
NEST: Efficient Transport of Data Summaries over
Named Data Networks

Karim Khalil, Azeem Aqil,
Srikanth V. Krishnamurthy

University of California Riverside
{karimk, aaqil001, krish}@cs.ucr.edu

Tarek Abdelzaher
University of Illinois at Urbana Champaign

zaher@illinois.edu

Lance Kaplan
Army Research Lab

lance.m.kaplan.civ@mail.mil

Abstract—In many emerging data retrieval applications, in
response to queries, consumers are interested in getting a
summarized version of content quickly rather than retrieving
all available data. Recently, Named Data Networks (NDN) have
been considered for efficient transfer of summarized informa-
tion, but the research is still in its infancy. In this paper,
we propose NEST, a novel transport protocol for delivering
extractive summaries of a dataset distributed across multiple
producers over NDN. The goal is to exploit diversity in network
conditions between a consumer and different producers towards
delivering the consumer-specified summary while minimizing
latency. NEST first creates a unified hierarchical representation of
the available distributed content using state-of-the-art distributed
clustering. Then, using this representation of the dataset, the
protocol creates interest messages based on which consumers can
opportunistically retrieve representative data objects from the
best producers while adapting to dynamic network conditions by
capitalizing on the flexibility offered by the NDN infrastructure.
We implement NEST on the Mini-NDN network emulator and
evaluate its performance using datasets collected from Twitter.
Our experimental results show that NEST takes advantage of
producer diversity achieving large latency reduction gains of up
to 50% compared to baseline protocols.

I. INTRODUCTION

With the emergence of Internet of Things (IoT) and dis-
semination of online social content, sources of various kinds
continuously generate streams of data. The number of such
sources is growing continuously, leading to an exponential
growth in the available data for a consumer [1], [2]. In
fact, consumers may experience a data deluge leading to
information overload if they get all the data pertaining to
a subject of interest [3]. One way to cope with this data
deluge, is via data summarization services which enable clients
(whether humans or computer systems) to retrieve summaries
with user-specified granularity. These summaries can then be
used in analysis and decision making processes.

To exemplify the above, consider a smart city scenario
[4] wherein sensors continuously gather data about traffic
conditions. On their path to the destination, smart cars contact
road infrastructure hot-spots for updates. In this scenario,
collected data may have significant redundancy, local data
at different repositories have semantic overlap, and network
conditions are diverse. Consumers are likely to be interested in
receiving content with varying granularity of detail as quickly
as possible. As a second example, consumers interested in
getting a summary of top stories from a variety of news media
may be interested in quickly retrieving only an overview, based

on which they may then choose to get more details only on
certain stories. Data summarization can be an effective solution
in delivering the right level of detail to consumers. In general,
summaries can either be processed content that provide a
synopsis of the data, or a set of representative samples that
sufficiently satisfy the consumer’s need. In this paper, we focus
on the latter.

There is a set of challenges that will need to be ad-
dressed in order to deliver summaries from a set of produc-
ers to consumers. First, retrieving summaries from different
producers independently will create redundant content, thus
wasting communication resources and defying the purpose
of summarization. Solving this problem requires the efficient
creation of a global representation of the content available
at the different producers. Furthermore, the network must be
able to match a consumer’s request with what is available
at the various producers and retrieve the proper summary.
In many applications, consumers are not interested in the
source of the content or where it is, but rather the content
itself and how fast it can be retrieved. Finally, since the
network conditions between the consumer and the plurality
of producers can be diverse (e.g., varying bandwidth and link
delay), the transport framework has to be intelligent to retrieve
the content from the “best” producer, i.e., the content that
fulfills the consumer’s requirement with the best performance
(e.g., minimum latency).

In this paper, we develop NDN-based Efficient Summary
Transport (NEST), a transport protocol which efficiently trans-
fers an extractive summary of a dataset distributed across
multiple connected producers to the requesting consumers,
with low latency. Our framework is developed on top of the
Named Data Networks (NDN) infrastructure, an implemen-
tation of the Information Centric Networks (ICN) paradigm.
NDN is a pull-based network architecture which supports the
forwarding of content from producers to consumers using
hierarchical names. It offers a way to seamlessly map content
to interests and thus, we argue that it is natural to leverage its
abilities towards achieving the efficient transport of content
summaries from a diverse set of producers to consumers.
NEST allows producers to converge to a common namespace,
wherein objects that are very similar are named similarly,
linking the summarization problem to NDN’s name-based
forwarding. NEST is designed as an end-to-end protocol that
runs at the hosts and does not require changes to the underlying
NDN infrastructure.

ISBN 978-3-903176-08-9 2018 IFIP

NEST first creates a global hierarchical representation of the
dataset by synchronizing the producers’ local datasets with
minimal overhead. Subsequently, this representation is used
to generate an ordered list of names that is sent to interested
consumers to guide them in retrieving content summaries of
varying granularity. In this list, object names are “constructed”
such that, from a set of similar objects at different producers,
an object is seamlessly returned from the producer with the
most favorable network conditions for each request based
on the ordered list, thereby achieving minimum latency. In
building NEST we make the following key contributions:
• We develop a distributed synchronization algorithm that

capitalizes on recent advances in distributed clustering
to create a global view of the shared dataset, towards
realizing summaries of varying granularity.

• We develop interest-name design rules that automatically
and opportunistically adapt to varying network condi-
tions to minimize latency in delivering summaries to
consumers over the underlying NDN.

• We implement NEST on Mini-NDN, a network emulator
for NDN. We then perform extensive evaluations using
datasets collected from Twitter. Our results show that
NEST exploits producer diversity to reduce latency by
up to 50% compared to baseline summary transport
strategies that retrieve specific data objects.

II. BACKGROUND

ICN has become popular recently for presenting an alter-
native and future architecture for the Internet as it becomes
more content-centric rather than host-centric, and NDN [5] is
one typical implementation. In NDN, consumers send interest
messages requesting specific content using hierarchical names,
where one data message is returned for each interest message.
The interest is generated by a consumer to indicate that she
seeks to retrieve a matching object. Partial prefix matching
is used when checking whether a named object matches an
interest name. In addition, intermediate routers employ multi-
path forwarding rules to pass interest messages to the next
hop until it reaches producers of the named content. Producers
then return data messages where the payload is the data object
with a matching name. Data messages are forwarded along
the reverse paths corresponding to that taken by the interest
message. Whenever a router receives a data message, the entry
for the corresponding interest is removed from its Pending
Interest Table (PIT) after it is forwarded. Any subsequent
data messages for the satisfied interest are suppressed (i.e.,
not forwarded). If caching is enabled, intermediate routers
keep a copy of the data messages for a specified period of
time, and return it for subsequent matching interests from any
consumer. A key feature of the interest message format is the
exclusion option; consumers use this optional field to specify
object name suffixes that they do not want to retrieve for the
given name prefix in the interest message.

In our work, we consider the problem of efficient transport
of data summaries. For a given dataset P , a summary is a
data subset of P such that each data point in the summary
represents a set of similar (we formally define similarity in
Section III-A) data points in P . Recent work [6] proposed

b

a

c

consumer

main: 47.5

state: 34.2

division: 26.8

main: 47.3
pine: 29.6

division: 26.7

Fig. 1: An example network with three producers a, b and c.
Shown are average speed measurements at each producer.

a summary transport protocol for NDN in which an ordered
“names list” is created from a hierarchical tree representation
of a dataset. The structure of the tree is such that data objects
sharing a longer name prefix have more semantic overlap.
Thus, when a summary of the content under the tree is
requested, returning objects in a shortest-shared-prefix-first
order minimizes information loss (relative to retrieving all
data) over all different orders of a given summary size by
reducing semantic redundancy. Here, as more data objects are
transported according to this order, finer granularity details
about the data are retrieved. However, only one producer
was considered. In data summarization applications in which
clients are interested in a summary of the dataset distributed
across multiple repositories (producers), dynamic network
conditions cause clients to experience very different network
delays relative to the different producers from which the
summaries are transferred. In addition, redundant content
from different producers might be retrieved thereby causing
the summaries to be of poor quality (unnecessary redundant
content). Thus, when multiple data producers share similar
data objects, opportunities to improve latency performance by
retrieving any object from a set of similar objects are available.
However, to exploit these opportunities, a flexible and adaptive
data transport protocol is needed. The novelty of NEST is
that it allows consumers to realize the advantage of producer
diversity to retrieve summaries with minimum latency while
requiring no changes to the underlying NDN architecture.

To illustrate producer diversity, consider an example in
which a consumer is interested in a summary of average
vehicle speeds in certain section of a city in a given period of
time. Measurements are collected from various sensors into
a set of three repositories (i.e., producers), named a, b and
c, which are connected to the consumer as shown in Fig.
1. In this example, consider data from four streets: main,
state, division and pine. Due to varying network conditions
(e.g., varying wireless channel quality, network congestion,
etc.), the delay in retrieval of data from different producers
will be different. In particular, the connection to producer b
is experiencing longer delays compared to other producers.
Thus, to get a summary of the measurements quickly, the best
strategy is to retrieve “main” and “state” from producer a,
“division” from producer c and only “pine” from producer b.
In other words, the consumer would better retrieve it from
the producer with lower delay. The challenge, however, is to
figure out which data objects to retrieve from which producer

in order to minimize latency while still fulfilling a notion
of completeness of the collected summary. NEST offers an
efficient solution for this problem be leveraging NDN.

III. SYSTEM DESIGN

NEST comprises two main functional components viz., (a)
Producer Synchronization (ProdSync) and (b) Producer Diver-
sity guided Summary Transport (PDST). The first component
creates a hierarchical representation of the dataset shared by
multiple producers, while the second component manages the
transport of data objects between producers and consumers on
the NDN. In the following, we discuss the design details of
each of the two components.

A. Producer Synchronization

In many applications, data is collected from sensors and
cached at a connected set of repositories (i.e., producers)
for further processing and dissemination to consumers. Since,
transporting objects from individual producers to consumers
independently can result in performance penalties and wasteful
transfers (e.g., duplicate or redundant data), summarization in-
herently requires co-ordination or more precisely synchroniza-
tion between producers. Thus, the first challenge in efficiently
delivering summaries from the set of producers (which is typi-
cally the order of tens) to consumers is to derive a global view
of the available data. This global view necessarily describes
the different groups of similar data points (i.e., clusters) as
well as the relationship between them. For example, in Fig. 1,
measurements from the same street are considered similar and
thus are clustered together. Also data from all streets in each
neighborhood can be grouped together when only information
at a more abstract level is needed by the consumer. When such
hierarchical clustering representation is available, it suffices to
retrieve a representative of each cluster at the required level of
detail to get a summary of the available data. This hierarchical
representation naturally leads to hierarchical names for each
data object based on which cluster it belongs to (similar to
naming in Unix-like file systems).

For large datasets, it is not practical to transmit local datasets
or large samples thereof to a centralized location to construct
such a global hierarchical representation of the available
data. In this context, the producer synchronization problem
is how to efficiently create a unified view of the hierarchical
names of data objects at all the producers. To this end, we
develop ProdSync, an iterative distributed clustering algorithm
in which producers exchange meta-data of local clusters and
samples from their local datasets while incurring minimal
communication overhead. This enables the construction of a
global tree representation in which each producer maintains
information about the position of their local data points in the
tree.

To optimize the amount of data exchanged between pro-
ducers (i.e., overhead) in each iteration of ProdSync, we
employ a recently developed distributed clustering algorithm
[7], which is based on the construction of ε-coresets [8]. This
algorithm guarantees a bounded clustering cost relative to
a centralized solution, at the minimum communication cost.
It was later shown to be communication-optimal [9], where

Algorithm 1 ProdSync
Input: Similarity threshold τ , set of producers N

1: Initialize: L = r,N r = N
2: repeat
3: Pick an unprocessed tree node l ∈ L
4: Select coordinator nl ∈ N l

5: Each producer i ∈ N l solves local clustering problem on P l
i

6: Producers exchange local clustering costs cli
7: Coordinator collects samples Sl

i from all producers i ∈ N l

8: if maxp,q∈∪Sl
i
d(p, q) < τ then

9: Coordinator solves global clustering on ∪iSl
i

10: else
11: l is a leaf node
12: end if
13: Coordinator delivers solutions Gl to all producers in N l

14: Producers send coordinator local tree info ul
i

15: Update T ,N l,L: L ← g ∀g ∈ Gl
16: until all l ∈ L are processed
Output: Hierarchical tree representation T

the communication-optimality metric used is the number of
data points exchanged between the producers in the network.
This metric is also correlated to the convergence time of
the ProdSync algorithm; the more the messages exchanged
between producers, the more time it takes for ProdSync to
converge.

Notation: In the following, we introduce notation that will
help in the description of ProdSync. Suppose we have a set
of connected producers (repositories) N , of size N . Let the
global dataset be denoted by P , where Pi ⊂ P is the local
subset corresponding to producer i ∈ N . Let the distance
measure between any pair of data points p, q ∈ P be given by
d(p, q).1

Let tree T be a hierarchical representation for the dataset
P , capturing similarities between data points in a hierarchical
form. Suppose L is the set of tree nodes on T , and let r ∈ L be
the root node. Let P l be a data subset of P holding data under
subtree rooted at node l. We also define P l

i = Pi ∩ P l and
N l = {i ∈ N : P l

i 6= φ}. Note that N r = N and Pr = P .
In each iteration l of ProdSync, each producer i solves an
instance of k-means clustering and sends local information Sli
(to be made precise) to a designated coordinator nl, where
the coordinator for tree node r (i.e., nr), is called the root
coordinator. In a clustering problem, the clustering cost is the
sum of squared distances between each point in the dataset
and its corresponding cluster center. We say that p and q are
similar if d(p, q) < τ , for a given threshold τ .

ProdSync details: The details of ProdSync are presented in
Alg. 1. The algorithm iteratively clusters the dataset P shared
across all producers N to generate the tree T . To process a
node l ∈ L, a coordinator nl is first selected2 which later
collects information about local clustering solutions from all
producers in N l. In each iteration, the goal is to find a set of

1Vector space representation of data as well as similarity measures vary
depending on application and data type. While we use specific representation
and similarity measures in Section V, the effect of these on the clustering
quality is of separate interest and is beyond the scope of this paper.

2We defer a discussion of how we implement coordinator selection to
Section IV.

k cluster centers Gl at the coordinator, representing all data
subsets P l

i , i ∈ Nl. This is achieved by using an efficient
distributed clustering algorithm [7], described briefly in the
following.

Each producer first solves a k-means clustering problem on
the local dataset P l

i and then non-uniformly samples P l
i based

on the clustering costs cli collected from all other producers
i ∈ N l. In this sampling, a point with higher cost is sampled
with higher probability. Each producer constructs its local
portion of the ε-coreset, Sli , which consists of the samples
and their corresponding weights. Then, Sli are collected at the
coordinator. A weighted k-means clustering problem is solved
on the weighted samples ∪iSli . The solution of the global
clustering problem is then shared with producers in N l.

In ProdSync, a global clustering is solution is computed
for a node l only when l is not a leaf node. We reach a leaf
node in T (and hence stop further iterations of clustering on
that node) when the diameter of the cluster is less than the
threshold τ (condition on Line 8). In this case, each producer
then updates the coordinator with cluster membership counts
ul
i, which is a vector of size k. This information helps in

creating the tree representation of the dataset as well as names
for objects. Then, new nodes are added to the tree T , one node
representing each cluster in Gl. Iteration stops when all nodes
in L are processed.

Complexity analysis: At each iteration l ∈ L, three rounds
of message exchanges between the coordinator and other pro-
ducers are required. First, the costs of local clustering solutions
are collected by the coordinator and the sum cost is shared with
all producers. Then, samples are sent to the coordinator and
the solution Gl is returned to each producer. Finally, updates
ul
i are sent to the coordinator. The communication overhead

is thus O(N) per iteration.
To process a node l ∈ L, each producer i solves an instance

of the k-means clustering problem on the local dataset Pi

(Steps 5 and 9). This problem is NP-hard [10]. However, there
exist efficient approximations such as the Lloyd’s algorithm
[11], with time complexity O(|Pi|ksw), where s is the di-
mensionality of vectors representing the data points and w is
the number of iterations needed for convergence. It was shown
that, in practice, k-means converges in linear time with respect
to the number of data points [12]. The number of nodes on
the tree (i.e., |L|), can vary between O(logk |P|) to O(|P|).
In practice, we pipeline and parallelize the processing of tree
nodes such that communication delay does not contribute a
purely additive component to the total processing time. We
study this in detail in Section V.

B. Producer Diversity guided Summary Transport

Given the hierarchical cluster representation of the data (as
computed in Section III-A), we now need to decide the order
in which data objects must be requested from these clusters.
The intuition is that, in constructing a summary, we first
want to have at least one representative of each cluster (e.g.,
a measurement of speed on each street), then get a second
representative of each cluster (a second measurement from
that street), and so on. If clusters are hierarchical, then we
need one representative of each big cluster (say, street) before

getting a representative of each sub-cluster (say city block on
a street). As illustrated in the example in Section II, the choice
of representative to retrieve entails a choice of producer, some
being more accessible (better network conditions) than others.
We want to retrieve representatives from more accessible
producers. A challenge is thus to decide on a retrieval plan
that minimizes latency.

In this section, we develop an efficient transport protocol,
called Producer Diversity guided Summary Transport (PDST)
that takes the output tree T from ProdSync, transforms it to a
List of Ordered Names (LON) that is delivered to interested
consumers. To construct the LON, T is parsed such that leaves
are visited in certain order and a data point is chosen from
visited leaf and then added to LON. The tree is traversed
such that the marginal utility of retrieved data objects is
maximized. Thus, as more items are retrieved as per the LON,
a more fine-grained summary is obtained by the consumer.
Consumers request summary data objects based on the LON,
and PDST delivers data objects from producers to consumers
with minimum transport latency, defined as follows.

Definition 1. The transport latency T (j) corresponding to
a given interest message j is the total time delay between
sending the interest message and the reception of a data
message.

Fix an interest message j and let N (j) ⊂ N be the set of
producers with data objects that can satisfy interest message
j. Let Ti(j) be the transport latency when data is returned
from producer i. The objective of PDST is to minimize the
latency in retrieving data objects, whenever matching data
objects are available at multiple producers. In other words,
PDST aims to achieve T ∗(j) = mini∈N (j) Ti(j). While doing
so, the protocol must adapt to dynamic network conditions,
and specifically varying link delays.

Satisfying the minimum transport latency and adaptability
to dynamic network conditions, are challenging problems
for multiple reasons. First, it is undesirable that consumers
maintain state information for all available producers (e.g.,
by keeping the history of received data). Moreover, explicitly
and continuously measuring transport latency for objects from
different producers will incur non-negligible overhead. The
novelty of PDST is that it achieves the aforementioned goals
by crafting interest messages in a format that capitalizes
on the features of NDN. Specifically, PDST exploits NDN’s
forwarding characteristics viz., multi-path and partial prefix
match forwarding. It also leverages the fact that intermediate
routers suppress multiple data messages retrieved in response
to a single interest message and only forward the first match.
The main observation is that if N (j) always reflects producers
that have similar data objects that satisfy j, NDN operations
will automatically help achieve T ∗(j) without the need to
explicitly measure network conditions. To this end, PDST does
not require any modifications to NDN and is only run at the
producers and consumers as an application.

PDST achieves minimum transport latency and adapt to
varying network conditions using three different processing
steps at the different participating network entities. Below,
we discuss the different steps of PDST in detail before we

formalize our result.
1) Root-coordinator-side PDST: The root coordinator is

tasked with generating the LON from T . First, names for all
objects are created. These names are then processed to identify
producer diversity opportunities. Finally, the tree is traversed
to generate the ordered list of names.

First, names of all data objects at the leaves of T are
automatically created. In particular, during clustering, tree
nodes are given labels (e.g., ’0’ for the left branch and ’1’ for
the right branch when k = 2), and data objects at the leaves
are named by concatenating label names from the root node
to the leaf, similar to the work in [13], thereby constructing
a name prefix. However, unlike the work in [13], the root
coordinator nr does not have actual data points from all other
producers; rather, it has the counts of data objects under each
leaf from each producer. This information is collected in Step
14 of Alg. 1. Thus, nr can now generate names for all data
objects at the leafs of T .

Consider a tree T created using ProdSync with k = 2
for data at two producers a and b. Under some tree leaf l′

with a name prefix p = /t/0/0/1/0/1, suppose producer a
and producer b have two and three data objects, respectively.
Here, t represents the topic at the root of the tree. Now, the
root coordinator can simply name data objects under this leaf
as /t/0/0/1/0/1/a0, /t/0/0/1/0/1/a1, /t/0/0/1/0/1/b0,
/t/0/0/1/0/1/b1, /t/0/0/1/0/1/b2. Based on the user-
specified and application-dependent similarity measure, ob-
jects under l′ are deemed similar. At the same time, each of
the producers a and b will fix some order for their local data
objects, based on user-specified weights corresponding to each
data object (e.g., content popularity, freshness, etc). Note that
while each producer can rank order similar local data objects
using user-specified weights, the relative ordering between
similar data objects at different producers is not needed at
the root coordinator. This is because our design gives priority
to improving transport latency by retrieving the next (highest
weight) data object (based on local ranking) from the producer
with the best network conditions.

Denote any leaf of T with objects from multiple producers,
as an opportunity leaf. The next step for the root coordinator is
to process the data object names such that a special symbol (˜)
is concatenated at the end of all object names under any tree
leaf where data objects belonging to multiple producers exist.
Thus, for leaf l′, the object names will be processed to be
/t/0/0/1/0/1/a0˜, /t/0/0/1/0/1/a1˜, /t/0/0/1/0/1/b0˜,
/t/0/0/1/0/1/b1˜, /t/0/0/1/0/1/b2˜. This special symbol
in the object names will later be used by the consumer to
construct interest messages that allow retrieval of data objects
from the producer with the minimum transport latency.

Given the hierarchical tree representation T created using
ProdSync as described in Section III-A, the root coordinator
can now transform T into an LON by traversing T from
the root to the leaves and returning the name of the object
at the leaf. During traversal the branches are selected such
that an object with the shortest-shared-prefix, with respect to
previously returned object names, is returned.

Finally, this processed list is sent to the consumers upon
request. In particular, when a consumer requests a summary

of a dataset under the prefix /t, the root coordinator will send
a data message carrying the LON for data objects under the
corresponding tree. Note that the LON is generally of much
smaller size compared to data objects (e.g., in social media, a
tweet could have an image or video object embedded in it).

2) Consumer-side PDST: Each consumer running the NEST
application will first request the LON under some tree root
/t. The consumer then sends interests for items in the LON
in the given order. However, the interest names used will vary
depending on whether the object belongs to an opportunity
leaf. For such objects, a producer diversity opportunity exists
and thus the consumer can take advantage of it. In particular,
for any object name in the LON ending in ˜, the consumer
sends the interest message with the partial name up to the
prefix of the corresponding leaf in T . For example, if the
next data object name in the LON is /t/0/0/1/0/1/b0˜, the
consumer sends the interest message /t/0/0/1/0/1/ instead.

This interest will be forwarded by the underlying NDN
to all producers with data objects under the corresponding
opportunity leaf. Thus, all producers will respond with data
objects under the given leaf, and only one data message
will be forwarded to the requesting consumer while other
messages will not be forwarded. To avoid retrieving duplicate
objects that were retrieved previously using the same partial
name, the consumer employs the exclude option in the interest
message. In particular, it includes the last component in the
name of the objects retrieved previously under same leaf. For
example, when an interest message is sent with the partial
name /t/0/0/1/0/1/ and data object /t/0/0/1/0/1/b0 is
retrieved, the next interest message for an object belonging
to the same opportunity leaf will be /t/0/0/1/0/1/(−b0).

One of the main advantages of crafting the interest messages
as described above is that the framework automatically adapts
to changing link delays. Thus, two consumers sending the
same interest message will get potentially different (but se-
mantically similar) data objects from different producers. Fur-
thermore, as network conditions change over time, a consumer
may get data objects from other producers because of latency
advantages. Since PDST capitalizes on NDN forwarding rules,
it also works when caching at intermediate routers is enabled
without the need to modify the software they run. Specifically,
caches will also use partial prefix matching and return objects
with matching names. If no matches are found in the cache,
the interest will be further forwarded.

3) Producer-side PDST: On the producer side, each pro-
ducer maintains an ordering of the local data points based
on user-specified and application-dependent weights. For ex-
ample, in a social media application, the popularity of the
content could be used as the weight. In a sensor network
application, more recent events or measurements could be
weighted highly if freshness is desired. Whenever the producer
receives an interest message with a partial name, it responds
with a data object from the subtree specified by the name
prefix, returning the first object in order after the excluded
objects. For example, if the interest message received by
producer b is /t/0/0/1/0/1/(−b0), then it returns object
/t/0/0/1/0/1/b1. Note that the object name b1 might not
be the actual object name at producer b, but rather a pointer

b
b

b
b b b
b

b b

t

0
1

0 1

a5

a4c1
c0

a3

a2b0
a1

a0

NDN

a

b

c

consumer

Fig. 2: Example network and tree with three producers (a,b,c)
and a consumer.

NEST’s LON Interest name sent Data name received

1 /t/0/a0˜ /t/0/ /t/0/b0
2 /t/1/0/a0˜ /t/1/0/ /t/1/0/c0
3 /t/0/a1˜ /t/0/(−b0) /t/0/a0
4 /t/1/1/a4 /t/1/1/a4 /t/1/1/a4
5 /t/0/b0˜ /t/0/(−b0,−a0) /t/0/a1
6 /t/1/0/a3˜ /t/1/0/(−c0) /t/1/0/c1
7 /t/1/1/a5 /t/1/1/a5/ /t/1/1/a5
8 /t/1/0/c0˜ /t/1/0/(−c1) /t/1/0/a2
9 /t/1/0/c1˜ /t/1/0/(−c1,−a1) /t/1/0/a3

TABLE I: Example of PDST operation.

to a data object under the given prefix which is second in order
based on the weights. This order is maintained only locally by
each producer.

In Table I, an example LON is shown. The corresponding
network with one consumer and three producers, as well as
the hierarchical data representation T are shown in Fig. 2. In
the example network, the transport latency to producer c is
the lowest, then to producer b, and then to producer a. The
second column is generated by the root coordinator in NEST
and represents the LON delivered to consumers requesting a
summary of content under the prefix /t. In the third column,
the interest names that the consumer uses in interest messages
are shown. The names of the data objects received by the
consumer in response, are shown in the last column. Note
that the interest names in the third column are adapted based
on names of data objects received so far (i.e., from previous
rows), as listed in the last column. For example, consider row
number 6. Here, the interest sent is for a data object that
is under the prefix /t/1/0/. Since the consumer previously
received the object /t/1/0/c0 (in row 2), it now includes
c0 in the exclude field of the interest message. The NDN
forwarding will pass the interest message /t/1/0/(−c0) to
all producers, but it will reach producer c first since it has the
best network conditions with respect to the consumer. Now,
producer c will check its local dataset for data objects under
prefix /t/1/0/ and with rank order subsequent to object c0,
returning object /t/1/0/c1. Data objects returned from other
producers will then be suppressed by intermediate routers
since the interest message would have been already satisfied
by object /t/1/0/c1.

In the following, we formalize our main result. The proof
is omitted for brevity.

Proposition 1. Fix an interest message j. PDST achieves
minimum latency T ∗(j).

We note that Proposition 1 implies that PDST minimizes

latency even if the link delay varies while the interest or data
message has not been received at the destination.

Pipelining interests: PDST uses an adaptive pipelining win-
dow, which controls how many pending interests are allowed
at any given time. In addition to being limited to a maximum
size W , the window size is adapted based on the LON and
the progress made thus far in processing the list. In particular,
the consumer can send interests from the LON until a new
entry requires sending a partial name which is already in use
in a pending interest, or until the maximum window size is
reached, whichever is smaller. This design prevents retrieval of
duplicate objects, since names of previously retrieved objects
are added to the exclude fields of subsequent interests, with
the same partial names. We evaluate the choice of W in
Section V. We also note that loss management is handled by
the underlying NDN mechanisms through the use of timeout
timers and retransmissions.

Caching: Before we conclude this section, we discuss
how caching affects the performance of our system. As the
number of consumers increase, it is expected that caches
at intermediate routers will return data objects more often,
improving latency performance with respect to a scenario
wherein caching is disabled. This in turn could reduce the
producer diversity opportunities that NEST tries to exploit to
improve performance; the data is already cached en route.
However, as will be shown in Section V, the marginal gain
in latency reduction is large even when caching is enabled. In
addition, the combined gain is substantial.

IV. IMPLEMENTATION

We implement NEST on Mini-NDN [14], an NDN network
emulator based on the popular Mininet [15] virtual network
environment. In Mini-NDN, a network topology is specified
in which nodes are connected via links parameterized by link
delay, bandwidth as well as loss percentage. Each node in the
network is capable of running NDN applications, forwarding
NDN packets according to the specified routing policy, as well
as caching forwarded content.

Mini-NDN accomplishes these NDN functionalities by run-
ning an instance of Named Data Link State Routing Protocol
(NLSR) [16] and NDN Forwarding Daemon (NFD) [17] on
each instantiated node in the network. NLSR is a routing
protocol responsible for populating NDN’s Forwarding Infor-
mation Base (FIB) while NFD is a network forwarder that
is fully capable of forwarding NDN packets according to a
diverse set of routing strategies.

Since Mini-NDN emulates the actual operations of NDN
networks, one primary advantage is that the applications
developed and tested on Mini-NDN can be readily operational
on the NDN testbed [18] or other actual NDN networks.

A depiction of NEST’s different components is shown in
Fig. 3. Each producer in the network runs the two functional
components of NEST (ProdSync and PDST) simultaneously
while the consumer runs PDST. First, producers in NEST
run the “NEST Sync” application, which is responsible for
implementing ProdSync and creating “NEST tree”. In our
implementation, we use k-means clustering with k = 2. The
NEST tree is then passed to the “NEST Prod” application. In

NDN

NEST Sync NEST Prod
NEST
tree

Prod. a

NEST Sync NEST Prod
NEST
tree

Prod. b

NEST Sync NEST Prod
NEST
tree

Prod. c
NEST Consum

Consumer

data data

data

control messages

control messages

control messagesdata messages

data messages

data messages

data messages

Fig. 3: A Network with three producers and a consumer
running NEST. Each box represents an application running
on producers or consumers.

this application, the tree is transformed to an LON which is
then used to guide the transport of data items. Finally, the third
application is the “NEST Consum” application running at each
consumer. This component is responsible for sending interest
messages that are responded to by the NEST Prod application
running at each producer.

We implemented all the applications in Python. In the NEST
Sync application, clustering information of every tree node is
kept in a data structure that holds the state of the computa-
tions and data exchanged between the coordinator and non-
coordinator producers. State and data are encoded into control
messages, where an interest control message requests the start
of computation or delivers the notification that a computation
is completed, while the corresponding data control message
delivers an acknowledgment or the requested data. On the
other hand, in the NEST Consum application, the consumer
implements a pipelining window of pending interests and a
method to transform the LON to interest messages with partial
names. NEST Prod implements a partial interest name match
function to select messages to be sent to the consumers.

V. EVALUATION RESULTS

Setup: Our evaluations are based on a dataset collected from
Twitter over a period of time from Dec 2016 to Mar 2017
using Twitter’s streaming API and a set of search keywords for
trending topics in politics, sports, and entertainment. Overall,
we use a dataset of about 80K tweets in our evaluations.

In each experiment, we randomly distribute a sample of the
dataset uniformly across the set of producers. We first pre-
process the collected tweets to remove stop words, special
characters, links and attachments, producing tokens. These
tokens are then transformed to a high dimensional vector
representation by computing the product of term frequency and
inverse document frequency (tf-idf) [19], a popular method for
text vectorization. We use the sklearn library [20] vectorizer
to achieve this task.

TABLE II: ProdSync convergence time.

N 3 5 7 9
Time(s) 34 38 83 122

In Mini-Net, links connecting the producers and consumers
are characterized by the link delay, the bandwidth, and the
message loss rate. In our experiments, we fix the bandwidth
and loss rates, and vary the link delays. We note that in Mini-
Net, each host in the network runs the NDN stack and thus can
be used as a producer, a consumer, and a forwarding switch,
simultaneously. In addition, hosts have content stores and thus
can cache data objects. In our experiments, we use a network
topology similar to that used in the NDN testbed [18] and we
have a varying number of producers consumers for different
experiments as will be discussed in the following.

In the following, we define terms that we use in our
evaluations. Let the summary block with size B be the number
of data objects the consumer has to fetch in order to have
a satisfactory summary. The block latency tB is the delay
from sending the interest message for the first data object in
the block, until the successful reception of the data message
corresponding to the last data object in the summary block.
This quantity is directly proportional to the per interest latency
defined in Section III-B.

We divide the evaluation results into two parts. In the first,
we evaluate the performance of the ProdSync algorithm and
quantify performance in terms of the convergence time. In the
second, we focus on the latency performance of PDST and
compare it to a baseline summary transport protocol with no
producer diversity (i.e., a system in which the LON is used
to retrieve data objects from specific producers, similar to the
protocol in [6]).

A. Producer Sync

We consider networks with different numbers of producers
and distribute a dataset of 4000N tweets uniformly at random
over the N producers. We use Euclidean distance to measure
similarity between different vectors representing tweets, and
use a similarity threshold τ = 0.9 as the stopping criterion for
ProdSync. For the coordinator selection, in each iteration, we
let the producer with the smallest ID perform the coordination
tasks for the corresponding tree node. Producers are connected
with link delays of 10 milliseconds.

We first evaluate ProdSync’s convergence time. For sce-
narios with N = 3, 5, 7, 9 producers, we repeat the exper-
iment 10 times and report the average convergence time in
each case. Table II outlines the results. It can be seen that
ProdSync’s convergence time is approximately linear in the
number of producers and the dataset size for N > 3. In
many applications (such as traffic monitoring, news stories
updates), major dataset changes happen on the order of hours.
Thus, ProdSync provides a practical means for constructing
the global representation of the distributed dataset as it can be
run periodically at a rate that is faster than the rate of data
evolution.

20 30 40 50 60 70 80 90
Link Delay Standard Deviation (msec)

0

500

1000

1500

2000

2500

3000

La
te
n
cy

 (
m
se

c)

Block Latency

Baseline B=100

NEST B=100

Baseline B=20

NEST B=20

(a) Link delay variance.

0 10 20 30 40 50
Summary Block Size

0

200

400

600

800

1000

1200

1400

La
te
n
cy
 (
m
se
c)

Block Latency

Base - N=3

Base - N=5

Base - N=7

NEST - N=3

NEST - N=5

NEST - N=7

(b) Number of producers.

0 20 40 60 80 100
Summary Block Size

20

40

60

80

100

120

140

160

180

200

La
te
n
cy
 (
m
se
c)

Avg. per Message Latency

Baseline

NEST

(c) Per message latency.

0 10 20 30 40 50
Summary Block Size

0

500

1000

1500

2000

2500

3000

La
te
n
cy
 (
m
se
c)

Block Latency

W=1

W=10

W=20

(d) Pipelining window sizes.

Fig. 4: Latency performance.

0 50 100 150 200 250 300 350 400
Summary Block Size

0

2000

4000

6000

8000

10000

La
te
n
cy

 (
m
se

c)

Block Latency

Baseline: |P|=2k

Baseline: |P|=4k

NEST: |P|=2k

NEST |P|=4k

(a) Different sample size |P|.

0 20 40 60 80 100
Summary Block Size

0

500

1000

1500

2000

2500

La
te
n
cy

 (
m
se

c)

Block Latency for C2

Baseline: Cache OFF

Baseline: Cache ON

NEST: Cache OFF

NEST: Cache ON

(b) Caching.

Fig. 5: Latency performance.

B. Latency Performance

In this section, we evaluate the latency performance of
PDST after the LON has been delivered to the consumers.
We compare the performance to the baseline protocol.

1) Link delay variance: First, we vary link delay variance
and measure the incurred latency. We fix the maximum
pipelining window size to W = 10 and vary the link delays
from the producers to the consumer in the range 5 to 200msec
while maintaining a fixed average. Here, we consider a topol-
ogy with 5 producers and 1 consumer, and we consider two
different summary block sizes B = {20, 100}. As shown in
Fig. 4a, the block latency improves as the link delay variance
increases. This is because NEST effectively checks if similar
objects exist at producers with better network conditions
and fetches objects from those producers first. Essentially,
objects with slow retrieval times are pushed to the end of
retrieval order. Compared to the baseline system, block latency
performance is improved by more than 40% when the link
delay standard deviation is 50msec.

In Fig. 4b, we plot the block latency tB for a varying
B. We also show the performance for topologies with dif-
ferent number of producers. First, we observe that while the
baseline system performance does not change when number
of producers change, NEST fully utilizes producer diversity.
In particular, as the number of producers increases, diversity
improves and block latency decreases.

We also study the per message latency when N = 5, where
W and link delays are chosen as in previous experiments. In
Fig. 4c, we plot the average per message latency vs. different
B. The figure shows that by taking advantage of producer
diversity, the latency improvements can be as high as 50%.
Note that as the block size increases for a fixed dataset size,
this gain is expected to decrease. We study the effect of the

ratio B
|P| in Section V-B3.

2) Pipelining: Next, we study the effect of the maximum
pipelining window size W on the block latency. In Fig. 4d,
there are five producers with link delays similar to those in the
previous experiments. Note that PDST’s adaptive pipelining
does not send new interest messages while pending interests
with the same partial name exist, to avoid duplicate object
retrievals. It is seen that pipelining improves block latency
compared to a simple stop and wait approach (W = 1). In
addition, consumers will experience more packet losses as W
increases and thus more bandwidth wastage. The figure shows
that diminishing gains result due to increasing W . We find
that W = 10 achieves the best latency performance.

3) Impact of dataset size: Next, we study the effect of the
dataset size on the block latency. It is expected that as the
ratio B

|P| decreases, the latency gain of NEST increases. In
other words, when the requested summary block size B is
comparable to the dataset size, consumers may not be able
to avoid fetching objects from producers with unfavorable
network conditions. We fix five producers with link delays
similar to previous experiments. Fig. 5a shows that, for a
given block size B, the latency reduction gain is only slightly
reduced when the sample size is halved. When |P| = 2000,
NEST can achieve a positive gain for summary block sizes
up to 20% of the dataset, which is reasonable for applications
in which consumers are interested only in data summaries of
large datasets.

4) Caching: Finally, we study the performance of NEST
when caching is enabled in the underlying NDN. In this exper-
iment, the topology has two consumers and five producers with
similar link delays as in previous experiments. Both consumers
are using the same LON. We introduce a delay between the
time each consumer starts fetching items to see the effect of
caching. Caching allows intermediate nodes to temporarily
store content that was previously forwarded to other hosts
in the network. As seen in Fig. 5b, NEST yields latency
performance improvements of about 50%. Compared to the
baseline performance with caching disabled, the combined
latency reduction gain is more than 70%.

VI. RELATED WORK

There has been prior work on selectively sending a rep-
resentative subset of data instead of the entire dataset [21],
[22]. However, unlike our work, these efforts are application
specific. Moreover, these approaches try to optimize for energy

efficiency in contrast to our goal of minimizing latency in re-
trieving the summary. Achieving our goal requires an approach
that is much different from those proposed in these efforts.

More recently, multiple works considered optimizing la-
tency in NDN [23]–[25]. In these works, architectural changes
to NDN are proposed to improve the support for low latency
applications such video conferencing [23]. In addition, multi-
path routing as well as network coding are employed [24],
[25] to improve performance of video streaming. Unlike these
approaches, NEST does not require changes to underlying
NDN infrastructure and operates as an end-host application.
Thus, we argue that it is much more general and easy to
deploy.

On the other hand, distributed dataset synchronization was
recently addressed [26]. The goal is to efficiently synchronize
the state of a group of hosts for applications such as group
text messaging. This is different from the problem we consider
wherein we address producer synchronization, since we do not
require all hosts to have the full dataset.

The closest works to ours are Espresso [13] and InfoMax
[6]. The former creates a tree representation and object names
from a given dataset for creating summaries, while the latter
transforms the tree into an ordered list for transport. However,
their model considers only a single producer. While we use
a similar approach towards summarization, we address a
different set of challenges wherein the dataset is distributed
across multiple producers. In particular, transport performance
is our primary issue of focus; this was not addressed in these
works.

VII. CONCLUSION

In this paper, we target the problem of delivering a summary
of a large dataset to consumers from a set of producers with
low latency. Retrieval of such a summary of the dataset, is
becoming popular in many emerging applications. We propose
NEST, an efficient data summary transport protocol which
leverages the NDN architecture towards achieving this goal.
Our novel framework opportunistically fetches data from the
producers with good network conditions relative to consumers
after constructing a global view of the dataset shared between
producers and establishing similarity relations between data
points. Our experimental results show that large latency re-
duction gains can be achieved compared to baseline strategies
that do not exploit producer diversity. The gains are especially
noteworthy (up to 50%) when the number of producers and
link delay variations are large.

Acknowledgment: This work was partially supported by
the Army Research Laboratory and was accomplished un-
der Cooperative Agreement Number W911NF-09-2-0053. The
views and conclusions contained in this document are those
of the authors and should not be interpreted as representing
the official policies, either expressed or implied, of the Army
Research Laboratory or the U.S. Government. The U.S. Gov-
ernment is authorized to reproduce and distribute reprints for
Government purposes notwithstanding any copyright notation
here on. This work was also partially supported by the NSF
CPS grant 1544969.

REFERENCES

[1] L. Columbus, “Roundup of internet of things forecasts and market
estimates, 2016,” https://www.forbes.com/sites/louiscolumbus/2016/11/
27/roundup-of-internet-of-things-forecasts-and-market-estimates-2016/
#1b7ea093292d, 2016.

[2] M. Chen, S. Mao, and Y. Liu, “Big data: A survey,” Mobile Networks
and Applications, vol. 19, no. 2, pp. 171–209, 2014.

[3] B. Marr, “Big data overload: Why most companies can’t deal with the
data explosion,” https://www.forbes.com/sites/bernardmarr/2016/04/28/
big-data-overload-most-companies-cant-deal-with-the-data-explosion/
#33cde7b06b0d, 2016.

[4] S. H. Bouk, S. H. Ahmed, D. Kim, and H. Song, “Named-data-
networking-based its for smart cities,” IEEE Communications Magazine,
vol. 55, no. 1, pp. 105–111, 2017.

[5] L. Zhang, A. Afanasyev, J. Burke, V. Jacobson, P. Crowley, C. Pa-
padopoulos, L. Wang, B. Zhang et al., “Named data networking,” ACM
SIGCOMM Computer Commun. Review, vol. 44, no. 3, pp. 66–73, 2014.

[6] J. Lee, A. Kapoor, M. T. Al Amin, Z. Wang, Z. Zhang, R. Goyal, and
T. Abdelzaher, “InfoMax: An information maximizing transport layer
protocol for named data networks,” in IEEE 2015 24th Int. Conf. on
Computer Commun. and Networks (ICCCN), 2015, pp. 1–10.

[7] M.-F. F. Balcan, S. Ehrlich, and Y. Liang, “Distributed k-means and
k-median clustering on general topologies,” in Advances in Neural
Information Processing Systems, 2013, pp. 1995–2003.

[8] S. Har-Peled and S. Mazumdar, “On coresets for k-means and k-median
clustering,” in Proceedings of the thirty-sixth annual ACM symposium
on Theory of Computing. ACM, 2004, pp. 291–300.

[9] J. Chen, H. Sun, D. Woodruff, and Q. Zhang, “Communication-optimal
distributed clustering,” in Advances in Neural Information Processing
Systems, 2016, pp. 3727–3735.

[10] D. Aloise, A. Deshpande, P. Hansen, and P. Popat, “NP-hardness of
euclidean sum-of-squares clustering,” Machine Learning, vol. 75, no. 2,
pp. 245–248, 2009.

[11] S. Lloyd, “Least squares quantization in PCM,” IEEE Trans. on Inf.
Theory, vol. 28, no. 2, pp. 129–137, 1982.

[12] D. Arthur, B. Manthey, and H. Röglin, “Smoothed analysis of the k-
means method,” J. ACM, vol. 58, no. 5, pp. 19:1–19:31, Oct. 2011.

[13] J. Lee, M. T. Al Amin, and T. Abdelzaher, “Espresso: A data naming
service for self-summarizing transport,” in 2017 14th Annual IEEE Int.
Conf. on Sensing, Commun., and Networking (SECON), 2017, pp. 1–9.

[14] “named-data/mini-ndn,” https://github.com/named-data/mini-ndn.
[15] “Mininet,” http://mininet.org/.
[16] “NLSR - named data link state routing protocol,” http://named-data.net/

doc/NLSR/current.
[17] “NFD - named data networking forwarding daemon,” https://

named-data.net/doc/NFD/current.
[18] “NDN testbed,” https://named-data.net/ndn-testbed/.
[19] J. Ramos et al., “Using tf-idf to determine word relevance in document

queries,” in Proceedings of the first Instructional Conf. on Machine
Learning, vol. 242, 2003, pp. 133–142.

[20] F. Pedregosa, G. Varoquaux, A. Gramfort, V. Michel, B. Thirion,
O. Grisel, M. Blondel, P. Prettenhofer, R. Weiss, V. Dubourg et al.,
“Scikit-learn: Machine learning in Python,” Journal of Machine Learn-
ing Research, vol. 12, no. Oct, pp. 2825–2830, 2011.

[21] H. Gupta, V. Navda, S. Das, and V. Chowdhary, “Efficient gathering
of correlated data in sensor networks,” ACM Transactions on Sensor
Networks (TOSN), vol. 4, no. 1, p. 4, 2008.

[22] Y. Ma, Y. Guo, X. Tian, and M. Ghanem, “Distributed clustering-based
aggregation algorithm for spatial correlated sensor networks,” IEEE
Sensors Journal, vol. 11, no. 3, pp. 641–648, 2011.

[23] M. Almishari, P. Gasti, N. Nathan, and G. Tsudik, “Optimizing bi-
directional low-latency communication in Named Data Networking,”
SIGCOMM Computer Commun. Review, vol. 44, no. 1, pp. 13–19, 2013.

[24] S. de Arco, J. Eduardo, E. Bourtsoulatze, N. Thomos, and T. Braun,
“Adaptive video streaming with network coding enabled named data
networking,” IEEE Trans. on Multimedia, 2017.

[25] K. Matsuzono, H. Asaeda, and T. Turletti, “Low latency low loss
streaming using in-network coding and caching,” in IEEE INFOCOM,
2017.

[26] Z. Zhu and A. Afanasyev, “Let’s Chronosync: Decentralized dataset state
synchronization in named data networking,” in 2013 21st IEEE Int. Conf.
on Network Protocols (ICNP), 2013, pp. 1–10.

