to the decompos-
able structure of the utility maximization problem. The
proposed resource allocation mechanism benefits from
this structure as well and thus, can be implemented in a
decentralized way. In this case, each source is responsible
for making a decision on its sending data rate as per
Equation (16). Each transmittern is also responsible for
using the correct channel and power on its outbound links
Ln ⊂ L as per (17) and updating the cost of the links as per
(18). The transmitter on each linkl needs to periodically
exchange information on its individual resource usage
(x(l,c), pl) for l ∈ Ln andc ∈ C, and its link costλl, l ∈ Ln,
with all the other nodes. Elaborating on the technical
details of implementing such an approach is beyond the
scope of this paper; however, a reliable flooding protocol
(as with any link state routing approach) could be used.

VI. A DMISSION CONTROL

In this section we extend our primal-dual framework
to support admission control handling dynamic settings
where flows enter and exit network.

A. Handling Infeasible QoS requests

The proposed resource allocation framework attempts to
achieve both fairness and the QoS requirements as speci-
fied by the utility maximization problem (10). However, in
the first constraint of (10), if sum of QoS requirements of
the various sources over a link exceeds the link capacity,
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the link cost in (18) will not converge; it will increase
continuously as we progressively go through time (in terms
of slots) and this leads to an infeasible solution. In such
a scenario, the only solution would be to graduallydrop
a sub-set of the sources until the rate requirements of the
rest of the sources are met. The objective could be to drop
as few sources as possible.

For any link, if the link cost increases byγ per slot
duringχ consecutive slots, a schedule is considered to be
infeasible. In order to handle this infeasible scenario, we
first solve (10) withrreq

s relaxed to0 for every source
s ∈ S. Each sources whose assigned rate meets its QoS
requirement (i.e.,rs ≥ rreq

s ) is put into a setG; the other
nodes are put into a setG. Members inG are the sources
that are candidates for being dropped.

We consider three dropping policies or rules. As per our
first policy, we choose the source for which, the difference
or gap between the required rate and the assigned rate is
the maximum. The rule is referred to asMG (for maximum
gap). After removing the above source fromG, we solve
the relaxedform of (10) again with the sources inG

S

G.
The process is repeated until no sources are left inG,
i.e., until there is no active source for which the QoS re-
quirements are not met. The proposedresource adjustment
method is summarized in Algorithm 3. We consider two
additional policies:MR andMRG. PolicyMR (for maximum
rate) selects the sourcek ∈ G for which, the QoS
requirement is the maximum, i.e.,k = argmaxs∈Grreq

s . If
there are multiple sources with the same maximum rate,
one of these sources is randomly selected and dropped.
With MRG, MR is applied first and subsequently, in the
case of a tieMG is applied.

Algorithm 3 Adaptive Resource Allocation withMG

1: Initialization : G← ∅, G← ∅
2: Perform Algorithm 1 on the utility maximization problem

(10) with rreq
s = 0, ∀s ∈ S;

3: Put s into G such thatrs ≥ rreq
s ; Otherwise, put intoG;

4: while G 6= ∅ do
5: Remove k from G such that k =

argmaxs∈G (rreq
s − rs);

6: Solve (10) withrreq
s = 0, ∀s ∈ G

S

G;
7: G← ∅, G← ∅
8: Put s into G such thatrs ≥ rreq

s ; Otherwise, put intoG;
9: end while

B. Admission Control

An admission control strategy is essential to provide
protection to the sources that are currently being serviced.
In other words, the QoS of existing flows in terms of
a minimum rate (being currently provided) cannot be
compromised in order to accommodatenew incoming
flows. Our resource allocation framework can be easily
adapted to support admission control.

In more detail, the admission control process works
as follows. Let us assume that new sources (possibly
multiple), N , request services, each source with its own
minimum rate specifications (as before). The set of ex-
isting sources is calledE. First, we solve the utility
maximization problem (10), with both the new and existing
sources, by using Algorithm 1. If the rates requested are
feasible, then all the new connections are allowed to join
the network. If the requested rates are infeasible, then
the Algorithm 3 is invoked. However, in lieu of dropping
the flow with the largest QoS requirement inE

S

N , we
drop the source with the largest QoS requirement inN .
The process is repeated until all the sources inN are
either admittedor dropped. We summarize our approach
in Algorithm 4 below.

Algorithm 4 Admission Control
1: Initialization : E ← ∅, N ← ∅
2: Put the existing sources intoE and the new one(s) intoN ;
3: Perform Algorithm 1 on (10) for the sources inE

S

N ;
4: if (10) is infeasiblethen
5: Run Algorithm 3 and GetG;
6: while E

T

G 6= E andN 6= ∅ do
7: Reject a new source with the maximum QoS require-

ment inN ;
8: Run Algorithm 3 and GetG;
9: end while

10: if E
T

G = E then
11: Admit all new source(s) inN ;
12: end if
13: else
14: Admit all new source(s) inN ;
15: end if

VII. N UMERICAL EVALUATIONS

In this section, we evaluate the performance of our
proposed framework via extensive numerical simulations.

A. Simulation Setup

For the purposes of evaluation, we consider a typical
mesh network with stationary wireless routers, deployed
in an area of size of800m × 400m; the wireless routers
can serve as both access points (APs) for client nodes and
relaying nodes for forwarding data received from neigh-
boring nodes. The topology of WMN under consideration
is shown in Figure 1; it consists of10 wireless routers
and one gateway. A solid line between any two routers
indicates the link over which the data between the routers
is transmitted. Six routers, W1, W6, W7, W8, W9, and
W10, are considered as the traffic sources; their routes to
the gateway (G) are given by:

• Source #1: W1→ G
• Source #2: W6→ W2 → G
• Source #3: W7→ W3 → W1 → G
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TABLE I
PERFORMANCE TRACES OF VARIOUS ADMISSION SCHEMES

h
h

h
h

h
h

h
h

h
h

h

new request
schemes

No Admission Control RC-FP withMR Proposed withMR Proposed with OPT

W7(0.29) & W1(0.40) (N)W7: .510 (S) (N)W7: Rejected (N)W7: 0.510 (S) (N)W7: 0.510 (S)
(N)W1: 1.0 (S) (N)W1: Rejected (N)W1: 1.0 (S) (N)W1: 1.0 (S)

W8(0.30) & W10(0.29) (N)W8: .255 (NS) (N)W8: Rejected (N)W8: Rejected (N)W8: .339 (S)
(N)W10: .255 (NS) (N)W10: Rejected (N)W10: .339 (S) (N)W10: Rejected
(E)W7: .255 (NS) (E)W7: .339 (S) (E)W7: .339 (S)
(E)W1: .510 (S) (E)W1: .677 (S) (E)W1: .677 (S)

W9(0.40) & W6(0.39) (N)W9: .381 (NS) (N)W9: Rejected (N)W9: .400 (S) (N)W9: .400 (S)
(N)W6: .381 (NS) (N)W6: Rejected (N)W6: .392 (S) (N)W6: .392 (S)
(E)W7: .277 (NS) (E)W7: .392 (S) (E)W7: .392 (S)
(E)W1: .382 (NS) (E)W1: .400 (S) (E)W1: .400 (S)
(E)W8: .278 (NS) (E)W10: .392 (S) (E)W8: .392 (S)
(E)W10: .278 (NS)
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Fig. 1. Network topology

• Source #4: W8→ W4 → W1 → G
• Source #5: W9→ W5 → W2 → G
• Source #6: W10→ W8 → W4 → W1 → G

We adopt the simple but widely used signal propagation
model where, the gain on a link spanning a distanced is
inversely proportional tod4 [29]. Links use one of3 non-
overlapping orthogonal channels (as with 802.11g [30]).
The maximum transmit power for each link is set to 1,
and the maximum sending rate for each of the sources is
set to 1.

B. Evaluating our admission control strategy

To evaluate the proposed admission control strategy, we
consider a scenario where service requests with minimum
rate requirements from the traffic sources are generated
dynamically. The requests from W7 and W1 arrive first.
Later, the requests for W8 and W10 arrive together fol-
lowed by those of W9 and W6. An admission control
policy based on the proposed resource allocation frame-
work and the dropping ruleMR is compared with policies
based on three other different combinations of resource
allocation strategies and dropping rules: (a) the proposed
resource allocation, no dropping, and no admission control
(every new source is accepted), (b) a random channel
assignment strategy with multiple channels and fixed
power (RC-FP) andMR and (c) the proposed resource
allocation and the optimal dropping (OPT). We find the

best dropping policy (OPT) using exhaustive search; in
this small topology, this can be done in a reasonable time.
Table I shows the results with each admission control
policy. As before, N and E represent the new and the
existing sources. We use the notationS andNS to indicate
whether a source isSatisfied orNot Satisfied in terms of
its QoS requirement.

As seen in Table I, without admission control, the QoS
requirements of the existing flows are violated (they are
now classified asNS). RC-FP results in the rejection of
all the new requests even when it works in conjunction
with the proposed dropping rule and the admission control
strategy. This is directly attributable to the poor resource
allocation with RC-FP. This demonstrates that without
smart resource allocation, admission control may not be
very useful. The admission control with the proposed
resource allocation framework and the dropping ruleMR,
supports five sources with their QoS requirements satisfied
(all except W8). It rejects W8 since accommodating both
W8 and W10 causes a violation of QoS for W7. We
observe that the scheme achieves a performance that is
comparable to that with the optimal policy, OPT.

VIII. C ONCLUSIONS

In this paper, we develop a framework for supporting
QoS in wireless mesh networks. The framework maxi-
mizes the aggregate utility of flows taking into account
constraints that arise due to self-intereference (wireless
channel imposed constraints) and minimum rate require-
ments of sources (QoS requirements). If a solution is
not feasible, the framework selectively drops a few of
the sources and redistributes the resources among the
others in a way that their QoS requirements are met.
The proposed framework readily leads to a simple and
effective admission control mechanism. We demonstrate
the efficacy of our approach with numerical results. We
also theoretically compute performance bounds with our
network, as compared with an optimal strategy.
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