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ABSTRACT
Dense deployments of WLANs suffer from increased interference
and as a result, reduced capacity. There are three main functions
used to improve the overall network capacity: a) intelligent fre-
quency allocation across APs, b) load-balancing of user affiliations
across APs, and c) adaptive power-control for each AP. Several al-
gorithms have been proposed in each category, but so far, their eval-
uation has been limited to: (a) each approach in isolation and, (b)
simulations or small-scale testbeds. In this paper, we ask the ques-
tion: what is the best way to combine these different functions?
Our focus is to fully explore the interdependencies betweenthe
three functions in order to understand when and how to deploythem
on a network. We follow a measurement-driven study to quantify
the effects of three previously proposed optimization schemes (one
for each category) on a relatively large testbed and in many differ-
ent scenarios. Surprisingly, we find that blindly applying all the
three optimization schemes is not always preferable; it cansome-
times degrade the performance by as much as 24% compared to
using only two of the schemes. We discover that there are explicit
conditions that are conducive for applying specific combinations
of the optimization schemes. We capture those conditions within
a comprehensive framework, which we call MDG (Measurement-
Driven Guidelines). While we derive such guidelines based on
measurements on one experimental testbed, we test their applicabil-
ity and efficacy on a second testbed in a different location. We show
that our framework improves network capacity consistentlyacross
both testbeds, with improvements ranging from 22% to 142% with
802.11a, and 103% to 274% with 802.11g.

Categories and Subject Descriptors:C.2.1 [Computer - Com-
munication Networks]: Network Architecture and Design; C.2.3
[Computer - Communication Networks]: Network Operations

General Terms: Algorithms, Measurement, Performance, Design,
Experimentation, Verification
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1. INTRODUCTION
The emergence of highly dense wireless LANs is a consequence

of: (a) the desire for ubiquitous coverage, (b) incrementaland heuris-
tic deployments and, (c) decreasing prices of access point (AP)
hardware. The desire to ensure coverage with the best signalqual-
ity possible has led to environments with thousands of APs inurban
areas and enterprises [1]. However, dense deployments can lead to
high interference levels if resource sharing is not optimized.

To mitigate the interference in such networks, we can optimize
operations by means of three functions: a) intelligent frequency al-
location across APs, b) load-balancing of user affiliationsacross
APs, and c) adaptive power-control for each AP. There have been
techniques proposed for each of the above operations [2] [3][4].
However, most previous efforts consider the optimization along
each dimension (frequency, user affiliation or power) in isolation.
In addition, the performance of each proposed method is typically
evaluated on a different, small testbed and/or through simulations.
Theoretical models and simulation studies are good for capturing
bounds and trends, but not as good for quantifying the performance
one should expect in practice.

The goal of this work is to explore the interdependencies be-
tween the three functions in order to maximize the benefits from
their deployment. In particular, we want to: (a) understandthe ca-
pabilities and benefits that one should expect from each optimiza-
tion function, and (b) identify the conditions that are conducive for
applying these functions in isolation or in combination. While all
three functions manipulate the dense WLAN topology to maximize
network capacity1, the tuning of the topology by one function may
“impede” the application of another function. For instance, if one
attempts to balance the clients across the APs, some clientsmay
affiliate with farther APs than they would have otherwise. Inthat
case, power control may not be able to reduce the power of the APs
across the network, since such a power reduction would degrade the
performance of these long AP-client links to unacceptable levels.

Our primary contribution is a framework that provides a com-
prehensive set of guidelines for the optimization of dense WLANs;

1Here, we use the term topology to refer to the network topology,
as defined by links at the MAC layer. We also define the network
capacity to be the aggregate network throughput under fullysatu-
rated traffic conditions and with the assumption that all clients of
an AP receive the same throughput in the long-term.



we call our framework MDG (Measurement Driven Guidelines).
As the name suggests, the foundation of our framework is an ex-
tensive measurement study on a large scale testbed, housed at the
University of Cambridge, UK (Testbed A). We capture the topo-
logical conditions that render a WLAN amenable to optimization
through appropriate combinations of the three functions2. We ob-
serve that the use of MDG increases the network throughput byat
least 22%, as compared to other design decisions. We show that
the derived guidelines increase the network capacity in a second
testbed, at the University of California, Riverside [5] (Testbed B),
thus demonstrating its effectiveness beyond our test environment.
We highlight our main contributions below.
1. An in-depth understanding of the synergy of the optimiza-
tion dimensions: We evaluate three existing algorithms, one for
each dimension; the chosen schemes are among the best in their
class. We implement and evaluate the algorithms, both in isola-
tion and in all possible combinations, on Testbed A. We perform
extensive measurements to study under what conditions a specific
combination of the algorithms should be invoked to manipulate the
topology of the deployment, in order to achieve optimal results.
Our experiments demonstrate that in many cases, the use of one
algorithm can often increase the efficacy with which anotheralgo-
rithm can be applied.

Interestingly we find that,blindly applying all three algorithms
can degrade performance. While each algorithm in isolation achieves
its optimization objective, in some cases, applying all three algo-
rithms can lead to sub-optimal performance due to interdependen-
cies among the algorithms.
2. Designing MDG, a comprehensive optimization framework:
Based on our measurement studies, we derive the conditions un-
der which the joint application of the algorithms are likelyto yield
significant performance benefits. In other words, we formulate a
procedure that specifies guidelines on“which” of the algorithms
should be invoked, in“what” order and“under what conditions”.
Our framework can operate as a periodic reconfiguration process
based on operational conditions, as we discuss later.
3. Validating the MDG framework: We validate MDG by apply-
ing it on a second WLAN (Testbed B). This network is completely
different from our first testbed: it is deployed in another organiza-
tion and under very different environmental conditions. Weshow
that MDG provides the best observed performance on the testbed
compared to any other combination of these optimization proce-
dures.

Our work in perspective: We envision that our framework will
be applicable in the following cases. First, MDG could be ap-
plied on a single dense WLAN, and the decisions on the operations
could be taken eithercentrally (perhaps by a network administra-
tor), or by the APs in adistributedway. Note that the affiliation
decisions are typically taken by the users in their WLAN. Sec-
ond, MDG could be applied in the presence of multiple overlap-
ping WLANs. Here, the WLANs may either work cooperatively
(they all run MDG and they are willing to share information) or
not. In the latter case they will interfere with each other, but the ap-
plication of MDG will succeed in improving network performance,
given the constraints imposed by the uncooperative WLANs. In
the former case, the cooperation is typically limited to frequency
selection and power control, among the cooperative WLANs (see
section 4). Note that, as we discuss later, our framework considers
and tries to work around external interference.

2We use an experimental study with a large testbed to drive our
guidelines, since we believe that this can provide a more realistic
assessment of conditions in practice unlike simulation studies, sim-
plified analytical models or observations on small scale testbeds.

The rest of the paper is organized as follows. In Section 2, we
provide the relevant background and briefly describe the three algo-
rithms considered in this work. We describe our first set of exper-
iments, the observations, and the interpretations thereofin Section
3. Our proposed framework is derived in Section 4. We describe
our validation process on the second WLAN deployment in Section
5. We discuss the limitations of our framework in Section 6. Our
conclusions form Section 7.

2. BACKGROUND AND RELATED WORK
In this section, we first describe what one might expect in terms

of default behaviors in dense WLANs. Next, we describe the three
algorithms that we choose for optimizing each dimension (discussed
in the previous section). Finally, we provide some details on other
relevant work.

2.1 Default behaviors in WLAN deployments
Typically, each deployer could independently choose the fre-

quency of operation of his/her WLAN. Thus, in a dense deploy-
ment, it is hard to determine the frequencies on which each AP
operates under default conditions. There have been variousfre-
quency selection methods that have been previously proposed [6]
[7] [3]; a deployer may choose one of these methods, a random
frequency selection strategy or, simply a fixed frequency for all the
APs in her/his network. Given this, we envision that in a dense
setting, with a plurality of these individual deployments,the oper-
ational frequencies of the different APs will be somewhat random.
In the default case, the user affiliates with the AP that offers the best
signal quality (measured in terms of the received signal strength in-
dicator or RSSI value). Under default settings, APs are unlikely to
employ any form of power control.

2.2 Our choice of the optimization algorithms
Previous work has shown that the three optimization procedures

(for frequency selection, power control, and, user association) can
be cast under a unifying framework that relies on Gibbs sampling
[2][3]. The problem formulation relies on the definition of an op-
timization criterion that is derived from a potential function, which
conforms to the Gibbs framework [8]. The authors demonstrate that
such a criterion exists for all three optimization procedures and can
be proven to converge to a global optimum, through local optimiza-
tion decisions, based on measurements that can be easily collected
by APs and users.
Optimality and Convergence: All three algorithms rely on Gibbs
sampling, an iterative procedure that was proven to lead to the
global optimum of their respective criterion. Given that the pro-
cedure is iterative in nature, each algorithm is invoked multiple
times throughout the network until convergence has been reached
(the topology no longer changes). This final state of the network
is the topology evaluated throughout our experiments. Notice that
the specific algorithms used in this work are potential optimization
strategies that may be adopted by a network operator, and that have
been shown to work fairly well in real environments.The focus
of the paper, however, is not the optimality of the individual al-
gorithms but a comprehensive framework that can combine them
effectively. We choose the three algorithms given that they can all
be implemented within the Gibbs’ sampling technique. However,
note that our framework, MDG, is applicable with other algorithms
as well, as we discuss in Section 6.

In what follows we outline the optimization criteria that drive
each of the chosen algorithms.

Frequency selection algorithm (FS):The Gibbs-based FS al-
gorithm is described in detail in [3]. We denote the channel se-



lected by APa asca and the total thermal noise and interference
from non-802.11 sources at APa asNa. The power of the signal
received at APa from AP b is denoted asPb(a). If two APs a

andb select channelsca andcb respectively, we capture their de-
gree of orthogonality using functionsCH(a, b) which is equal to
1, whenca = cb, and0 otherwise3. Based on the above notation,
minimization of total interference across the entire network can be
formulated as the minimization of the energy function:

Fa = Na +
X

b6=a

sCH(a, b)(Pb(a) + Pa(b)) .

The optimization objective aims to allocate frequencies toAPs such
that (i) the total amount of noise across the entire networkand,
(ii) the amount of power sensed at each AP from its co-channel
APs together, are minimized. Assuming symmetry in power and
attenuation, the above equation can be simplified to:

Fa = Na +
X

b6=a

2sCH(a, b)Pb(a).

Therefore the global objective can be broken down into locally
measurable objectives: the termNa is the ambient noise around
AP a, and the term

P

b6=a
sCH(a, b)Pb(a) is the amount of power

received by APa from all other neighbor APs, operating on the
same frequency. [3] showed that this optimization problem can be
effectively solved using the Gibbs sampler; the solution isproven
to converge to a global optimum. Given its simplicity it forms the
basic algorithm that we test in the frequency selection space. Im-
plementation details are provided in Section 3.

User association algorithm (UA):The UA algorithm is described
in detail in [3]. This algorithm uses a philosophy that is similar to
that in the previous case, but aims to achieve the state of minimal
potential delay as defined in [9]. The algorithm is amenable to a
fully distributed implementation using Gibbs sampling andcan al-
leviate congestion by balancing the load across a larger setof APs.
Within the user association formulation the objective aimsat min-
imizing the amount of time that a user needs to wait until the re-
ception of a unit of information from its associated AP. Assuming
fully saturated traffic conditions, i.e., each AP always hasa packet
to send to each one of its users, the long-term throughput obtained
by each useru associated with APa has been shown to be:

ru =
M(a)

P

v∈Ua

d(v)
=

M(a)
P

v∈U sAP(u, v)d(v)
, (1)

whereUa ⊆ U is the subset of users associated with APa (set
U denotes all the users in the network), andM(a) is the fraction
of time AP a is able to access the medium given its co-channel
devices; sharing the medium with the co-channel devices will ef-
fectively limit its capacity to be a fraction of its nominal value. In
addition,d(v) is the data unit transmission delay of userv, and de-
pends on the instantaneous transmission rate to userv [3]. In fully
saturated downlink conditions, the max-min fair allocation of band-
width in the cell implies that each user will get the same throughput,
which is inversely proportional to the “sum of transmissiondelays
d(v) for each userv associated with the same AP asu (determined
through functionsAP(u, v)). This latter metric is calledAggregated
Transmission Delay (ATD)[3]. The minimization of the potential
delay can then be formulated as the minimization of the following
energy function:

E ((au)u∈U) =
X

u∈U

1

ru

, (2)

3This function can be a fraction between 0 and 1 for partially over-
lapped channels.

where,ru is the long term throughputof useru as given by Eq.
1. Notice that there is a delicate difference between minimizing
potential delay and maximizing capacity. Under our selected crite-
rion solutions where individual user throughput,ru, tends to zero
will be undesirable; something that could not be prohibitedif our
optimization criterion was the maximization of the sum of through-
puts across the network. In other words, our optimization criterion
targets states of high capacity, while ensuring fairness. [3] showed
that this optimization criterion is equivalent to each useru optimiz-
ing the following local energy function:

Eu =
1

M(au)

 

Ka · d(u) +
X

v∈Ua

d(v)

!

(3)

where,Ka denotes the number of users associated with APa. In
Eq. 3,Ka · d(u) is the additional potential delay that all the other
clients of APa will experience, due to the association of useru with
AP a, and

P

v∈Ua

d(v) is the delay that clientu will experience
because ofa’s existing users. This local energy only depends on
the stateau of useru and that of its neighbors. We assume here
that for alla, the AP channel access timeM(a) is not a function
of the state of the users, which is reasonable under our saturated
downlink traffic assumption as long as each AP has at least one
user.

Power control algorithm (PC): Power control has only recently
attracted the interest of the 802.11 WLAN research community.
[2] and [4] show that power control in 802.11 WLANs needs to
preserve symmetry in the contention domains. They also show
that symmetry is preserved only when the product of transmis-
sion power and the Clear Channel Assessment (CCA) threshold4

for each AP is constant throughout the network. We employ the
solution proposed in [2]; the proposed algorithm enables the ex-
change of appropriate information (by means of Beacon frames)
among APs to allow them to optimally tune the transmission power
and the CCA thresholds, such that symmetry is preserved. Thepa-
rameters are tuned by each AP so as to achieve the state of minimal
potential delay. The solution has been shown to lead to up to three
times improvement with respect to a case where no power control
is employed via experiments on a small scale testbed. For more
details please see [2].

Note here that no client-side information is needed for FS, UA
or PC. The APs measure all the channel gains, and calculate de-
lays and loads. The clients just need to apply the optimum settings
determined by the AP, and this is readily done today.

2.3 Other Relevant Work
There have been various other frequency selection algorithms

that have been previously proposed [6] [7]. With the LCCS (Least
Congested Channel Search) scheme, in [7], the AP chooses the
least congested channel. The proposal in [6] is to hop between
various channels to minimize co-channel interference. Theopera-
tion of the FS algorithm is similar to that of LCCS. In [10], Mishra
et al. propose a framework for client-based frequency allocation in
WLANs; this combines the dimensions of frequency selectionand
user association into a unified framework.

The work that is most related to our work is SMARTA [11],
which considers the problem of joint channel allocation andpower
control in WLANs. SMARTA requires a central controller, which
tries to optimize a utility function, using a set of measurements that
are performed by the APs. The central controller constructsand pe-
riodically updates a conflict graph; the APs constitute the nodes of

4The CCA threshold defines the RSSI value below which, recep-
tions are ignored with regards to carrier sensing.



the graph. Based on the conflict graph, the controller jointly gener-
ates optimal channel assignments and power control levels for the
APs. First, unlike SMARTA, our framework MDG can be imple-
mented in a completely decentralized manner. Second, it includes
the user-association component in addition to frequency selection
and power control. Finally, MDG also provides detailed guidelines
on “when” a specific combination of operations (FS, UA and/or
PC) is to be invoked in a “generic” dense WLAN deployment.

3. DERIVING DEPLOYMENT GUIDELINES
In this section, we describe the experiments that we performon

Testbed A to understand the interdependencies between the three
optimization dimensions. We begin with a description of thetestbed
and subsequently discuss experiments with the three optimization
algorithms (FS, UA and PC from Section 2) in isolation and in com-
bination.

3.1 Testbed Description and Deployment Strat-
egy

Testbed A consists of 21 APs and 30 clients, and spans the upper
two floors of the William Gates Building, at the University ofCam-
bridge, UK. The deployment is depicted in Fig. 1. The walls inthe
building are wooden without any metallic support in between. The
nodes are Soekris net4826 boxes [12] and run a Debian Linux dis-
tribution with kernel version 2.6.16.19. Nodes are equipped with
the Intel 2915a/b/g wireless cards, which are controlled bya proto-
type version of the Intel ipw2200 driver and firmware. Each card
is connected to two 5-dBi gain, external omnidirectional antennas.
We use both themain andaux signal inputs of the Intel card for
diversity. We have modified the ipw2200 driver and firmware to
implement our three optimization algorithms. We provide imple-
mentation details later in this section.
Choosing AP locations: In Testbed A, 12 of the APs are installed
in the building’s network closets following the existing WLAN de-
ployment. These APs form a 2x3 grid topology in each of the two
floors. The positions of the remaining 9 APs were selected after a
set of measurements and placed uniformly to ensure maximal cov-
erage.
Experimental Settings:Our goal is to perform extensive measure-
ments with the three algorithms, FS, UA and PC and combinations
thereof. Our experiments were performed with both 802.11a and
802.11g and late at night; the time ensured that the contention
and interference from co-located WLANs is limited5. All nodes
by default set their transmission power to the maximum (20 dBm)
and their CCA thresholds to -80 dBm. Each client receives fully-
saturated downlink UDP traffic for two hours, from its AP. We have
selected only downlink traffic for our experiments, since traffic is
predominantly downlink in most WLAN deployments. We use the
iperf bandwidth measurement tool. During each experiment, a cen-
tral testbed server periodically stores the following information:

• The clients that are activated in the experiment, and the time
at which each activation takes place.

• The network topology specifying the clients that are affiliated
with each AP at the sampled instance.

• The channel, the transmission power and the CCA of each
AP.

Note that each AP implements the Intel proprietary rate adaptation
algorithm, adapting the transmission rate of the AP to each client
5The performance of the schemes in the presence of interference
from co-located WLANs is examined in Section 5-3.

according to the quality of the channel. In the presence of rate adap-
tation it has been shown [13], and we have verified in our testbed,
that all clients will receive the same long term throughput under
fully saturated traffic conditions.

3.2 Frequency Selection
We first evaluate and experiment with the FS algorithm. The

objective of the FS algorithm is to assign frequency channels to
the different APs, such that the interference between the APs is
minimized. In this section, we only consider the FS scheme in
isolation and we combine it with other algorithms later. Thekey
observations from our experiments are:

• Neighboring APs may interfere with each other, even when
set to orthogonal channels in IEEE 802.11a. Thus, to elim-
inate interference, neighboring APs with a mutual RSSI>

-40 dBm must choose frequencies that are separated by at
least 40 MHz with 802.11a.

• The use of the FS algorithm almost always improves (and
never hurts) the performance compared to that achieved with
default behavior.

• We observe that, loss of beacon messages affects the channel
selection decisions negatively. The beacons are lost either
due to poor link quality, AP overload (when they may not
even get sent out), or insufficient scanning times.

We first present some implementation details specific to FS.
Implementation Details: We activate all APs sequentially in ran-
dom order. At start-up, each AP starts running the FS algorithm,
which is an iterative process, until the channel decisions do not
change for a set of iterations. The clients are then activated sequen-
tially and they choose their APs based on the strongest received
signal (i.e., the UA algorithm is not activated). Note that in Testbed
A, FS converges in 2 iterations (each iteration is scheduledat in-
stances that are separated by exponentially distributed periods with
an average value of 30 mins). The FS algorithm is implemented
in the AP driver and firmware. In particular, the following features
were implemented:
1. Gathering information with regards to each channel: Each
AP passively scans each channel to discover neighbor APs. On
each channel, the AP measures the strength (RSSI) of the received
signal from each neighboring AP. The RSSI values are then added
to compute the total received power on the current channel. Note
that APs are configured to only scan the orthogonal channels under
both 802.11a and 802.11g.
2. Interference and co-located WLANs:The AP driver, by de-
fault, measures the strength of the received signals from all APs,
irrespective of whether they belong to the same WLAN or not. We
opt to run the experiments at night to avoid interference from colo-
cated WLANs. This has two advantages: our results are easier
to reproduce and interpret. Note that, before initiating our experi-
ments, we monitor the medium and we verify that there is no data
traffic from external WLANs. Hence, we have modified the AP
driver to ignore the beacons from inactive APs of other WLANs, in
the channel selection process.

Our experiments and the observations thereof are describednext.
a. The FS algorithm in isolation is always beneficial in a

dense WLAN: We quantify the performance improvements with
the FS algorithm. For comparison, we consider two differentap-
proaches: (i) all APs are on the same channel6 and, (ii) a chan-
6Here we use channel 1 for 802.11g, and channel 56 for 802.11a in
our experiments. We also experimented with other channels,and
the experiments verified the reported results.



Figure 1: Testbed A: deployment on the second floor (left) andthe third floor (right) of a 3-floor building. Clients are repr esented by
circles, while APs by squares.
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nel selection algorithm, which we call RCS algorithm (for Random
Channel Selection), where each AP randomly selects one of the or-
thogonal channels, which arguably approximates real network de-
ployments (see Section 2-A). We expect that the FS algorithmwill
perform better since it selects the channel with the farthest possible
reuse. In what follows, we will quantify performance using the sum
of throughputs achieved by all clients across the network, ametric
we will also call as the “network capacity”. Fig. 2 shows thatFS
outperforms RCS by 48% in 802.11a and by 65% in 802.11g.

b. Loss of beacon messages affects the decisions of the FS al-
gorithm negatively: In many cases, we observed co-located APs
with the same frequency, although such frequency overlaps could
have been avoided. An AP follows a scanning process, where itlis-
tens for beacons from APs to choose its operating frequency.When
an AP misses beacon messages from its neighbor APs, it can end
up selecting a frequency already in use. Missing a beacon could be
a consequence of: (a) poor link conditions, (b) small scanning du-
ration (band dwell duration), and (c) lack of timely beaconsfrom
neighbors [14]. To improve the selection, the FS algorithm can
base its decision on a sufficiently large scanning interval,and on
more than one scanning cycles (recall that each AP iterates the FS
algorithm until convergence is reached).

c. The FS algorithm and frequency utilization: Testbed A is
fairly dense in terms of AP placement: the average AP degree is 5
and the maximum is 9, counting only AP-to-AP links. We observe
that, with FS, only 6 channels7 were used with 802.11a and that
was enough to isolate overlapping APs.

Does the FS algorithm miss an opportunity to further improve
its performance by not using the unused frequencies? The answer
is no. We conducted additional experiments using the unusedor-

7There are 8 non-overlapping 802.11a channels for North America:
36, 40, 44, 48, 52, 56, 60 and 64.

thogonal channels. In fact, we modified the driver to use an addi-
tional channel from the remaining set. In particular, we identified
APs with the same frequency, and used the unused frequenciesto
set them to different frequencies. Our measurements indicate that
the throughput improvement was minimal, approximately 0.06%.
In contrast, with 802.11g, all three available orthogonal channels
were used, and that was not enough to completely isolate the APs.
Clearly, the density and the structure of the topology defines the
number of necessary frequencies.

d. APs may suffer interference from each other, even when
set to orthogonal 802.11a frequencies:The FS algorithm may
assign twoconsecutiveorthogonal 802.11a channels to two neigh-
bor APs under the assumption that they do not interfere with each
other. As an example, in a certain experiment AP47 selected fre-
quency 5.26 GHz and a close neighbor AP60, selected frequency
5.28 GHz. We observed that when AP60 sent traffic, the through-
puts enjoyed by AP47’s clients dropped dramatically (Fig. 3). We
repeated the same experiment with a set of Atheros-based WiFi
cards (EMP-8602 6G), and observed the same behavior (thus, the
behavior is not hardware specific). We ensured that the observed
drop in Fig. 3 was not due to interference from APs in colocated
WLANs; AP47 was the only AP using frequency 5.26 GHz in the
neighborhood. The spillage between consecutive orthogonal chan-
nels is approximately on the order of -38 dB [15]. When nodes on
such consecutive channels are close, there is very little path loss and
thus, this leakage is strong enough to activate the carrier sensing at
the MAC layer.

e. Going beyond orthogonality in selecting frequencies:Our
experiments suggest thatAPs whose mutual RSSI is on the order of
-40 dBm, should be assigned channels that are separated by atleast
40 MHz (as an example, channels centered at 5.22 GHz and 5.26
GHz). We observed that with this separation even very closely-
located APs (RSSI higher than -35 dBm) never interfere with each



other. We are interested in observing the difference in performance,
if the selected (by the FS algorithm) set of 802.11a channelsis re-
arranged among the APs, such that the above frequency separation
is applied for closely-located APs. For this, we first run theFS al-
gorithm until convergence is reached. We then manually perform a
channel reassignment, such that APs that are in close proximity are
set to distant frequencies. We also ensure that APs that are likely
to interfere are on different channels. We compare the performance
of this refined assignment with that of the FS algorithm and we
observe an improvement of 24% in the network throughput on av-
erage. Note that this is also an indication of why experimenting
with large-scale testbeds is beneficial. In a small-scale testbed, the
few APs are more likely to select channels with frequency separa-
tion larger than 40 MHz, and thus, we would not have observed this
phenomenon.

3.3 User Association
Here, we seek to evaluate the benefits of the UA algorithm. We

compare this with a strategy where clients affiliate with theAP that
provides the strongest signal, which is the default behavior as ex-
plained earlier. We consider the UA algorithm first in isolation, and
second in conjunction with the FS algorithm. The key observations
based on these experiments are:

• Load balancing of user affiliations is beneficial only when
the inter-AP contention is limited.

• The use of the UA algorithm improves throughput as com-
pared to default behavior (strongest-signal based affiliation).

• Poor AP-to-client link quality can negatively impact UA.

Implementation Details: The activation procedure is the same as
in the previous case i.e., we first activate all the APs, and then ac-
tivate the clients randomly, one every 100 seconds. Note that in
testbed A, UA converges in 5 iterations on average (per client). The
UA algorithm requires modifications in the AP driver and firmware,
as well as in the client driver.
1. Computing the ATD metric: At the firmware level, we measure
the time between queueing a packet at the MAC layer until an ACK
(from the client to which the packet is destined) is received. The
driver retrieves this duration from the firmware and calculates the
average transmission delay to serve one round of users[3, 16].
2. Assessing the channel access time:The channel access time
is the fraction of time for which the AP has access to the medium;
this depends on the level of contention in the neighborhood.At the
firmware, we measure the number of slots that the AP is: (a) trans-
mitting or receiving (b) idle and, (c) in the back-off state.The mea-
surement period involves 5 transmission/reception events. These
measurements are used by the driver for estimating the channel ac-
cess time, i.e. the fraction of a reference period that the APsuc-
ceeds in gaining access to the medium, given its contenders.
3. Beacon modifications:We modify the beacon template to in-
clude the ATD of the AP, the number of clients associated withthe
particular AP and the channel access time measured at that AP.
4. Client AP selection:The client driver is modified to recognize
the additional Beacon fields and use them in its association decision
according to Eq. 3.

We present our experiments and their interpretations.
a. Inefficiencies in scanning for APs:In our experiments, we

observed in several cases that clients remained affiliated to an AP,
while they should have associated with less-loaded neighbor APs.
We attribute this to lost beacons during the scanning phase (due to
small band dwell times and/or due to poor link qualities). Thus,

the UA implementation should base its decision on more than one
scanning cycle to avoid sub-optimal affiliation decisions.

b. In isolation, UA is beneficial only for 802.11a and not for
802.11g in a dense WLAN:First, we consider the use of a single
frequency channel with the UA algorithm. There are two factors
that affect the throughput that a client can receive from an AP: (i)
the load of the AP, and (ii) the contention among the neighboring
APs. By associating with a lightly loaded AP, a client can expect
an improvement in performance. However, if the newly selected
AP has to contend with many other neighbor APs, the change may
not improve the performance for that client. With 802.11g, cells
are larger and can only select from a smaller number of channels,
while, with 802.11a, the cell size is smaller and the number of chan-
nels is higher. Due to this, with 802.11a, UA provides about a34%
improvement with respect to the strongest-signal affiliation deci-
sion, while with 802.11g, the improvement is only about 1%, as
shown in Fig. 4.

Without the UA algorithm, a client associates with the AP that
offers the best RSSI value. This, however, results in overloading
some APs, while other APs are under-utilized and in some cases
remain unused. With the UA algorithm, each client associates with
the AP that provides the minimum long-term delay as per Eq. 3,
which considers the load of an AP in addition to the signal quality
from the AP. We observed that without UA, 4 APs had to serve
5 clients each out of the 30 clients while 8 of the 21 APs had no
clients at all! With UA, each APs had to serve 2 clients on average,
while at most 3 clients were associated with an AP.

c. When both FS and UA are applied, the overall network
throughput becomes much higher than if one were to add the
throughputs in the isolated cases:Results from an indicative ex-
periment are shown in Fig. 5; the CDF of the client throughputs
based on all performed experiments is shown in Figure 6. The ob-
served boost in the throughput is due to the fact that UA is able to
exploit the significant reduction in the interference experienced by
the clients and the contention for the medium between APs, due to
FS. Since 802.11a supports a large number of orthogonal channels
(as compared to 802.11g) the improvements are more dramaticin
this case.

3.4 Power Control
Next we consider the power control algorithm, PC, which was

outlined earlier. We evaluate PC in isolation, as well as in con-
junction with the other two algorithms. Our key observations are
summarized below:

• Power control is only beneficial if intelligent frequency se-
lection is first applied on the network.

• The benefits are minimal in 802.11a since frequency selec-
tion resolves most of the contention for the considered den-
sity of deployment; the benefits are more pronounced with
802.11g.

• Blindly applying the three algorithms might hurt the perfor-
mance; the choice of what to apply should be carefully as-
sessed.

Implementation Details: We perform modifications to the driver
to allow APs to exchange information through their Beacon frames
in order to identify optimal transmission power and CCA values
(as per the PC algorithm [2]). The clients use the same transmis-
sion power and CCA as their AP. Note that PC converges in 200
iterations, in Testbed A (each iteration taking place at theBeacon
time granularity, i.e., 100 ms).
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Figure 8: Case (a): AP-client link is strong (>-55dBm) and AP-AP link is weaker by at leastk dBm. Case (b): AP-client and AP-AP
links are strong (>-55dBm); they only increase their CCA. Case (c): AP-client link weaker than AP-AP link; PC cannot shrink cells.
Case (d): AP-client links are quite poor; no reduction in power or increment in CCA is possible. Case (e): AP-client linksnot much
stronger than AP-AP links; isolation is impossible.

We present our experiments and observations below.
a. Understanding when PC can shrink and isolate cells:The

intent of the PC algorithm is to tune the transmission power and
CCA settings in order to balance the reduction in interference to
other co-channel APs, and the reduction in signal quality tothe
weakest client, while ensuring symmetry in the contention domains
across the network [2]. Our first set of experiments determine the
conditions under which PC can improve performance. Our ob-
servations lead to classifying the relationship in terms ofsignal-
strength between AP-client and AP-AP links into five cases. In the
first two cases, PC is able to tune its power/CCA levels to improve
the network capacity. In the other three cases, its application cannot
provide any improvement. In other words, the optimal strategy is to
apply the default8 power/CCA settings. To simplify the following
descriptions for each case, we consider two neighboring APs, with
one client each. Note that we will refer to the cases below when we
discuss the PC algorithm in the rest of this document.
Case (a): The AP-client link is strong (RSSI>-55 dBm) and the
AP-AP link is weaker byk dBm (k = 15 to 20 dBm for our cards)
(Fig. 8a). In this case the APs manage to shrink their cells to
the extent that they transmit concurrently. Since the inter-AP links
are much weaker than the AP to client links, each AP can reduce
its transmission power without degrading the performance to its
clients. In our experiments, we observe that the differencein the
link quality between the AP-client link and the AP-AP link ought
to be on the order of 15 dBm with our cards; if this difference is
lower, then we observe that the links conform to case (e).
Case (b): Both AP-AP and AP-client links are strong (RSSI>-55
dBm). In this case, a complete isolation between cells is impos-
sible with a reduction in power (Fig. 8b); thus, the APs transmit
with maximum power. However, we observe that the APs can in-
crease their CCA thresholds to a high value and thereby ignore each
other’s signals, i.e., carrier sensing is ignored. Upon closer inspec-
tion, we determine that the clients were able to receive a throughput
that was higher, than what they would have received if the twoAPs
were operating in mutual exclusion (due to carrier sensing). This

8The default power is the maximum permissible power by the WiFi
cards. In our system, the default CCA threshold is at -80 dBm.

setting (where APs increase their CCAs only) has also been shown
to enhance performance in [17].
Case (c): The AP-AP link is stronger than the AP-client link, irre-
spective of the absolute RSSI values. Here the PC algorithm cannot
shrink the cells (Fig. 8c) and hence, the default power settings are
also applied. Furthermore, since increasing the CCA threshold to
isolate the neighbor AP would result in the isolation of someof its
own clients, the AP does not do so.
Case (d): The AP-client link is weak (RSSI< -60 dBm) and the
AP-AP link is even weaker (Fig. 8d) byk dBm (k > 20 dBm). In
this case the AP-client link cannot sustain a high rate if thepower
is reduced; it is essentially isolated from the network if the CCA is
increased beyond its default setting.
Case (e): The AP-client link is stronger byk dBm than the AP-
AP link, wherek < 15 dBm). If the AP-AP link is comparable to
the AP-client link (say 12 dBm difference) then, by either reducing
the transmission power or by increasing the CCA threshold, an AP
cannot effectively isolate the two cells (Fig. 8e). Thus, PCsets
default settings in this case.

Note that in our testbed we mainly observe cases (a), (c) and (e);
the cases pertaining to (b) and (d) are rarely observed and only for
short time periods. These cases are not apparent if one were to do
limited experimentation with small testbeds. With such testbeds,
the possibility that the APs are far apart with few clients intheir
close proximity, is high. This would suggest that irrespective of
whether or not FS is used, the links always conform to case (a)and
thereby, it would seem that PC is always beneficial.

b. PC may not provide benefits without FS:First, we consider
PC with a single frequency channel, and user association as per the
strongest received signal. We observe that without FS, links that
fall under cases (c) and (e) (described above) always exist.Thus,
PC is not able to shrink the co-channel cells. Since the algorithm
mandates that APs that belong to the same connected network must
have the same product of power and CCA to avoid starvation effects
[2], all the APs will use the default power and CCA settings inthis
case. This observation holds for both 802.11g and 802.11a.

c. Without FS, PC may not provide benefits even in conjunc-
tion with UA: In our experiments, with the UA algorithm the AP-



client links could become worse than before, since now some of
the clients choose APs with lower loads even if the signal quality is
poorer. Hence, even more links that fall under cases (c) and (e) may
be created. This makes it even harder for PC to shrink overlapping
cells.

d. Frequency Selection aids PC:Recall that frequency selec-
tion assigns different channels to neighboring cells so that APs with
the same frequency are farther away and the interference (signal
strength) is reduced. This provides an opportunity for PC tofur-
ther reduce contention, since links now conform to the conditions
of case (a) described above.

PC provides further improvements after intelligent frequency
selection: The application of PC after FS can successfully yield
smaller cells and, thus, eliminate or reduce overlaps between cells.
In particular, since the FS algorithm may not completely isolate
cells, overlaps do exist. The use of PC helps significantly, since
many of these links conform to the conditions of case (a). These
benefits are more pronounced in the case of 802.11g, where, given
the long range and small number of orthogonal channels, FS can-
not completely isolate cells by itself. Although the benefits are
less pronounced with 802.11a, given that it has a larger number of
orthogonal channels and shorter links, they are significant. We ob-
serve that, with 802.11a, there were only 2 pairs of interfering APs
that shared the same channel; PC is applied on these co-channel
cells only. Fig. 7 depicts the observed performance benefitsfrom
PC with FS, for the different 802.11 modes of operation. We wish
to point out that PC was unable to shrink co-channel cells when ad-
ministered in conjunction with RCS (10 different random channel
settings were considered). We observed that in all 10 topologies,
cases (c) and mostly (e) were present. We expect however, that
there exist random channel allocations where PC is likely toyield
benefits.

This is another implication of the importance of using large-scale
testbeds. With a small-scale testbed, one cannot quantify the extent
to which partial overlap among cells still exists after PC.

e. Blindly applying all three algorithms is not a “good idea”:
Due to the interdependencies of the algorithms, we need to care-
fully select which algorithms to apply to maximize the performance.
For example, the PC algorithm provides improvements only incases
(a) and (b) mentioned above. However, the application of UA might
create links that conform to cases (c) and/or (e) and this causes the
PC algorithm to provide default power/CCA settings. The results
with such a scenario are depicted in Fig. 9, for 802.11g; by ap-
plying all three algorithms the achieved network capacity is 24%
lower than if we apply FS and PC only. Note however, that such
an effect may not always occur. Our measurements indicate that
the UA algorithm, in some cases results in a few, relatively strong
AP-client links. This is due to the fact that the clients withweak
links are likely to migrate to neighbor APs which are typically on
a different channel. Thus, their old APs will be left with fewer,
stronger AP-client links. In fact, by repeating the same experiment
on a different day, we observed that the combination of the three
algorithms boosted the network capacity further: by 274% with re-
spect to the default case (and 22% as compared to the next best
combination) for 802.11g, and 142% for 802.11a.

4. A FORMAL METHOD FOR ENABLING
THE ALGORITHMS

In this section, we formulate our comprehensive network con-
figuration framework, MDG, which is based on our observations
from the previous section. MDG can be thought of as a decision
framework, which takes a small set of measurements as input and
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decides which algorithms to apply and in what order. The goalof
MDG is to apply algorithms only if specific conditions, whichsug-
gest that the algorithms will provide performance benefits,are met.
FS is considered first, since the channel allocation determines the
channel access time for each AP (considered by UA), as well asthe
AP-AP link strengths (considered by PC). We elaborate on whywe
start with FS, in section 6. Note here that although the flow chart
reflects the algorithms used in this study, we expect MDG to beable
to guide other optimization algorithms, as we discuss in Section 6.
MDG is represented as a flow diagram in Fig. 10 and is described
in detail below.

Inputs to MDG: MDG requires the following measurement-
based information to make its decisions:

1. Whether overlapping cells using the same channel exist soas
to apply FS.

2. Whether overloaded APs exist so as to run UA.

3. Whether or not AP-client and AP-AP links fall under cases
(a) and (b), described in section 3-E, so as to apply PC.

Note here that if MDG is jointly applied by collocated cooperative
WLANs, UA only permits clients to affiliate with the APs of their
WLAN. For clarity we do not account this case in our flow diagram.

MDG Decision States:We describe the decision states in more
detail below.

Checking if FS, PC and UA are beneficial: Steps (1) and (2).
These steps are based on the following observations (i) if noAP
contention exists, FS and PC are unnecessary and (ii) if the load
in the network is perfectly balanced among the APs, UA is unnec-
essary. Step (1) is related to the first observation and Step (2) to
the second. Note that our criterion for invoking UA, assumesuni-
form demands across users, and tests if an AP has at least two more
clients than any other AP. (Note that, if the user demands forser-
vice vary, we could define the load of an AP to reflect the bandwidth
requirements instead of the number of clients).

Choosing between PC and UA: Steps (3) and (4).If the FS
algorithm resolves any remaining contention (Step (3) in the flow
chart), then PC is not needed; we only need to check if UA is re-
quired as per Step (2). If there is still contention on any channel
(due to the existence of co-channel devices), then the further steps
depend on whether the network employs 802.11a or 802.11g at Step
(4). For the case of 802.11a, we proceed to Step (6a), while for the
case of 802.11g we proceed to Step (5a). The justification behind
such a choice is provided below.

The case for 802.11a: Steps (6a) and (6c).These steps are
based on a few key observations from Section 3. First we recall the
following two observations: (i) applying FS with 802.11a resolves
almost all contention and interference given the large number of
orthogonal channels and, (ii) in scenarios where contention and in-
terference are limited, it is preferrable to apply the UA algorithm
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rather than the PC algorithm. The two observations together, sug-
gest that UA is to be applied in this case if overloaded APs exist;
this corresponds to Step (6a). If the loads are perfectly balanced,
we directly try to apply the PC algorithm, and proceed to Step(6b),
which we discuss below. If UA is applied, it is possible that PC
can be subsequently applied; at Step (6c) we check to see if all the
links conform to either case (a) or case (b) (as discussed in Section
3) and if this is the case, we apply PC.

The case for 802.11g: Steps (5b), (5c) and (5d).The key ob-
servations that drive the states in this part of the flow chartare: (i)
due to the limited number of orthogonal channels in the 2.4 GHz
band, FS is not expected to eliminate contention and interference in
high-density deployments with 802.11g and (ii) the use of PCsub-
sequent to FS helps in significantly improving performance with
802.11g. Based on these observations, we apply PC (in lieu ofUA)
right after FS. However, since contention and interferenceare at
high levels even after the use of FS in 802.11g, we first have to
determine if the co-channel APs can shrink their cells, i.e., if PC
will provide non-default power/CCA settings (step (5b) in the flow
chart). Note that PC may not be able to shrink the cells, for every
channel. Thus, we apply the PC algorithm only on those channels
where PC can be beneficial. If PC is not expected to provide any
benefits on any channel, we proceed to consider the UA algorithm
at step (5c). If there is an imbalance in the user associations across
APs and UA is applied, the topology changes and may now become
conducive for PC. Thus, we check if PC can be applied, again, at
step 5(d).

Accounting for the presence of other WLANs: Steps (5a) and
(6b). So far we have assumed that all the WLANs in the deploy-
ment apply MDG. However, in a real environment, we expect the
existence of WLANs that do not follow MDG, or are not willing
to cooperate. The interference from these collocated WLANswill
influence the decision process. In this case, the algorithmswill op-
erate as follows:

• FS: Each AP will take into account the signal strength re-
ceived from all co-channel APs (not only the APs belonging
to the considered network).

• UA: The clients belonging to our network associate with APs
of a certain ESSID. Hence, they will not affiliate with other

networks. If there exist other co-channel WLANs, then the
medium access time available to an AP is lower than what
can be achieved in the absence of these WLANs. This affects
the metric that each client computes for its neighbor APs.

• PC: If other WLANs are not running PC, then invoking power
control in our network could affect both networks. This is
due to possible reduction in the transmission power and/or
the increase in the CCA threshold in our network. The re-
duction in power could hurt the clients in our network; with
an increase in the CCA threshold the APs in our network
could potentially ignore transmissions from the other net-
work and cause user starvation. Thus, the application of PC
is precluded if other uncontrolled WLANs exist in the vicin-
ity. This is accounted for in Steps (5a) and (6b).

5. VALIDATING OUR GUIDELINES
Our next step is to validate our design guidelines on a com-

pletely different network (which we refer to as Testbed B). The
primary purpose of our validation process is to determine ifour de-
sign recommendations allow a different wireless network (arbitrary
except for identical hardware and software configuration) to oper-
ate at high performance levels using an automated procedure, such
as MDG. We first describe Testbed B and subsequently describe
our validation process.

5.1 Description of the second experimental net-
work

Testbed B is deployed in the third floor of the Engineering Build-
ing U-2, at the University of California, Riverside. The deployment
is depicted in Fig. 11. While Testbed B has thesame hardware
and software configurationas that of Testbed A, it is considerably
different in terms of the network layout and the topology; the en-
vironmental conditions are also significantly different from that in
the latter case. In particular, Testbed B differs from Testbed A in
the following aspects:

1. Network scale: It consists of 8 APs and 20 clients; the net-
work is deployed in the 3rd floor of a different building and
in a different organization.



Figure 11: Deployment of Testbed B. The circles represent the
clients, while the squares are the APs.

2. Environmental conditions: The climatic conditions differ;
in particular, the temperature is higher and the humidity is
much lower. This affects the channel quality [18].

3. Building materials: The walls in the second building are
supported by thick metallic skeletons, and many of them are
made of brick. This degrades the signal strength on a sub-set
of the links where no direct line of sight exists. The fading
characteristics are also different.

4. Node locations: Unlike with Testbed A, the 8 APs are not
placed inside network closets given that access was prohib-
ited to many of the building’s facilities. The AP placement
strategy however, ensures coverage to the 20 clients.

5.2 Validation procedure
We apply the MDG framework on Testbed B in the following

way.

• Calibration: we provide MDG with a set of input parameters
based on a limited set of measurements in Testbed B.

• Application: we follow the guidelines from the framework,
with regards to which algorithms to enable.

• Performance evaluation: we measure the network capacity.

For comparison, we try all other possible combinations of the al-
gorithms, and compare their performance against what is achieved
by following the guidelines from MDG. In these experiments,we
again assume fully-saturated downlink UDP traffic. Furthermore,
we repeat the validation during different hours of the day and on
different days. Overall, using MDG provides the best network per-
formance, as we discuss below.

a. The case for 802.11a.From our initial measurements on the
network (used to calibrate and apply our guidelines), we observe
that: (i) There exists a pair of contending APs that share the same
channel (AP50 and AP31 are on channel 64).(ii) AP50 has two
more clients than AP31, and AP42 has two more clients than AP44.

Given these observations, we follow the flow diagram in Fig.
10 to determine and apply the right choice of algorithms. Since
there are contending APs on at least one channel, we run the FS
algorithm, as per step (1), and we proceed to step (3) in the flow
diagram. We observe that FS has isolated all cells using a setof
5 orthogonal channels. Hence, we go to step (2), as per the flow
diagram. Since AP50 has two more clients than AP31, we further
apply the UA algorithm. Consequently, the path that we follow in
the flow chart is:1 → FS → 3 → 2 → UA. Fig. 12 depicts

the observed performance, in terms of overall network throughput.
We compare the results with all other paths through the flow chart
(each possibility is represented by the steps that are followed in the
flow diagram) and observe that the use of the guidelines yields the
best performance results.

Since the channel conditions may change with time, the above
procedure must be repeated. The frequency of repetition depends
on the extent to which the environment is static. We would expect
that the MDG input measurements could be collected at frequent
intervals. Reconfiguration should, however, balance the incremen-
tal gains against the associated overhead.

We repeated the above procedure (initial measurements for cal-
ibration) on a different day and we observed that FS did not com-
pletely isolate cells as before. In particular, we observedthat: (i)
After the convergence of the FS algorithm, the access pointsAP31
and AP48, (which are in close proximity) selected the same chan-
nel (5.32 GHz);(ii) AP50 had 2 more clients than AP31;(iii) AP48
had 4 clients and the RSSI from its farthest client, 40-48, was at -
69 dBm, while the RSSI for the AP-AP link 48-31 was at -70 dBm.
With this9, the flow diagram suggests that we first follow the path:
1 → FS → 3 → 4 → 6a → UA → 6b. At step (6b), after
running the UA algorithm, we observed that the client 41 decided
to associate with AP45, and that, now AP48 was left with 3 clients;
the RSSI from the farthest of these clients was at -44 dBm. As
a result, we further proceeded with applying the PC algorithm, as
per step (6c). Consequently in this case, the path that we followed
in the flow diagram was:1 → FS → 3 → 4 → 6a → UA →

6b → 6c → PC. Fig. 13 depicts the performance enhancements in
terms of overall network throughput. As in the previous case, the
set of steps derived from our flow diagram(the top stripe)yields
the best performance (as compared to any other possible sequence
of actions). Moreover, notice that the resulting network capacity
exceeds that of Figure 12.

b. The case for 802.11g.As in the case of 802.11a, we begin
with a set of preliminary measurements that are used to drivethe
flow diagram. This set of measurements indicates that:(i) There
are many co-channel APs.(ii) AP50, AP48 and AP42 have two
more clients than all other APs.(iii) AP50 and AP48 each have a
very poor link with one of their clients, and the links fall under case
(c).

By following our guidelines, we start at step (1), in the flow di-
agram, and proceed to step (3), wherein we observe that thereare
four interfering APs on channel 1 (APs 42, 44, 46 and 48), two on
channel 6 (APs 50 and 31), and two non-interfering APs on chan-
nel 11 (APs 36 and 45). Thus, we further go to step (4) of the flow
diagram; since we use 802.11g, we visit step (5a). Since AP48and
AP50 maintain client links that fall under case (c), we do notrun
the PC algorithm, but proceed to step (5c). Since some APs have
two more clients than others, we run the UA algorithm, and further
go to step (5d). Here we observe that, after the UA convergence, all
AP-AP links are much weaker than all AP-client links, on channel
1. However, on channel 11 this is not the case. Hence, we applythe
PC algorithm only on channel 1. Note that in this case, we make
different decisions for the different channels. For channel 1 the
path that we follow is:1 → FS → 3 → 4 → 5a → 5b → 5c →

UA → 5d → PC. The paths followed for the other two chan-
nels are similar to the first; however, we stop after applyingthe UA
algorithm. Fig. 14 plots the network performance with the steps
recommended by our guidelines(the top stripe); it also depicts the
performance when following any other decision path. We conclude

9Note that this procedure was performed late at night; thus the
presence of other co-channel WLANs did not cause any starvation
problems to our nodes.



MDG:
 1-FS-3-2-UA

1-FS-3-4-6a-UA-6b-6c-PC

1-FS-3-4-6a-6b-6c-PC

1-FS

1-UA-PC

1-2-UA

1-PC

1

 70  75  80  85  90  95 100

Throughput in Mbits/sec

Figure 12: Comparison between
the decision of the flow chart, and
all other potential possibilities for
802.11a.
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Figure 13: Predominance of flow
chart’s decision, for the case wherein
the FS algorithm does not isolate all
cells, in 802.11a.
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Figure 14: Comparison between the
flow chart’s decision, against any
other potential steps, for the case of
802.11g.

that our method outperforms any other potential order with differ-
ent combinations specifying which algorithms to apply and when.
In Testbed B, in the case of 802.11g, the performance improvement
with MDG, as compared to the default case, is 103%. In this case,
due to the limited number of orthogonal channels, the performance
with the default case is really poor. In 802.11a, the improvement
with MDG is only 24%; this is because, RCS (default case) yields
significant benefits, since the number of APs is smaller than the
available channels.

5.3 Evaluating MDG in the presence of exter-
nal interference

In the last set of our experiments, we have two objectives. First,
we wish to study the performance of MDG in the presence of ex-
ternal interferers. Second, we seek to determine how good the per-
formance of the MDG-derived network configuration is compared
to any other possible network configuration (in terms of frequency,
power, and user associations). Towards our first objective,we per-
form a new series of experiments with 802.11g on testbed B, dur-
ing regular business hours. To fulfil our second goal, we consider
40 randomly perturbed network configurations with regards to our
three dimensions i.e., frequency, user association space and power.
Specifically, we set-up each experiment as follows:

• Each AP randomly selects an orthogonal channel.

• Each client randomly affiliates with a neighbor AP.

• Each AP randomly sets its transmission power and CCA thresh-
old, while verifying that the connectivity to its clients ismain-
tained and that the product of CCA and power remains con-
stant across the network. This is because we want to ensure
that there are no starvation effects due to assymetry [2].

• Each client uses the same values of transmission power and
CCA, as its affiliated AP.

We further run experiments in the same way, as described in section
3. Fig. 15 presents the performance with MDG and with a set of
the 10bestrandom network configurations. To begin with, we ob-
serve that external interference was present during our experiments.
The network capacity with MDG is reduced by 11%, as compared
to the capacity achieved with MDG during overnight experiments.
Second, we observe that MDG outperforms all other tested net-
work configurations, by at least 43%. However, this is by far not
an exhaustive search of all possible network configurations. We are
currently in the process of performing a more extensive search.
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Figure 15: The proper combination of the three algorithms, FS,
UA and PC provides the highest benefit, as compared to the 10
best (out of the 40) network configurations.

6. VISION, LIMITATIONS AND SCOPE
From the above, it becomes evident that MDG is capable of con-

figuring a dense WLAN by identifying the most promising combi-
nation of optimization algorithms.

The independence of MDG from the specific algorithms.In this
work, we did not consider modifying the optimization algorithms;
we only control whether they will be used and in what order. In
other words, MDG uses the algorithms as a black box and, thus,it
is not intrinsically dependent on them. The fact that FS, UA and PC
are all based on a common foundation (Gibbs sampling) does not
play a role on MDG. Gibbs sampling is merely atool for distributed
optimization, and has no impact on the optimum network configu-
ration. MDG proposes the most efficient order of invocation of the
algorithms, and is therefore independent of the actual operations of
each of the algorithms. In the future, it is possible to develop better
algorithms for each optimization function. MDG would be able to
incorporate them with minimal finetuning and adjustments.

More on the order of optimization dimensions.In general, chan-
nel selection may or may not be a function of user population and
user channel gains (e.g., Mishra et al. [10] do a joint channel and
user association). However, we believe that if channel selection is
performed jointly with user association, then the network configu-
ration could run into stability issues, as client channel gains change
much more rapidly than AP-AP gains (e.g., closing of a laptoplid,
lifting and moving a PDA, etc). The network-wide channel assign-
ment should not react to such phenomena from the robustness and
stability points of view. Hence, we assume that the channel assign-
ment algorithms operate only based on AP-AP channel gains, and
not on AP-client gains, or AP-client associations. Note also that
PC cannot be applied before UA. This is because PC requires the
number of clients associated with each AP as an input. If thisnum-



ber changes (potentially after the application of UA), PC needs to
be applied again.

Towards an integrated optimization approach.One can envi-
sion a tighter integration, where each algorithm will consider if the
other algorithms have already been executed or will be executed.
Taking this idea further, one could consider a joint optimization so-
lution for all three dimensions. However, such a solution may not
be practical due to the inherently different time-scales ofthe differ-
ent algorithms. For example, PC needs to react to user arrivals and
should take place more often than FS.

Overhead and frequency of invocation.The overall overhead of
these algorithms will be largely determined by the frequency with
which they are invoked. Note that the three algorithms have inher-
ently different time scales. Frequency selection is likelyto be the
slowest time scale operation, since changes in the AP occupancy of
specific channels is likely to be infrequent. On the other hand, user
association and power control are tightly related to user arrivals and
departures, as well as user mobility. Clearly, there is a tradeoff be-
tween the frequency of their invocation and the optimality of the
network configuration. Notice that such optimizations in today’s
commercial networks happen across multiple hour intervals.

Convergence Issues.The overhead of the described algorithms,
which are iterative, depends also on their speed of convergence.
Our implementation on a prototype platform showed that the over-
head of collecting the appropriate measurements and makingde-
cisions is not that significant, and a professional implementation
would likely eliminate any such overhead. Note that collecting the
measurements required by MDG contributes to the overhead, espe-
cially since neighborhood information needs to be collected across
multiple scanning cycles (as we discussed before). Each scanning
cycle is costly, since it precludes data delivery to clients. Therefore,
there is a tradeoff between the accuracy of network state provided
to MDG and the overhead for collecting it. Fortunately, as stated
earlier, our experiments showed that convergence tends to be fast.

7. CONCLUSIONS
We design, implement, and evaluate a measurement-driven frame-

work, MDG, which maximizes the synergy between three interde-
pendent optimization dimensions: frequency selection, user asso-
ciation, and power control. In our study, we use three previously
designed algorithms for interference mitigation in each dimension,
and two distinct wireless testbeds: a learning testbed and avalida-
tion testbed. First, we develop an insight for the interdependencies
of the optimization algorithms, and identify useful thresholds and
conditions of when each algorithm should be applied. This leads
us to the MDG framework, which combines the three approaches
such that they provide the highest possible benefit comparedto any
other possible combination.

MDG can be a useful tool for wireless network management in
production WLANs. It can operate in an adaptive and distributed
way at each AP, or in a centralized fashion, like on a central con-
troller[19]. Note that MDG can be executed by APs that may not
belong to the same network, as we discussed earlier, as long as we
assume that APs from all networks cooperate.
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