
1

Synchronization of Multiple Levels of Data Fusion in Wireless Sensor Networks

Wei Yuan, Srikanth V. Krishnamurthy, and Satish K. Tripathi
Department of Computer Science and Engineering, University of California, Riverside,

Riverside, CA, 92521

Abstract— In wireless sensor networks, in-network data fusion
is needed for energy-efficient information flow from a plurality of
sensors to a central server or sink. As data (either raw or fused)
is propagated towards the sink, multiple levels of data fusion are
likely. The data fusion at various levels should be synchronized in
order to fuse data effectively. It is important that information from
as many sensors as possible to be fused in order to increase the
credibility of the aggregated report. However, there are trade-offs
between fusing a large number of sensor reports and the latency
incurred in the aggregation process. The paths taken by the data
towards the sink determine where data can be fused, and thus,
have an effect on the efficiency of the aggregation process. In this
work, we propose a methodology by which the various levels of
fusion are synchronized to ensure that the aggregated report has a
desired trade-off between credibility and latency, regardless of the
topology of the structure created by the integration of the paths on
which data traverses towards the sink.

I. INTRODUCTION

Due to rapid advances in technologies of VLSI, RF and em-
bedded processors, the widespread use of wireless sensor net-
works to obtain physical quantities, such as temperature, pres-
sure, etc., from the environment anywhere and at anytime is
becoming the reality. Such a sensor network usually consists
of hundreds or thousands of micro sensors with the capability
of wireless communications and the ability to perform adequate
processing to interpret the sensed data [1] [2]. The information
generated by a plurality of sensors that sense a particular event
is to be ultimately delivered to a central server or sink. Due to
the severe energy constraints, sensor networks normally employ
in-network data fusion [3][4]; the power-saving benefit of data
fusion has been confirmed theoretically [8] and experimentally
[5]. One might envision that at each sensor node at which data
(probably already fused to certain extent) is received from mul-
tiple other sensors, information is fused to the extent possible.
Thus,data will be fused multiple times,in stages, as it is relayed
towards the sink.

During multiple levels of data fusion, at each level, multiple
data reports are received. There is a possible time lag between
the instances of reception of these multiple data reports. As an
example, in Fig. 1, node B might receive the report from node C
much later than when it receives the report from Node D. Thus,
each sensor node has to decide on when to begin the process of
fusion and how long to wait before the end of the fusion. Intu-
itively, the longer the time that the sensor node which performs
the fusion waits, the larger the number of reports it will receive.
We associate with a fused report a measure of its accuracy and
we call this measure credibility. In this paper, we simply quan-
tify the credibility of the aggregated report by the number of

This work was partially supported by HRL Laboratories, LLC and the UC
Micro.

A

B

C D

E F

...

Level 2

Level 1

Level 0

Levle 3 Sink

Fig. 1. A Structure to Perform Fusion at Multiple Levels

corroborative individual sensor reports that are fused in the ag-
gregated report, our reasoning being, the higher this number,
the higher the accuracy. However, a higher latency may be the
cost of the higher credibility.

The process wherein, sensors detect an event, and the data
related to the event is eventually fused at the sink via multiple
levels of fusion en route, is called a “round” of aggregation. In
this paper, we propose a protocol that allows a node to deter-
mine when to start and finish the fusion process during a round
of aggregation in order to ensure the desired trade-off between
the achieved credibility and the incurred latency. We call it the
Multi-level Fusion Synchronization (MFS) protocol.

The rest of this paper is organized as follows. In section II,
we describe related work on data aggregation in sensor net-
works. In section III, we describe the system model that we
use in our simulation experiments. In section IV, we look at a
simple but unrealistic network to understand the impact of var-
ious parameters. We describe the proposed protocol in section
V. Our simulation results are presented in section VI. Finally,
we conclude our work in section VII.

II. RELATED WORK

The focus of our paper is unique and different as compared
with previous work on sensor data aggregation. In WINS [2], a
node can seek information from nearby sensors for data fusion
(the weighted merging of detection decisions) or for coherence
beamforming (the complex weighting of raw data from multiple
sensors for making improved detection decisions). But the pa-
per does not provide details of how data fusion is implemented.

In [6], a software architecture that supports in-network ag-
gregation in a sensor network is described. The authors show
by experiments that aggregation can significantly reduce net-
work traffic. In [8], the authors provide analytical bounds on
the energy saving by data aggregation.

In [5], Directed Diffusion is presented, in which, locally op-
timal paths between sources and sink are established. These
paths form an aggregation tree rooted at the sink. Whenever
similar data meets at a branching node in the tree, the copies
of similar data are fused into a single message. To improve the

2

energy-efficiency of this opportunistical aggregation, a greedy
incremental tree is proposed by the same authors in [7]. This
prior work however does not address issues related to synchro-
nization among the aggregating nodes, nor does it examine the
associated credibility of the aggregated content.

III. SENSOR NETWORK MODEL

In this section, we describe the basic framework of the sen-
sor network considered in this paper. A sensor network con-
sists of a large number of wireless micro-sensor nodes which
are distributed over a certain area. The area may be divided
into a number of regions based on the positioning precision re-
quirements, sensing range of the sensors and other application
specific requirements. Each micro-sensor node has at least one
sensor, a computation unit and a radio transceiver. There are
three circumstances that would cause a sensor node to send a
report to the sink. First, sensor nodes periodically send reports
to the sink and we call this periodical reporting. Second, the
sink queries sensors in specific regions for current sensed in-
formation and we refer to this as sink inquiry response reports.
Third, due to the occurrence of certain events, reports are trig-
gered from sensors in the particular region in which the event
occurs; we call these reports event triggered reports. In this pa-
per, we limit ourselves to event-triggered scenarios; however,
note that the schemes that we propose can easily apply to the
other scenarios as well, with minor modifications. Depending
on the target event (application) and the types of sensors de-
ployed (temperature sensors, pressure sensors, motion sensors,
etc.), the way in which data is fused may vary. Data fusion
models for various types of sensed data may be found in [9].
The protocol we propose in this paper are independent of the
fusion model used; however, to simplify our analyses and sim-
ulations, we assume the data that a sensor generates only rep-
resents whether or not an event occurs. A fused report would
simply contain a count of the number of reports that either con-
firm or dispute the occurrence of the event1.

Typically, the sink is distant from the area where the sensor
nodes reside. The sensor data has to be ultimately relayed to the
sink via multiple sensor node relays. One can then visualize the
data being transferred via a structure that facilitates the many-
to-one data transport. In some sense, building such a structure
is akin to building a single source multicast tree, the difference
is that instead of data propagating from the single source to the
multicast group members, the data flows in the opposite direc-
tion, i.e., from the members to the sink. A second difference is
that en route, data may be fused at various vantage points on the
tree. The topology of this aggregation tree determines the effi-
ciency with which data may be fused, to a certain extent. While
the discussion of algorithms that help to generate and maintain
this tree are beyond the scope of this paper, we show the effects
of the topology on the fusion process and how our synchroniza-
tion protocol can function independent of the topology of the
tree. Our only requirement is that each sensor node is aware�

In contrary another example of data fusion might involve an attempt to esti-
mate the precise location of a target by extrapolating its distance computations
from multiple sensors whose co-ordinates are known. Even here, the more the
reports the more precise will be the estimated position of the target.

of its immediate neighbors; specifically it should know its par-
ent i.e., the sensor node to which it sends data (either fused or
raw) and its children, sensors from whom it receives data. Each
non-leaf node or internal node is responsible for relaying (af-
ter possibly performing fusion) data received from its children
towards the sink node. We assume that the aggregation tree is
formed at the network initialization phase, and is dynamically
re-organized as sensors sleep, wake up or fail. We note that
in the aggregation tree, we refer to nodes as being at particu-
lar levels. The leaves are at the lowest level (Level 0) whereas
the sink is at the highest level. Furthermore, note that multiple
trees may be formed for gathering information from multiple
(possibly geographically separate) sensor sets.

We assume a high density of sensor nodes and that multiple
sensors detect each event. The credibility of the final report at
the sink is directly reflected by the total number of reports that
are fused and we denote this number by TN.

We restrict ourselves to the occurrence of a single event in
this work. Multiple events can be treated individually by using
the same method. Note that by either including query identi-
fiers or by associating time-stamps and geographical position
with events, one could identify a particular event. If a sensor is
unable to fuse data (application layer function), it may still be
able to simply concatenate reports to the extent possible to save
on header overhead.

IV. A SIMPLE SYNCHRONIZATION SCHEME:
THE EVENT TRIGGERED SCHEME (ETS)

In this section we present a simple scheme that supports syn-
chronization among the aggregation levels in the structure that
is formed and call this scheme, the Event Triggered Scheme
(ETS). Our objective here is to elucidate how the topology of
the aggregation tree affects the multi-level fusion process. A
leaf node reports a sensed event to its parent node immediately
after it detects the event. At an internal node, the aggregation
timer is triggered by one of the following two conditions: (a)
the detection of the event (if at all the internal node itself de-
tects it) or (b) the receipt of the first incoming report packet2

from one of its direct children. The timer on an internal node
will expire T seconds after it is triggered; late reports with re-
gards to the same event are discarded3; T is the time-out value
and can be configured. This scheme needs no global coordina-
tion and thus, no signaling is required once the initial structure
is in place. We are interested in the impact of the value of T on
the performance in terms of the number of fused reports, TN,
and the latency incurred during a round of aggregation. The
latency is defined as the time-interval from the point when the
event occurs to the point when the sink receives the fused con-
tent, i.e. the duration of a round. As T increases, we might
expect TN to increase as well. But increasing T beyond a cer-
tain threshold will not result in further increase of TN (there
are only a limited number of reports that are generated). The
latency will also increase with T.�

Note that this report packet may contain either raw or previously fused data.�
The node could forward late reports without performing any fusion. This

would be inefficient. Furthermore, the delayed reports may not be received by
the sink in time. Thus, in this work, we simply assume that they are discarded.

3

In order to understand the effect of the topology of the tree
on the performance, we consider the example in Fig. 1. In this
example, leaf nodes E, F and D detect an event at time 0. All
of them report the event to their parent node at time 0. Let us
ignore link delays due to propagation or due to the retransmis-
sions because of packet collisions. Internal nodes B and C do
not detect the event. However their timers are triggered at time
0 by the receipt of their children’s packets. At time T, both
nodes B and C time out, and fuse the data that they have re-
ceived thus far and propagate the fused data further up the tree.
Note that node B will miss the fused data from node C since its
timer has already expired before the packet from node C arrives,
and it has finished its fusion process. We observe that this effect
is due to the imbalance in the tree and the lack of a good mech-
anism to synchronize the fusion operations at nodes B and C.
One might intuitively suspect (as corroborated by simulation re-
sults) that a balanced tree structure is better than an unbalanced
tree structure. However, it may be difficult to obtain a perfectly
balanced tree for arbitrary distributions of sensor nodes. Thus,
we would need a mechanism that provides synchronization be-
tween the fusion operations at different nodes. One would ex-
pect that it is essential for the time-outs at the different levels
of the aggregation tree to be different; nodes at higher levels of
the tree ought to have longer time-outs than those at the lower
levels if the timers for fusion at the different levels were trig-
gered concurrently. Note that the latency is proportional to the
depth of the tree; thus a balanced tree might be expected to re-
duce the overall latency incurred in a round of fusion for a given
credibility requirement.

V. THE MULTI-LEVEL FUSION SYNCHRONIZATION

PROTOCOL

In this section, We propose the Multi-level Fusion Synchro-
nization (MFS) Protocol to synchronize the fusion processes at
different nodes in the tree to achieve the desired trade-offs be-
tween the credibility and the latency incurred during a round of
aggregation4.

As seen earlier, if every node upon being triggered waits for
the same fixed period of time to collect reports from descen-
dents one would either have to make this waiting time large or
suffer from either lost information or a degraded efficiency in
fusing data. Nodes at higher levels will have to possibly receive
information from a large number of lower levels. Hence, it
would be appropriate for these nodes to wait for longer periods
as compared to nodes at lower levels. We assume that depend-
ing on the application, the sink can choose the right trade-off
between the desired credibility and the tolerable latency.

In MFS, first, the sink needs to determine a time interval
MAX, for which it would like to wait before it attempts to fuse
the received data. The actual latency incurred could potentially
be larger than MAX, and in the worst case, could be propor-
tional to the depth of the propagation tree5. The sink also needs
to choose a parameter

�
, which represents the difference in the

waiting periods at consecutive levels. We re-iterate that the leaf�
Note that we do not need absolute clock synchronization between the sen-

sor nodes. Needed is a loose event level synchronization between the fusion
operations.�

We will compute an upper bound for the latency later.

nodes are at the lowest level, the parents of these leaf nodes are
at Level 1 and so on as shown in Fig. 1. The values of MAX
and

�
may be indicated to each node during the set up phase.

When a different level of credibility is needed, the sink might
propagate new values of MAX and

�
to be used for ”the par-

ticular round” of aggregation in the region of interest to reach
the appropriate set of nodes.

A leaf node reports a sensed event to its parent node imme-
diately after it detects the event. This triggers the timer of its
parent node. When an internal node at distance K (in hops)
from the sink initiates its timer, it sends out a START message
to all its neighbors. If a neighbor is an internal node and its
timer is not already triggered, it is triggered by the receipt of
this START message. Thus, the timer on an internal node will
be triggered by any of the three following events, (a) the de-
tection of the event by the internal node, (b) the receipt of the
first incoming report from one of its direct children, or (c) the
receipt of a START message from a neighbor. The timer, thus
triggered, will expire (MAX - K*

�
) seconds later. Upon the

expiry of the timer, data received will be aggregated and passed
further up in the tree. As mentioned earlier, we assume that late
reports with regards to the event are simply discarded. There
are some internal nodes whose timers are unnecessarily trig-
gered. After the timer expires, they will have received no report
from their children, nor will they have detected the event them-
selves. These nodes do not further participate in the aggregation
process.

Note that the START messages may collide with each other
or with other packets since they are simply broadcast. Thus,
some of them may be lost. In the best case, there are no col-
lisions and all internal nodes that are required to participate in
data fusion and transport, towards the sink node, trigger their
aggregation timers almost at the same time that the relevant
event occurs (ignoring propagation delays). The latency then
is approximately equal to MAX. In the worst case, none of
the pertinent internal nodes receive the START message (due
to collisions), and in this case the latency could be

��� 	�
��
���������������� � �"! �$# �%�����&� �

�(' ! #) �+*

where D is the depth of the propagation tree (in hops). If we
ignore propagation delays, this is also the upper bound on the
latency incurred during a round of aggregation with the MFS
protocol.

It is to be noted that if ���,�.-/� # �0' ! � � , reports from
sensors below a certain level may not reach the sink. In such
a case, the fused content may not have the requisite credibility.
The sink node will then have to choose new values for MAX
and

�
, and query the network for a more credible response. If

the sink knows the depth of the propagation structure, it should
be easy for it to determine the values of MAX and

�
; other-

wise a learning phase may be needed for the sink to find the
reasonable values of MAX and

�
. In the learning phase, the

sink queries the region with different values of MAX and
�

and adjusts these values based on the reports’ credibility and
the application requirements.

4

Sink

Fig. 2. Node Distribution for ETS

VI. SIMULATION AND RESULTS

We implemented ETS and MFS in ns-2 [12]. For our sim-
ulations we make use of the CMU Monarch group’s mobil-
ity extensions [12]. The existing implementation of the IEEE
802.11 [13] MAC layer protocol is used. Our first objective is
to demonstrate the effect of the topology on the efficiency of
fusion. Towards this we use two protocols that can construct a
tree rooted at the sink: (a) The Breadth First Search (BFS) al-
gorithm [11] which creates a tree that is balanced to the extent
feasible and (b) The On-Demand Multicast Routing Protocol
(ODMRP) [10], a protocol proposed for creating source based
multicast trees; the tree created by ODMRP could potentially
be heavily unbalanced. We wish to then examine the corre-
lation between the parameters ���,� and

�
and evaluate the

performance of our protocols when the tree is (i) balanced and
(ii) unbalanced.

In the simulation of ETS, the nodes are distributed as shown
in Fig. 2, in accordance to a 10*10 grid. The radio range of
each node is such that its transmission can reach only its eight
geographically nearest neighbors. The sink resides at the lower
left corner; the nodes on the upper and the right boundaries
are the only nodes that will detect the event of interest. Thus,
there are totally 19 raw reports for the event. We first used a
modified version of ODMRP to create the propagation tree. The
modification we made was to turn off the periodic refreshment
of the tree as required for multicast operation and maintenance.
Due to the randomness associated with the MAC layer access,
each time we ran ODMRP, it created a different tree. So we
ran simulations over 300 different ODMRP trees and for each
tree, we generated 200 events. Each event is detected by the 19
sensors as specified earlier, and the reports generated by these
sensors are propagated towards the sink. At each intermediate
node, data is fused and the fused message is propagated further.
We take the average over the 60000 events. To see the impact
of the structure of the tree, we used the BFS method to create a
well-balanced tree, and performed the same simulation.

From Fig. 3, we can see that as T increases, the total number
of responses included in the aggregation (TN) also increases,
which is as expected. BFS creates a better-balanced tree and
outperforms ODMRP most of the time. Thus, one might con-
clude that it is better to create a well balanced structure along
which responses may be aggregated. Note that doing so also
reduces bottlenecks of MAC layer contention. When ODMRP
is used, some of the reports actually get lost due to such bot-

0 0.02 0.04 0.06 0.08 0.1 0.12 0.14 0.16 0.18
0

5

10

15

T (second)

T
N

ODMRP
BFS

Fig. 3. Total number of fused raw sensor reports (TN) in ETS

0 0.02 0.04 0.06 0.08 0.1 0.12 0.14 0.16 0.18
0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

1.8

T (Second)

La
te

nc
y

(s
ec

on
d)

ODMRP
BFS

Fig. 4. Latency in ETS

tlenecks and this translates to the lower value for TN seen in
Fig. 3. Fig. 4 shows that the latency is proportional to T, which
also agrees with our analysis. Furthermore, notice from Fig. 3
and 4 that for a given latency, the sink can fuse more individual
responses when using a propagation structure created by BFS
than by ODMRP.

We next simulated the MFS protocol and examined its perfor-
mance with the ODMRP and the BFS trees. We randomly dis-
tributed one hundred nodes over a 1000m*1000m square area,
as shown in Fig. 5. The sink resides at the lower left corner as
shown in the figure. The radio range of each node is 250m. The
eighteen sensor nodes that are closest to the upper right corner
generate raw reports. The depth of the tree generated by BFS is
7. We set MAX to be 1.2 seconds6.

SINK

Fig. 5. The distribution of nodes for our simulation experiments

Fig. 6 shows that the MFS protocol works fine on both the
balanced tree structures generated by BFS and the possibly un-
balanced tree structures generated by ODMRP. We also can see1

Note that this is a system parameter that may be used to set a desired upper-
bound on the latency incurred during a round of aggregation.

5

 2

 4

 6

 8

 10

 12

 14

 16

 18

 0 0.05 0.1 0.15 0.2 0.25 0.3

T
N

∆ (second)

BFS
ODMRP

Fig. 6. Total Number of Nodes that respond (TN) in MFS

that as
�

increases, TN increases rapidly until a certain stage,
when the sink gets an aggregated report that takes almost all
the individual raw sensor reports into account. However if

�
increases further beyond a certain second stage, TN starts de-
creasing. If

�
is very small, then the time-out at each level

is almost equal to the time-out at any other level (2 ���,�).
Since the tree may be unbalanced, as mentioned earlier, this
choice of equal time-outs at every level leads to a loss of in-
formation. Thus, the credibility of the aggregated report is low.
Furthermore, notice that we incur a large latency (Fig. 7) since,
now, the waiting period is large even at lower levels. On the
other hand, if

�
is large, nodes at a given level do not wait

long enough to collect information from all the children at the
preceding lower level. Thus, even though we observe a low
latency, the associated credibility in terms of the number of re-
sponses (TN) collected is low. We observe that the drop-offs in
terms of credibility at the two extremes are fairly steep. Thus,
by increasing

�
by a little less than (MAX/D) (in this case, 0.17

seconds), we can obtain a good credibility within a short period
of time. The fairly flat behavior of the credibility between the
steep drop-offs demonstrates that the credibility is not very sen-
sitive to the value of

�
in this region. In fig. 7, we also note that

in the tree generated by BFS, the latencies incurred for almost
all values of

�
are less than 2*MAX. And since the randomly

generated ODMRP trees are typically unbalanced as compared
to the tree generated by BFS, they may have a larger depth, and
hence, a larger latency is incurred.

 1.6

 1.7

 1.8

 1.9

 2

 2.1

 2.2

 2.3

 2.4

 2.5

 2.6

 0 0.05 0.1 0.15 0.2 0.25 0.3

L
a
te

n
c
y
 (

s
e
c
o
n
d
)

∆ (second)

BFS
ODMRP

Fig. 7. Latency in MFS

VII. CONCLUSIONS

In this paper, we propose a protocol (Multi-level Fusion Syn-
chronization or MFS protocol) that provides synchronization

between multiple levels of data fusion in wireless ad hoc sensor
networks. In such networks, typically raw data from a plural-
ity of sensors is to be transported to a central operation center
or sink. En route, data is fused multiple times to reduce the
amount of communication overhead in terms of bandwidth and
power. The flow of data from the sensors to the sink is akin
to the flow of data along a tree, from the leaves and/or inter-
mediate nodes, to the root of the tree. At each non-leaf node
on the tree data may be fused. It is important to synchronize
the fusion operations at various nodes in order to ensure that
as many raw reports as possible are fused together within some
latency constraint. The topology of the tree (whether it is bal-
anced or unbalanced) has an effect on how effectively data may
be fused. We show by means of simulations that our method
provides effective synchronization between the various fusion
levels and that a high credibility can be associated with the fi-
nal fused report irrespective of whether the tree is balanced or
unbalanced.

REFERENCES

[1] D. Estrin, L. Girod, G.Pottie and M.Srivastava, “Instrumenting
the World with Wireless Sensor Networks.” In Proceedings of
ICASSP 2001, May, 2001.

[2] G.J. Pottie, and W.J. Kaiser, “Wireless Integrated Network Sen-
sors.” Communications of the ACM, Vol. 43, No. 5, May 2000.

[3] G.J. Pottie, “Hierarchical Information Processing in Distributed
Sensor Networks.” In Proceedings of the IEEE International
Symposium on Information Theory, 1998, pp.163, 1998.

[4] W.R. Heinzelman, A.C. Chandrakasan and H. Balakrishnan, “En-
ergy Efficient Communication Protocol for Wireless Microsensor
Network.” In Proceedings of the IEEE Hawaii International Con-
ference on System Sciences, Jan, 2000.

[5] C. Intanagonwiwat, R. Govindan and D. Estrin, “Directed Dif-
fusion: A Scalable and Robust Communication Paradigm for
Sensor Networks.” In Proceedings of the sixth annual interna-
tional conference on Mobile computing and networking 2000,
Aug, 2000.

[6] J. Heidemann, F. Silva, C. Intanagonwiwat, R. Govindan, D. Es-
trin and D. Ganesan “Building Efficient wireless sensor network
with low-level naming.” In Proceedings of the ACM Symposium
on Operation System Principles, Oct, 2001.

[7] C. Intanagonwiwat, D. Estrin, R. Govindan and J. Heidemann,
“Impact of Network Density on Data Aggregation in Wireless
Sensor Networks.” In Proceedings of International Conference
on Distributed Computing Systems, July, 2002.

[8] B. Krishnamachari, D. Estrin and S. Wicker, “Impact of Data Ag-
gregation in Wireless Sensor Networks.” In International Work-
shop on Distributed Event-Based Systems, July, 2002.

[9] D.L.Hall and J.Llinas, Handbook of Multisensor Data Fusion,
CRC Press, 2001.

[10] S.H. Bae, S.J. Lee, W. Su and M. Gerla, “The Design, Imple-
mentation, and Performance Evaluation of the On-Demand Mul-
ticast Routing Protocol in Multihop Wireless Networks.”, IEEE
Network., Vol.14, Issue.1, Jan/Feb, 2000

[11] T.H. Cormen, C.E. Leiserson and R.L. Rivest, “Introduction
to Algorithms.”, The MIT Press. pp.469-477, Cambridge, Mas-
sachussatts, 1990.

[12] The Network Simulator - ns-2 “http://www.isi.edu/nsnam/ns/”.
[13] “IEEE 802.11 Standard for Wireless LAN: Medium Access Con-

trol (MAC) and Physical Layer (PHY) Specification.”, New York,
Approved on 26 June, 1997.

