
Coping with Packet Replay Attacks in Wireless Networks

Zi Feng∗, Jianxia Ning∗, Ioannis Broustis∗,
Konstantinos Pelechrinis‡, Srikanth V. Krishnamurthy∗, Michalis Faloutsos ∗

∗UC Riverside, ‡University of Pittsburgh
{zfeng, jning, broustis }@cs.ucr.edu, kpele@pitt.edu, {krish, michalis}@cs.ucr.edu

Abstract—In this paper, we consider a variant of packet replay
attacks wherein, an attacker simply replays overheard frames as
they are, or with minor manipulations in the packet header; we
refer to this as the copycat attack. When routers forward such
replayed packets, the levels of congestion and interference increase
in large portions of the network. Our experiments indicate that
even a single attacker can degrade the route throughput by up
to 61%. While simple to use techniques such as digitally signing
every packet can stem the dissemination of such packets, they
are resource intense. Thus, we design a lightweight detection
and prevention system, COPS (for Copycat Online Prevention
System), that intelligently uses a combination of digital signatures
and Bloom filters to cope with the attack. With our system, the
task of identifying and discarding replayed packets is distributed
across a plurality of nodes on a route. We implement COPS
on real hardware and perform experiments on our 42 node
wireless testbed. Our measurements indicate that COPS achieves
its objective; it can efficiently contain the effects of replayed
packets to a local neighborhood without incurring high resource
consumption penalties. Specifically, we show that COPS reduces
the route throughput degradation by up to 66%.

I. INTRODUCTION

A simple, yet effective strategy for wireless DoS is to replay
locally overheard data packets. These packets are then carried
by other forwarding nodes resulting in increased levels of
congestion on a wider scale. There are variations of the attack,
where either control or data packets are replayed. In this work,
we are focus on adversaries that replay data packets either
without modifying them or after manipulating their contents
(typically the header); we refer to this attack as a copycat attack.
The objective of the attacker is to make the packet to look
like a legitimate unit avoiding at the same time detection. The
intelligence of such an attack lies in convincing (i) the MAC
level recipient(s) of a packet to accept and forward it and, (ii)
the final destination into believing that this was a legitimately
retransmitted packet and that no attack is being launched.

To illustrate this attack strategy, consider the simple topology
depicted in Fig. 1. Here, Alice has established a 3-hop route to
Bob via the relays R1 and R2. Without loss of generality, the
attacker is in Alice’s vicinity and overhears her packets. Let us
examine the following two cases.
a. The attacker does not manipulate any packet contents:
Let us assume that in the topology of Fig. 1, the PDR (Packet
delivery Ratio) on all of the links is equal to 1. Alice first
transmits packet P1, which is successfully received by R1 and
overheard by the attacker. Thereafter, when Alice observes the
medium to be idle, she transmits packet P2 to relay R1, which is
also acknowledged. Relay R1 will place P1 and P2 in its MAC
output queue and will forward them to R2 whenever it gains

This work was done with support from the US Army Research Office under
the Multi-University Research Initiative (MURI) grant W911NF-07-1-0318.

Ioannis Broustis is now working at Alcatel-Lucent.

Fig. 1. The data copycat attack: Alice’s packets towards Bob are replayed by
the attacker; routers R1 and R2 forward the replayed packets.

access to the medium. When the attacker observes that relay
R1 has received P2, the packet P1 is replayed and received by
R1 again. This replayed packet has Alice’s source address and
appears to be new from the perspective of the MAC layer of
R1 (there are no pending ACKs for the replayed P1). Hence,
R1 is deceived into forwarding it to R2, again. Note here that
in order for the attack to be successful, the attacker has to make
sure that R1 will not discard the replayed P1 packet. This is
possible only if R1 successfully receives subsequent packets
(e.g. P2) from Alice. Otherwise, R1 will assume that Alice has
not received the ACK for P1, and simply discard the replayed
P1 [1] (until a new packet such as P2 is received). Note here
that the attacker can temporarily store and replay packets that
are quite old, thereby effectively circumventing this constraint.
b. The attacker edits the packet header: The above attack strat-
egy can be easily detected. In particular, the original transmitter
of the packet (e.g., Alice) can easily detect the malicious node,
when overhearing a replayed packet by inspecting the source
MAC address. In addition, even if the above is not possible in
some topologies, an “unmatched” MAC layer ACK (e.g., sent
from R1 to Alice due to the replayed packet from the attacker)
will trigger the detection. Upon detection, this attack strategy
can be overcome by using a Bloom filter to ascertain that a
newly arriving packet has not been received in the past. To
bypass such safety countermeasures, the attacker may slightly
modify a packet in a way that it still looks legitimate. A simple
approach would be to spoof the MAC address of a legitimate
node [2] that is not part of the Alice-Bob route, and replace
Alice’s address with the spoofed address in the header of the
data packet. R1 and R2 are thus misled into believing that this
is a new legitimate packet and Alice cannot detect the attack.

Our measurements on a wireless testbed, show that the
impact of the copycat attack on performance can be devastating.
In particular, the existence of a single attacker can degrade the
route throughput by up to 61%, while multiple attackers can
further reduce the total network throughput.

The above effects can be completely overcome by using
simple, previously proposed techniques. In particular, a basic
scheme that utilizes digital signatures and Bloom filters can
mitigate copycat attacks. Our prototype implementation, pre-
sented later, demonstrates the robustness of the basic scheme
(up to 66% throughput improvement).

2011 8th Annual IEEE Communications Society Conference on Sensor, Mesh and Ad Hoc Communications and Networks

978-1-4577-0093-4/11/$26.00 ©2011 IEEE 368

However, performing signature and filtering operations on
each data packet introduces considerable processing overheads,
especially at high data rates. This in turn, can significantly hit
performance, especially under benign settings. Our measure-
ments with different devices verify this fact, particularly when
the available CPU and memory resources are limited. COPS
balances the trade-off between the incurred processing overhead
(due to the use of digital signatures) and the level of achieved
protection against DoS, by only requiring signatures on a
randomly chosen subset of packets. This subset is determined
a priori by the source of the packets, and the processing load
of the verification operations is distributed among all the nodes
of a route. In brief, the main contributions of our work can be
summarized in the following:

• We assess the trade-off between the processing overhead
and attack resilience via extensive experimentation. Our
experiments show that by signing just 40% of the packets
the throughput on a 2-hop route is increased by up to 56%
with one attacker and by up to 95% with two attackers.

• Based on the above assessments, we design COPS. COPS
is an adaptive scheme that includes a detection and re-
strainer mechanism to counter copycat attacks. In brief,
a very limited number of randomly generated packets
are signed and verified in benign settings but upon the
detection of a copycat attack, a more aggressive sign-
ing/verification policy is adopted.

• We implement and experiment with COPS on our in-
door/outdoor 802.11 testbed. Our measurements show that
our scheme can effectively contain the copycat attack.

The remainder of the paper is structured as follows. In section
II we provide brief background on digital signatures and Bloom
filters; we also discuss previous related studies. In section III
we describe the attacker model and we quantify the impact of
an attack. In section IV we present our measurement guidelines
that lead to the design of COPS which is presented in section
V. In section VI we evaluate the effectiveness of COPS. Our
conclusions form section VII.

II. BACKGROUND AND RELATED WORK

In this section, we first provide brief background on packet
authentication towards fighting DoS attacks. Subsequently, we
discuss relevant previous studies.

A. Using Bloom filters and digital signatures
As discussed earlier, with the copycat attack the attacker can

manipulate the headers of overheard packets, by using spoofed
addresses. The use of digital signatures can help prevent the
propagation of such manipulated packets. Routers may utilize
Bloom filters to determine whether a newly arrived packet is
original or replayed; while Bloom filters can catch packets that
are replayed as is, they cannot catch manipulated packets. Thus,
COPS intelligently employs both Bloom filtering and digital
signing functionalities. We briefly explain the default operations
of Bloom filters and digital signatures, in what follows.

Bloom filters in a nutshell: A Bloom filter is an array of
bits of size m for representing a set B = j1, ..., jn; initially all
the bits are set to 0. A Bloom filter uses k independent hash
functions f1, ..., fk with range 1, ..., m [3]. For every i ∈ B,
the bits fi(ji) are set to 1 for 1 ≤ i ≤ n if j is to be indexed

using the filter. Although a location can be set to 1 multiple
times, the first change is the only one that has an effect. To
check whether indeed an element a ∈ B is indexed, one needs
to examine whether fi(a) are set to 1, ∀i. If not, then a /∈
B. Otherwise, a ∈ B with some probability. The probability
of error is controlled by choosing an appropriate size for the
data structure relative to the size of the set of elements to be
represented. A detailed overview of how Bloom filters have
been previously used in a plurality of networking problems can
be found in [3]. In essence, each packet that is seen, is indexed
using the filter. In other words, for a packet p, fi(p) is set to 1,
∀i. When a new packet p′ is received, the filter checks to see
if fi(p′) = 1, ∀i. If yes, it is classified to be a replayed packet.

The use of digital signatures: Digital signatures are used
for authenticating the identity of message senders. Each node
in the network has a private and a public key. The former is
needed in order for a digital signature to be created, while the
latter is used towards verifying this signature. The signature
creation and verification operations typically use the Secure
Hash Algorithm (SHA-1) [4], [5]. Since a private key is unique
and held secret, attackers cannot reconstruct the same digital
signature, unless they compromise the node. If a message is
digitally signed, any change in the message will invalidate the
signature. Any node that has the public key (typically made
known) that corresponds to the signature of a received message
can verify the message. In this work we assume that the identity
of each legitimate node is a priori bound with a private and a
public key by a trusted authority. Further details on signature
procedures and algorithms can be found in [5].

B. Previous studies
In what follows, we discuss related studies on replay attacks.
Attacks on crypto-based key establishment: Such attacks

target accessing secret information exchanged among legitimate
nodes. The work in [6] describes an interesting classification of
such attacks. Aura et al. [7] present a set of design principles
to avoid replay attacks during crypto-based key establishment.
Malladi et al. [8] propose a method that uses hashed values
of random numbers in conjunction with the identities of all
nodes to protect information.These approaches cannot mitigate
copycat attacks, since data replaying takes place after secure
communication establishment (perhaps achieved by the afore-
mentioned schemes). In our work we assume that authenticated
identity information exchange among legitimate nodes in the
network has been established a priori.

Replay attacks related to wireless routing: Papadimitratos
and Haas [9] present a secure route discovery protocol based
on a message authentication code that can only be verified by
the end nodes of a route. This, however, makes the protocol
vulnerable to route and data frame replay attacks at intermediate
nodes. Zhen and Srinivas [10] propose an approach to cope
against a routing message replay attack that generates multiple,
redundant RREQ packets. Winjum et al. [11] propose a scheme
to address replay attacks in OLSR (Optimized Link State
Routing protocol). However, none of the above approaches
consider data replay or copycat attacks.

Replaying broadcast packets: Perrig et al. [12] propose a
broadcast authentication protocol, TESLA, which uses one-way
hash chains and delayed key releases to authenticate broadcast
traffic. This idea has been utilized by various other studies, such

369

as [13], [14]. However, as discussed in [15], TESLA induces a
security vulnerability: if a secret hash key is released before
forwarding nodes authenticate a packet, the newly arrived
packets signed by an attacker with this hash key will be falsely
deemed legitimate.

Securing data transmissions: Although there exist previous
studies on secure data transmissions, they are inadequate in
mitigating copycat attacks. Heer et al. [16] provide an adaptive
and lightweight security protocol, ALPHA. Before every new
(typically large) data packet is to be routed, a small path
reservation packet is sent to the final destination in order for
all nodes on a path to examine the integrity of the (larger) data
packet that will follow. However, since copycat attacks might
not modify the contents of the overheard packets, ALPHA
cannot efficiently block the propagation of replayed packets.

Using time-stamping and counters to address replay
attacks: The use of crypto-synchronization has been widely
used in CDMA/EVDO networks for protection against replay
attacks [17]. Similar time-stamping strategies for mitigating
replay attacks have also been proposed in [18] and [19].
Such techniques, however, require that nodes are very strictly
synchronized, and this can typically be only achieved with
specialized hardware, especially in dynamic environments.

Anti-replay techniques for wireline networks: There has
been some work on replay packet detection in wireline net-
works. However, these studies do not take into account the
inherent properties of the wireless medium. The IP security
protocol (IPSec) [20] includes an optional technique for the
detection of duplicate IP datagrams. Gouda et al. [21] propose
a variation of the IPSec anti-replay mechanism. However, since
IPSec establishes a shared symmetric key between the source
and the destination, replayed packets are only detected by the
end destination, i.e., after they have already travelled along
the route. For the same reason, any end-to-end symmetric key
based approach is inadequate. Our proposed framework adopts
an asymmetric key cryptographic technique, based on digital
signatures, as we discuss in the following section.

To the best of our knowledge, our study is the first to pro-
vide a complete and effective software framework to mitigate
copycat attacks while inducing low processing overhead.

III. THE COPYCAT/REPLAY ATTACK

In this section, we begin with defining the attacker model
that we consider in this study. Subsequently, we demonstrate
how the attack can impact network performance.

A. The Attacker model

The goal of the copycat attack is to mislead routers into
forwarding replicas of previously transmitted packets. However,
the use of Bloom filters can effectively block the forwarding
of packets. The attacker can bypass such blocking by slightly
manipulating the packet header; with this, the Bloom filter
decision engine will infer that the packet is new. However, if the
manipulated packet is signed, the signature verification process
at the next router will fail. Note also that Bloom filters are
not of infinite size and thus, they are flushed as soon as they
cannot store more information. Hence, a copycat attack may
still bypass a Bloom filter.

In particular, we consider that the adversarial device has the
following capabilities; these can be easily implemented in most
commercial wireless cards nowadays :

• It has a wireless interface using which it can overhear
packets . It stores the packets locally and retransmits them
after an arbitrary time. For each overheard packet, the
attacker decides randomly to either perform modifications
in the packet header, or replay it without modifications.

• It has sufficient processing and memory capabilities, to
store and process large volumes of packets.

• It is not an authenticated device, i.e., it does not have a
private or a public key assigned by an authority. However,
it can spoof the credentials of legitimate nodes.

• It can replay every packet an arbitrary number of times.
• It adheres to the 802.11 MAC protocol rules.

We assume that public and private keys needed for device
authentication have been distributed before the application of
our scheme. We also assume that two legitimate nodes can
negotiate a shared secret key using their public/private keys,
which allows them to communicate secret information.

B. Demonstrating the impact of the attack

Next, we present some of our testbed measurements that
demonstrate the throughput degradation due to the data copycat
attack.

Testbed description and experimental methodology: We
conduct our experiments on our 42-node wireless testbed,
which is deployed on the 3rd floor of the Engineering Building
Unit II, at UC Riverside. The testbed configuration is such that
the network consists of both indoor and outdoor links; we depict
the layout in the left part of Fig. 2. The nodes are based on the
Soekris net5501 hardware configuration [22], and run a Debian
Linux distribution with kernel v2.6.16.19 over NFS. Each node
is equipped with 500 MHz CPU, 512 Mbytes of RAM, and a
WN-CM9 wireless mini-PCI card, which carries the AR5213
Atheros main chip. Every card is connected to a 5 dBi gain
external omnidirectional antenna.

Our measurements encompass an exhaustive set of links
and routes of different lengths. We experiment with both
802.11a and g modes of operation (unless otherwise stated
our observations are consistent for both modes of operation).
The experiments are performed late at night in order to avoid
interference from co-located WLANs. All devices (legitimate
nodes and attackers) set their transmission powers to 20 dBm.

2!hop 3!hop 4!hop
0

10

20

30

40

50

60

T
h
ro

u
g
h
p
u
t
D

e
g
ra

d
a
ti
o
n
(%

)

Fig. 2. The impact of the copycat attack. Our experimental testbed layout
(left). The effect of the data copycat attack routes of different lengths (right).

370

In order to demonstrate the effectiveness of the considered
attack strategy, we perform the following set of experiments.
We consider different 2, 3 and 4 hop (overlapping) routes
on our testbed and we measure the end-to-end performance
degradation due to the presence of an attacker. We repeat each
experiment 10 times and Fig. 2 (right part) depicts the average
degradation observed, along with its standard deviation. The
attacker is positioned such that it affects the first hop of the
route (the effect of the attacker’s position will be studied in
the following sections). The attacker overhears packets for 120
seconds and replays them for the following 120 seconds. Our
results show that the degradation can be as high as 54%. In
addition, we observe that increasing the hop count on the route
increases the degradation. This is an artifact of the attacker
position; since the attack is at inception, the replayed packets
traverse a larger portion of the network with longer routes,
thus causing higher levels of degradation. Going forward, we
examine the reasons behind the performance degradation, con-
sidering different settings, and we propose our countermeasure.

IV. DERIVING GUIDELINES FOR SYSTEM DESIGN

In this section, we first describe the implementation details
of digital signatures and bloom filters; both are used in our
system. Next, we describe experimental results with a baseline
system where these features are employed to various extents.
The results from these experiments provide insights that guide
the design of our system, COPS.

A. Implementation details
Our implementation is built on a combination of the Linux

Click modular router platform v1.6 [23], the OpenSSL library
[24] and a C++ Bloom filter library from Google [25]. We im-
plement five new Click elements: AddSQN, AddSID, AddSign,
CheckSign, Bloomfilter and CheckRand. For each packet, the
element AddSQN adds a 32-bit monotonically increasing se-
quence number; AddSID adds a 32-bit nonce, and AddSign adds
a 48-Byte digital signature. The element CheckSign verifies the
signature of each incoming packet. We use the SHA1 function
and DSA sign/DSA verification functions from the OpenSSL
library to generate the message digest of the data as well as
to sign/verify the digest. The element Bloomfilter uses 8 hash
functions to produce hash values for the tuple <SQN, SID>
(SQN is the sequence number and SID is the source identifier)
in every packet. The Bloom filter size is set by default to
200000 entries. The source node uses the CheckRand element
to determine whether to sign the packet or not; receivers use
this element to determine whether the incoming packet is on
the list for verifying the signature. This function can be used
to sign and verify only a fraction of the packets generated.

B. The basic system
We first consider a basic scheme that employs a combination

of digital signatures and Bloom filters towards addressing
copycat attacks. The scheme does not account for the security-
performance tradeoff and its objective is to simply constrain
the replayed packets to their local neighborhood; the scheme
provides insights on the design of our adaptive approach later.

As an example we consider the 4 hop path 37-11-36-38-16, the 3 hop path
37-11-36-38 and the two hop path 37-11-36.

Source Authentication : The basic scheme authenticates the
packets as follows. First an additional header field is inserted
into each packet by the source; we call this the BS header. The
field includes a sequence number (SQN), a nonce (SID) and
a digital signature (SIG). The 32-bit sequence number (SQN)
is assigned for each data packet sent by the source. When the
SQN space is used out, the SQN wraps around. In the case
where two packets with the same SQN arrive at a receiver it
will not be able to determine if there is a copycat attack or not.
Since we want the COPS header of each packet to be unique,
we use a 32-bit randomly-generated nonce in conjunction with
the SQN for every packet. With this, it is almost impossible for
two or more packets to have the same pair of SQN and SID.

The source node also uses its private key to produce a digital
signature (SIG), which it appends to the header. In order to
render the signing process efficient, a one-way hash function
is first used on the packet contents to generate a fixed-size bit
string. The private key is then used to sign this returned string.
We use the popular SHA-1 as the cryptographic hash function
[4], and we use DSA as the digital signature algorithm. SHA-1
takes the SQN, SID and the payload of the packet as input and
returns a 20-byte output . Then, DSA generates a 48-byte string
by signing the 20-byte hashed data.

Packet validation: In order to prevent the propagation of
replayed packets Bloom filters are employed. Each intermediate
node R maintains a Bloom filter FilterS,R to keep track of
data packets from every source S that uses R as a relay. Upon
receiving a data packet from S, router R first checks the tuple
<SQN, SID> of this packet by passing it to FilterS,R. If the
packet fails this check, R decides that the packet is replayed
and discards it. Otherwise, R proceeds with authenticating the
data packet. R uses the public key of S to verify the signature
in the packet. If this packet fails the signature verification, R
considers it to be a spoofed packet and drops it. Otherwise,
R forwards the packet to the next hop. The Bloom filter is
flushed as soon as no more information can be stored. The
final destination of a data packet performs the same operations
as the intermediate nodes; it conducts the two verification steps
for each incoming data packet and only accepts a packet if it
passes the verifications. The steps of this procedure are shown
as a block diagram in Fig. 3.

Note here that the design of BS, as well as COPS, adopts
the use of small-size Bloom filters (order of a few KBytes) in
conjunction with digital signatures. This allows its applicability
in networks with devices of limited memory, such as sensor
motes. One could employ large-size Bloom filters (order or
several Mbytes), which can store packets for much longer
times.However, the memory and processing requirements would
render this inapplicable in networks that consist of CPU and/or
memory limited devices.

Processing Overhead: The default operations of BS, de-
scribed above, provides an almost 100% warranty that replayed
packets are blocked from propagating in the network. We
have verified the effectiveness of these joint operations against
data copycat attacks through extensive experiments on a 42-
node wireless network discussed later in this section. However,
our measurements also reveal that these operations induce
considerable processing overheads; this is especially the case
for packet sources digitally signing and verifying packets.

371

Fig. 3. Data forwarding at each router: the <SQN, SID> tuple of every data
packet is checked by the Bloom filter, which is locally maintained at the router.
If it passes the check, the SIG is verified using the public key of the source
node. If either of the two verifications fails, the packet is dropped.

Soekris 500B/pkt 1000B/pkt 1500B/pkt
nosign 5793 3974 1817

sign10% 723 724 726
sign50% 155 155 154
sign80% 109 109 109

sign100% 69 69 68
Laptop 500B/pkt 1000B/pkt 1500B/pkt
nosign 31269 30460 16766

sign10% 7392 7242 7203
sign50% 2358 2469 2410
sign80% 1821 1802 1741

sign100% 1119 1115 1139

TABLE I
MAXIMUM DATA INJECTION RATES OF A SOURCE NODE ON A SOEKRIS

NET5501 BOX OR A DELL LAPTOP WITH DIFFERENT PACKET SIZES.

To quantify the additional overhead that is imposed, we measure
how quickly devices with different hardware and with fully-
saturated traffic queues, can sign packets (as per the afore-
described procedure) and inject them into the network. For
this, we observe the ability of two different types of devices
to sign and inject packets into the network. Specifically, we
test: (a) a Soekris net5501 box [26] with 500 MHz CPU
and 512 MB of RAM, and (b) a Dell laptop with 2.4 GHz
CPU and 2 GB of RAM. We conduct experiments on 2-hop
routes with each of the above devices; in every experiment we
sign only a percentage of packets. We also consider various
data packet sizes. We measure (a) how many packets/sec each
device can inject into the network, and (b) how much time
it takes to perform the signature and verification operations.
Our measurements are tabulated in Tables I and II. We observe
that the processing unit capabilities play a significant role in
the ability of the device to inject traffic into the network.
In particular we observe that more than a 10 fold reduction
in the injection rates is possible in same cases, if a 100%
of the packets are signed. This exorbitant processing penalty
necessitates the design of a lighter scheme, which balances
security and performance.

C. Evaluating the performance with the basic system

In the following we will present the evaluations of the BS.
The insights from the experimental results drive the design of
COPS, presented later.

Towards reducing the processing load due to signing each
data packet, we experiment with slight variations of BS. In
particular, we utilize random signing (RS). BS-RS performs
the following actions:

• It determines a subset of packets that correspond to a
certain percentage of the packets in the output queue of a
source node; only these packets are actually signed.

• The verification load is then distributed among all the

Click + DSA signature Average Process Time(sec)
sign verify

Soekris 0.014644 0.019361
Laptop 0.000955 0.001508

TABLE II
AVERAGE PROCESS TIME OF SIGNING/VERIFYING A DSA SIGNATURE ON A

SOEKRIS BOX AND THE A DELL LAPTOP.
nodes of a route. The set of packets that are verified at
each node is decided a priori by the source node.

Before the nominal start of a traffic session, the source node
generates (pseudo) random numbers using different seeds. The
number of seeds is the same as the number of hops on the
route. Packets whose SQN corresponds to one of the random
numbers generated, will be signed. The source node sends the
seeds to each node on the route separately. Note here that

Fig. 4. Random packet signature scheme for the 3-hop route of Fig. 1. Alice
has a List consisting of List1, List2 and List3; these are generated by seeds
1, 2, 3 respectively. The List will be the SQNs of the set of packets that are
signed by Alice. She sends the three seeds to R1, R2 and Bob, respectively.
Each of them now knows which packets are to be verified.

the seed information is encrypted by the pairwise secret keys
between the source and the intermediate nodes, so that only the
legitimate nodes on the route know which packets are signed.
When a node R gets the seed from source node S, it generates
a sequence of random numbers. Packets from S whose SQNs
are on the list of this sequence are authenticated by node R.

Packets whose SQNs do not correspond to one of the random
numbers have “dummy” signatures (perhaps a random number)
inserted in place of real signatures; this prevents the copycat
from knowing which packets are really signed and which
are not. With this approach, generating and verifying packets
becomes faster. Taking the 3-hop route of Fig. 1 as an example,
Fig. 4 shows how the random packet signature functionality is
executed. Note that this introduces a performance vs. security
trade-off. If only a fraction of the packets are signed the attacker
can effectively have some of the replayed packets forwarded.
However, once a replayed packet is recognized, the attack is
detected. A higher percentage of signed packets decreases the
detection time, but increases the processing overhead.

In what follows, we discuss our experiments towards under-
standing BS’s performance on our testbed.

Assessing the efficiency of BS-RS in scenarios with short
routes: To begin with, we consider 2-hop routes and one
attacker. The attacking device is located close to the source
(we examine other cases later) and overhears packets for the
first 120 sec. Subsequently it launches a copycat attack for
another 120 sec. For each new packet, prior to transmission
the attacker decides randomly on whether to modify the packet
header or not. First, we measure the throughput of 12 different
2-hop flows (a) in benign conditions and (b) with the copycat
attack. Fig. 5 shows the average percentage degradation in
the end-to-end throughput for different versions of BS; as an
example, sign50 indicates a BS-RS version where 50% of the
packets are signed and verified. To compute the degradation, we

372

compare each throughput value with the throughput when (i)
no attack occurs and (ii) the network is unprotected i.e., there
is no overhead of any sort. We observe that when the attack
takes place, if the network is unprotected the degradation in
throughput can be as high as 54%. Surprisingly, we find that
signing and validating all the packets (a 100%) in this scenario
degrades the throughput to a higher extent than if there was
no protection, even under attack. This is directly attributable
to the processing overhead induced by the these operations.
On two hop paths, the impact of the attack is constrained to a
small portion of the network; the processing overhead incurred
in order to prevent the replayed packets from traversing the
second hop hurts the performance more than the attack itself.
We observe that there is an inherent trade-off in terms of how
many packets are signed and verified versus the reduction in
degradation in the presence of the attacker. If fewer packets are
signed, there is less overhead; however, more of the attacker’s
packets make it through; if more packets are signed fewer
replayed packets are forwarded, but the processing increases.
Fig. 5 suggests that BS-RS with 80% of the packets signed
provides the best trade-off to yield the highest throughput when
under attack; the throughput degradation is only about 5% in
benign conditions and only about 20% in the presence of the
attacker. Note that it is impossible to completely eliminate the
impact of the attacker; the attacker’s packets will always affect
the local neighborhood. In essence, with protection from BS
the attacker is reduced to a local jammer; anti-jamming is
considered in [27], [28] and is not the focus of this work.

Experimenting with longer routes and more attackers:
Next, we consider routes with length 3 and 4 hops. As before,
the attackers overhear and store packets during the first 120 sec
of traffic. During the following 120 sec, the attackers launch
the copycat attack. First, we consider 12 such 3-hop flows,
with one attacker per flow, who overhears and replays packets
transmitted from the first relay node (near the second hop). In
Fig. 6 we observe that in the presence of the attack, due to the
trade-off discussed earlier between the processing overhead and
the level of achieved protection against DoS, BS-RS with 50%
of the packets signed has the lowest throughput degradation.
Even in this case, signing and verifying all of the packets is
not viable since it can lead to significant overhead penalties.

Next, we show experimental results with 4-hop routes; we
also consider 2 active attackers (one of which is placed close to
the source while the other is placed by the last hop) at the same
time. Fig. 7 demonstrates that with two attackers launching
copycat attacks at the same time and without applying the
protection scheme, the degradation in throughput can be as
high as 61%. The difference in throughput degradation with
BS(-RS) is less pronounced as in the previous cases with 2
and 3 hop routes, with a single attacker (Fig. 5 and Fig. 6).
This is because the attack in this case is more severe than in
the previous cases because: (a) with two attackers the imposed
levels of interference are higher and (b) the replayed packets
traverse a longer 4-hop route and thus, impact the performance
to a larger extent. Signing 40% of the packets provides the best
performance versus security trade-offs in this case. We would
like to emphasize that similar trends were observed for paths
of different hop count and different attacker location as seen in
Figs. (5)-(7).

Cases with attackers with differing signal qualities to
the relays: Next we observe how the distance between the
replay attackers and victim routes affects the network perfor-
mance; the larger the distance the poorer the signal quality
between the attacker and the victim route. While we have
performed many experiments to validate our general findings,
we present a specific sample scenario with a 4-hop route viz.,
36→31→22→23→39. We enable fully-saturated UDP traffic
from node 36 to node 39, and we activate an attacker at each
of 3 different locations, namely A1, A2 and A3, as shown in
Fig. 8; the measured RSSI values from the attacker, as measured
at the victim relays are also shown. At each of these locations,
the attacker overhears packets for 2 minutes and subsequently,
replays them. Since signing 40% of the packets demonstrates
good performance in all of our experiments, we choose this
percentage. As we observe in Fig. 9, the percentage degradation
in throughput is lower as the distance between the attacker
and the victims increases. This is expected, since the PDR on
the attacker’s links decreases due to poorer link quality from
increased distance. With this, there are two effects that act in
conjunction. First, it becomes more difficult for the attacker to
successfully overhear packets; second, replayed packets are not
successfully received by the relay.

In the absence of any protection mechanism, when the
attacker is close to the source (e.g. location A1 in Fig. 8), the
copycat attack pushes a significant number of replayed packets
along the route. However, when the attacker is closer to the
destination (e.g. location A3), replayed packets travel only a
few hops and, thus, the impact of the attack is not so prominent.

Assessing the impact of the copycat attack on the routing
performance: The transmission of replayed packets increases
the medium occupancy and this leaves less time for legitimate
nodes to send packets. This can have a significant impact on
the performance of routing operations, which depend on the
broadcasting of routing control messages. To determine the
effect of replay attacks on the performance of routing, we
perform experiments with two routes that are active in parallel
and are affected by two attackers. We also randomly choose 20
pairs of legitimate nodes on the testbed that wish to establish
routes, using the DSR protocol [29]; note that these flows are
not directly targeted by the attacker. Fig. 2 shows the flows
being attacked for this experiment. Nodes 31 and 47 are the
attackers; node 36 generates traffic towards node 39, while node
33 generates traffic towards node 58. We measure the route
discovery time for each of the other 20 randomly selected pairs.
Fig. 10 shows the cumulative distribution function (CDF) of
the average route discovery time: (a) under benign conditions,
where BS is not deployed, (b) under the presence of one
attacker where BS is not deployed, and (c) under the presence of
one attacker where BS-RS (with 40 % of the packets signed)
is enabled. We observe that when the attacker is active, the
route discovery time in the absence of BS is generally higher;
this is because the copycat attack indirectly affects the routing
performance of the other flows. Since the route discovery and
route response packets, in many cases, have to traverse the areas
congested due to the replayed packets, the latency incurred
increases. With random signing, this problem is significantly

We present results for the Sign40 scheme only, since it provided the best
performance among the different SignX schemes examined.

373

0 20 40 60

nosign,nofilter
nosign+filter

sign10
sign20
sign40
sign50
sign80

sign100
signnofilter
sign+filter

Percentage Degradation on Throughput

No attack One attacker

Fig. 5. Percentage of throughput
degradation in 2-hop routes under
various conditions.

0 20 40

nosign,nofilter
nosign+filter

sign10
sign20
sign40
sign50
sign80

sign100
signnofilter
sign+filter

Percentage Degradation on Throughput

No attack One attacker

Fig. 6. Percentage of throughput
degradation in 3-hop routes under
various conditions.

0 20 40 60

nosign,nofilter
nosign+filter

sign10
sign20
sign40
sign50
sign80

sign100
signnofilter
sign+filter

Percentage Degradation on Throughput

No attack Two attackers

Fig. 7. Percentage of throughput
degradation in 4-hop routes under
various conditions.

Fig. 8. Experimental set-up for
assessing the impact of the attack
at various locations.

0 20 40 60 80

No attack

Attacker A1

Attacker A2

Attacker A3

Percentage Degradation on Throughput

Sign40 No sign,no filter

Fig. 9. Percentage of through-
put decrease for various attacker
locations along a 4-hop path.

0 1 2 3 4 5
0

0.2

0.4

0.6

0.8

1

Route Discovery Time (sec)

C
D

F

no attacker, no sign/no filter

2 attacker, no sign/no filter

2 attackers, Sign40%+filter

Fig. 10. The CDF for the route
request time based on our mea-
surements on 20 pairs.

100000 10000 500
0

20

40

60

80

1

Size of Bloom Filter (Bits)

%
 D

e
g
ra

d
a
ti
o
n
 o

n
 T

h
ro

u
g
h
p
u
t

Fig. 11. The performance of
COPS-Lite with Bloom filters of
different sizes and hash functions.

alleviated. To illustrate this with an example, let us take a
closer look at the route 44→57 (see Fig. 2). While node 31 is
launching a copycat attack on the flow 36→39, the route query
packets from 44 and the route response packets from 57 have
to traverse regions that experience high levels of interference
and congestion. In fact, when BS is disabled, the route request
from node 44 has only a small chance to getting through to 57
before the route query times out. On the other hand, when BS
is enabled, replayed packets are blocked to a large extent from
traversing beyond node 22 and this alleviates the problem.

Experiments with various Bloom filter sizes: As one may
expect, the size of the Bloom filter affects the potency of
the attack. If the size is small, the filter has to be frequently
flushed and with this, old packets that were overheard before the
flushing will be considered as legitimate after the flushing. We
perform experiments with different route lengths and Bloom
filter sizes. We provide a representative example in Fig. 11,
for a 3-hop route, wherein the attacker is located close to
the source. Fig. 11 shows the throughput degradation with the
Sign40 scheme, as compared to applying no protection. We
observe that with the 100-Kbit filter, BS-RS provides the best
performance; the attack degrades the throughput by 25% only.
With filters of size 10-Kbit and 500-bit, many malicious packets
go through, leading to higher levels of throughput degrada-
tion. This suggests that, depending on the available memory
resources, long-size filters are preferable. Note however that if
the attacker is able to store packets for very long periods of
time, this may still be inadequate.

V. DESIGNING COPS
The experimental results presented earlier show that different

variations of BS achieve different security levels and network
performance. Due to the processing overheads of the core
functionalities of BS, blindly applying them can have a negative

impact on the network performance. In order to achieve the best
trade-off between the processing overhead and the protection
level against the replay attack, we utilize the understanding
obtained from our experimental assessments and design COPS.
In brief, COPS works as follows; in benign settings and COPS
induces signature and verification of only a small fraction
(e.g., 10%) of the packets. However, upon attack detection, the
source is notified and the fraction of signed and verified packets
is increased drastically. Note here that, COPS distributes the
verification operations across the nodes along the route in order
to reduce the verification load, in a way similar to BS. In the
following we provide details on our design.

Detection mechanism: COPS incorporates a detection
mechanism for both variations of the copycat attack. For the
case where packets have not been manipulated by the attacker,
the original transmitter can detect the attack relatively easily.
Considering, without loss of generality, the topology in Fig. 1,
once the attacker replays an unmodified packet, the attack can
be detected with one of the two (or both) following ways:

• Alice overhears a packet that includes her credentials.
• Alice receives an unexpected/spurious MAC layer ACK

(R1 upon reception of the replayed packet will transmit
a MAC layer ACK). This helps if Alice cannot directly
overhear the replayed packets.

When the attacker modifies the header of the packet (e.g.,
spoofs the source MAC address), the attack is detected by
utilizing digital signatures; the attacker will not be able to sign
the modified packets with a valid private key. If every packet
is signed, then the attack is detected upon transmission of the
first replayed-modified packet. However, as discussed earlier
signing every packet induces significant processing overhead.
Thus, COPS’ detection scheme incorporates random signing
i.e., only a randomly chosen fraction of the generated packets
are digitally signed and a dummy signatures are inserted in the

374

!"#$%&'()($*+,&

!!!"#$%&#'(%)*!+)&#,-./01!02)&./01$!

.-&0$$!%3)!10*)$!01!&0(%)!4!

56! !7.1*08!$#91!5:;!

<6! =>!-3)-?$!@0&!$2(�($!ABC$!

.1*!*.%.!2.-?)%$!D#%3!#%$!

-&)*)1/.E$!

F$!.G.-?!*)%)-%)*H!

!"#$%&-.*/#*+,&

!!!"#$%&#'(%)*!+)&#,-./01!02)&./01$!

.-&0$$!%3)!10*)$!01!&0(%)!4!

56! !7.1*08!$#91!I:;!

<6! 5::!?'#%!JE008!,E%)&!

!!!!!F$!.G.-?!0+)&H!

K0!

L)$!

L)$!

K0!

Fig. 12. The operations of COPS.

other packets (as discussed). In this case, there is a delay intro-
duced in detecting an attack; the attack is detected when the first
“signed” packet is modified and replayed. Our measurements
indicate that with sign10, the detection time is on average 3
sec. Our results also indicate, as one might expect, that more
aggressive signing schemes (e.g., sign50), reduce the detection
time. However, overall, this reduction in detection time cannot
compensate for the performance degradation induced by the
processing overhead.

The attack mitigation mechanism: In a nutshell, by default
(benign conditions are assumed) COPS uses random signing
with 10% of packets being signed/verified. Every legitimate
transmitter also keeps watching for spurious MAC layer ACKs
and/or overheard replayed packets.

When an attack is detected, COPS performs the following
steps: (a) increases the percentage of signed packets to 40%
to contain the modified replayed packets, and (b) makes use
of a 100 Kbit Bloom filter to contain replays of unmodified
packets. Note here that, these values are derived based on our
understanding from our previous experimental results. After
applying the above countermeasures for restraining the effects
of the attack, COPS continually monitors the network behavior
for replayed packets. If no replayed packet seen for up to
x seconds, COPS restores the default operations. Picking the
value of x is not trivial; it heavily depends on the attack
strategy. If we were to pick x to be small, the overhead due
to signing higher percentages of the packets under benign
settings would be “minimized”. However, with an attacker who
waits for some time between replayed packets transmissions, a
small value would yield undesirable effects. On the contrary,
picking a high value for x can increase the hit due to the
processing overhead introduced by the digital signatures. In the
current implementation of COPS, we pick x = 20sec which
we find to be a good value for all considered scenarios. A
pictorial representation of COPS is in Fig. 12. Our experimental
evaluations of COPS are in the following section.

VI. EVALUATING COPS

In this section we present our testbed measurements for
evaluating the efficacy of COPS in dealing with replay attacks.

A. COPS through a lens
We first take a close look at the operations of COPS. For

this, we demonstrate the benefits of COPS, via a representative
experiment in Fig. 13; flow 36→39 is considered with 31 as
the attacker (see Fig 2). The abscissa indicates the progression
in time during the experiment and the ordinate represents a
moving average of the end-to-end throughput measurements.
Initially there is no attack. The source signs only 10 % of the
packets; the signature is verified by various relays en route,
distributively. At around 57 sec into the experiment, node 31
launches the attack. The attack is detected within about 3
sec; after this, the source is notified and it sends out a new
message, requiring the verification and authentication of 40%
of the messages and the activation of Bloom filter. From this
point on, 40% of the packets are signed. Note from the figure
that this adaptive version provides the best of both worlds;
it provides good performance in benign settings is able to
effectively alleviate the impact of an attack. Finally, the COPS
returns to signing 10% of the packets and deactivates Bloom
filtering if no malicious packets are caught for at least 20
seconds (Fig. 13).

0 20 40 60 80 100 120
0

20

40

60

80

100

120

140

160

Time (s)

T
h

ro
u

g
h

p
u

t
(p

a
c
k
e

ts
/s

e
c
)

no sign/no filter Adaptive scheme Sign 40

Attack lasts for
40 seconds

Sign40

Sign40

no sign/no filter

Adapt back
to Sign10

No attack

no sign/no filter

No attack

Adapt to Sign40

Fig. 13. A real time trace of the throughput performance, in the presence of
COPS.

B. Macroscopic view of COPS
In this section we present our macroscopic results for the

efficiency of COPS. In particular, we perform experiments with
(i) a large set of routes on our testbed and (ii) a variety of attack
models. Each experiment lasts for 600 seconds and we account
for different attack loads. Our metric of interest is the average
performance degradation when using COPS as compared with
the corresponding hit when using static approaches based on
BS. In particular we compare COPS with sign10, sign40 and
no countermeasure at all.

In a attack scenario corresponding to “attack X%”, the
attacker is active for X% of the total time. Table III shows the
different time slots of the 600 seconds experiment duration,
used from every attack model.

Benign settings: We observe from Figs. (14(a))-(14(e))
that in the absence of any attack, the degradation is the
lowest when no protection scheme is being employed (as one
might expect). In addition, COPS exhibits almost the same
performance as with sign10 (recall that under benign conditions
COPS randomly signs and verifies 10% of the packets, but does
not employ Bloom filter). Employing sign40 and Bloom filters
results in at least a 3x higher degradation as compared to COPS.

375

0 10 20 30

no sign,no filter

sign10

sign40

adaptive

Percentage Degradation on Throughput

No attack attack 10%

(a) 10%

0 10 20 30

no sign,no filter

sign10

sign40

adaptive

Percentage Degradation on Throughput

No attack attack 30%

(b) 30%

0 10 20 30 40

no sign,no filter

sign10

sign40

adaptive

Percentage Degradation on Throughput

No attack attack 50%

(c) 50%

0 10 20 30 40

no sign,no filter

sign10

sign40

adaptive

Percentage Degradation on Throughput

No attack attack 70%

(d) 70%

0 10 20 30 40 50

no sign,no filter

sign10

sign40

adaptive

Percentage Degradation on Throughput

No attack attack 90%

(e) 90%

Fig. 14. Performance degradation comparison when using COPS for different attack loads.

Attack model Time slots (secs)
10% [60,180]
30% [60,180], [540,60]
50% [60, 180], [300, 360], [420, 540]
70% [60,360], [420,540]
90% [60, 600]

TABLE III
ATTACK LOAD DISTRIBUTION

Attack settings: In all considered scenarios, COPS delivers
the best performance (the least throughput degradation), since
it adapts to attack changes. Irrespective of the attack intensity,
COPS maintains low overhead under benign conditions. A
higher processing overhead is incurred only when under attack;
in these scenarios, 40% of the packets are signed as this
yielded the best overhead versus detection/mitigation efficiency
as demonstrated in our prior experiments. Note here that,
estimating the intensity of the attack on the fly and adapting the
percentage of packets that are signed with a finer granularity
is challenging; it is attacker specific and could increase the
complexity of a detection/mitigation system. We will consider
such possibilities in the future.

Figs. (14(a))-(14(e)) provide a gist of our experimental re-
sults under the copycat attack when COPS is employed. COPS
provides a performance improvement of up to 66% (compared
with the case with no security solution). As compared with the
static schemes derived from BS, COPS provides an improve-
ment of up to 45%.

VII. CONCLUSIONS

In this paper, we consider a variant of the data packet replay
attack in wireless networks. Replayed packets increase the
levels of contention and interference. An attacker can either
replay packets as is, or modify the headers to create the illusion
of new packets. Packet signature and verification operations and
Bloom filters can help tag packets as authentic or replayed.
However, our measurements on a large-scale testbed suggest
that a naive application of these basic functionalities, wherein
all packets are checked, project significant amounts of pro-
cessing overhead. Towards reducing this processing overhead,
while effectively mitigating the attack, we propose COPS,
where (a) only a percentage of packets is signed, and (b) the
load of verification operations is distributed along the nodes
constituting the route. The fraction of packets that are signed
and verified is adaptively varied based on the understanding
gained from our measurements. Our experiments demonstrate
that our system can efficiently address the attack in all the
considered settings.

REFERENCES

[1] ANSI/IEEE 802.11-Standard. 1999 edition.
[2] J. Wright. Detecting wireless LAN MAC address spoofing. Technical

report, 2003.
[3] Andrei Broder and Michael Mitzenmacher. Network applications of

bloom filters: A survey. In Internet Mathematics, pages 636–646, 2002.
[4] FIPS-180-1. In NIST, FIPS PUB 180-1: Secure Hash Standard, April

1995.
[5] FIPS-186-2. In Digital Signature Standard (DSS), FIPS PUB 186-2. U.S.

Department of Commerce/National Institute of Standards and Technology,
January 2000.

[6] P. Syverson. A Taxonomy of Replay Attacks. In Naval Research Lab,
Washington DC, January 1994.

[7] T. Aura. Strategies against replay attacks. In IEEE Computer Security
Foundations Workshop, pages 59–68. IEEE Computer Society Press,
1997.

[8] S. Malladi, J. Alves-Foss, and R. B. Heckendorn. On preventing replay
attacks on security protocols. In In Proc. International Conference on
Security and Management, pages 77–83. CSREA Press, 2002.

[9] P. Papadimitratos and Z. J. Haas. Secure routing for mobile ad hoc
networks. In CNDS, pages 193–204, 2002.

[10] J. Zhen and S. Srinivas. Preventing Replay Attacks for Secure Routing
in Ad Hoc Networks. In Ad-Hoc, Mobile, and Wireless Networks, pages
140–150. Springer Berlin/Heidelberg, February,2004.

[11] E. Winjum, A. M. Hegland, O. Kure, and P. Spilling. Replay Attacks in
Mobile Wireless Ad Hoc Networks: Protecting the OLSR Protocol. In
Lecture Notes in Computer Science, ISSN 0302-9743, 2005.

[12] A. Perrig, R. Canetti, J. D. Tygar, and D. Song. The tesla broadcast
authentication protocol. RSA CryptoBytes, 5:2002, 2002.

[13] Y. Yang, X. Wang, S. Zhu, and G. Cao. Sdap: A secure hop-by-hop data
aggregation protocol for sensor networks. In ACM MOBIHOC, pages
356–367. ACM Press, 2006.

[14] S. Zhu et al. Lhap: a lightweight network access control protocol for ad
hoc networks. In Journ. of Ad Hoc Networks, 46 DRDC Ottawa TM,
2006.

[15] Y. Huang, W. He, K. Nahrstedt, and W. C. Lee. Dos-resistant broad-
cast authentication protocol with low end-to-end delay. In INFOCOM
Workshops 2008, IEEE, pages 1–6, April 2008.

[16] T. Heer et al. Alpha: an adaptive and lightweight protocol for hop-by-hop
authentication. In ACM CoNEXT, 2008.

[17] S. Mizikovsky, Z. Wang, and H. Zhu. CDMA 1xEV-DO Security. In
Wiley Interscience, Bell Labs Technical Journal, 11(4), 291-305, 2007.

[18] S. Pallicara et al. A Framework for Secure End-to-End Delivery of
Messages in Publish/Subscribe Systems. In IEEE/ACM International
Conference on Grid Computing, 2006.

[19] C. Adjih et al. Securing the OLSR Protocol. In Med-Hoc-Net, 2003.
[20] Security Architecture for the Internet Protocol. http://www.rfc-

editor.org/rfc/rfc4301.txt.
[21] M. G. Gouda, C.-T. Huang, and E. Li. Anti-Replay Window Protocols

for Secure IP. In IEEE ICCCN, 2000.
[22] UCR Wireless Testbed. http://networks.cs.ucr.edu/testbed.
[23] Click Modular Router. http://read.cs.ucla.edu/click/.
[24] The OpenSSL Project. http://www.openssl.org.
[25] C++ Bloom Filter Library. http://code.google.com/p/bloom.
[26] Soekris-net5501. http://www.soekris.com/net5501.htm.
[27] V. Navda et al. Using Channel Hopping to Increase 802.11 Resilience to

Jamming Attacks. In IEEE INFOCOM Miniconference, 2007.
[28] R. Gummadi et al. Understanding and mitigating the impact of rf

interference on 802.11 networks.
[29] D. B. Johnson et al. Dsr: The dynamic source routing protocol for multi-

hop wireless ad hoc networks. In Ad Hoc Networking, Ch.5, pp. 139-172,
2001.

376

