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Abstract

Wireless sensor network applications typically integrate,
within the same network, a variety of sensing devices in-
cluding those for imaging, sound and temperature. In these
settings, multiple flows of packets with different require-
ments in terms of transmission rates, bandwidth and jitter
demands may be initiated towards the sink. Uncontrolled
introduction of traffic from sources can cause network over-
load in areas of the network where the paths of the differ-
ent flows interfere with each other. Such interference ef-
fects may result in congestion which leads to high packet
loss and excessive delays. In this paper, we present CoBRA,
a framework which incorporates distributed, cluster-based
mechanisms to address the problem of congestion by enforc-
ing rate control, for supporting multiple classes of traffic in
sensor networks. Towards this goal, CoBRA periodically
estimates the collective traffic load and, based on the cur-
rent conditions, allocates and adjusts rates to sources on
per-cluster bases. While doing so, CoBRA takes into con-
sideration interference effects and rate requirements of con-
current flows. We have applied two different rate allocation
policies using our framework and, through extensive sim-
ulation results we demonstrate its feasibility, effectiveness
and performance advantages over traditional approaches.

1 Introduction

Advances in wireless sensor network communication
protocols and low-power hardware devices have promoted
the proliferation of a variety of sensor network applications,
including environmental and habitat monitoring, agricul-
ture, surveillance and emergency response, that integrate,
within the same network, a multiplicity of sensor types such
as imaging, temperature and sound. With these different
classes of applications, the types of sensors used may ini-
tiate multiple flows that have diverse requirements in terms
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of transmission rate, delay and throughput, towards the sink.
For example, multimedia applications have bandwidth, de-
lay and jitter demands, while the demand of an emergency
response application is the availability of the network itself.

The initiation of multiple types of simultaneous flows
without controlling their sending rates is likely to cause
congestion, first, due to network overload and second, due
to collisions of packets from simultaneous flows traversing
interfering paths from the plurality of sources to the sink.
Congestion can cause enormous delays as well as packet
drops. Furthermore, dropped packets that are forwarded
over multiple hops but never delivered at the sink, result in
energy wastage. Thus, to support multiple classes of appli-
cations in the sensor network, our goal is to achieve a more
deterministic network behavior so that flows are delivered
based on the pre-specified requirements of the application
classes and network resources are better utilized.

The characteristics of sensor networks such as limited
availability of resources, interference-coupled paths and the
lack of a central coordinator, make the problem more chal-
lenging. First, in event-based sensor environments, the
number of sensors is typically large while the number of
sinks is relatively small. When multiple events occur con-
currently, they can create several flows that could largely
interfere with each other. Even with small numbers of si-
multaneous flows, it may be impossible to bypass congested
areas; thus, serious delays and packet losses may be caused
due to contention and medium saturation. Hence, one im-
portant question is how to estimate the maximum rate that
can be allocated to a new flow while it is contending with
other concurrent interfering flows. For example, the addi-
tion of a new flow can potentially decrease the throughput
and increase the delay of existing flows. Although there ex-
ist theoretical limits that estimate the maximum sustainable
network capacity [14], doing such estimations dynamically
and within the localized scope of the sensor nodes is hard.

A second challenge is how to detect congestion and es-
timate the current traffic intensity, an indicator of the con-
gestion level, in the sensor network. With local, per-sensor



estimates only, congested flows across the network may not
be identified. Single node estimates, such as monitoring
the sensor’s queue size, may also be misleading. For ex-
ample, a full queue, might indicate high queue utilization
and not necessarily suggest congestion since the queues of
the neighbors may be empty. In addition, single sensor es-
timates may not effectively capture the effects of multiple
flow interference. One approach is to have the multiple
sensor nodes exchange traffic information through control
packets. This would allow the nodes to obtain a more ac-
curate representation of the flow interactions. However, un-
necessary propagations are energy costly and may increase
the network traffic, thus, further contributing to congestion.

Current congestion control or admission control ap-
proaches are not adequate to address these problems. Con-
gestion control approaches that have been proposed [4, 10,
19], adjust the network load using rate control techniques.
However, these techniques are reactive in nature and are im-
plemented only after congestion has already occurred and,
thus, may not be able to avoid excessive packet losses. Fur-
thermore, these approaches fail to take into consideration
the different requirements of the individual classes of flows.
On the other hand, bandwidth allocation and prioritization
techniques for wireless ad hoc networks [13, 17, 22] do
not consider congestion and its effects, while end-to-end re-
source reservation mechanisms [3, 5, 12] may lack timeli-
ness and reactiveness.

In this paper we propose CoBRA, a (COngestion-Based
Rate Allocation) framework that implements rate alloca-
tion and control to address the problem of congestion and
provide support for multiple classes of flows in sensor net-
works. CoBRA provides a distributed congestion estima-
tion technique that proactively monitors the network traffic
on a per-cluster basis. Using an approximate traffic model-
ing approach for estimating the network’s traffic intensity,
CoBRA determines whether a new flow can be added based
on the number of active flows and the maximum aggregate
rate that can be allocated to the flows. The question we want
to answer is, “Given the current network conditions, is it
possible to add a new flow in the network at a specific rate,
without producing congestion or severely degrading other
flow rates? If this rate cannot be accepted, what rate can
the network support?” In our framework, regulation of sen-
sor rates occurs at the sources based on the classes of appli-
cations and the congestion state en route the sink. CoBRA
implements two algorithms for rate allocation: admission
control and proportional rate allocation. The distinguish-
ing characteristic of our techniques is that they allow for
timely localized decision making and management of the
level of congestion. Using extensive simulations, we show
that our approach is more responsive than traditional rate
control techniques and manages to effectively and fairly al-
locate rates to flows belonging to multiple classes of traffic.

2 Network Model

We consider applications deployed in event-based,
multi-hop sensor networks. An example of such a network
would be one constructed during a disaster recovery res-
cue mission: Sensors are placed in the disaster area and are
programmed to report events to a sink. Examples of such
events are capturing and sending images when movement is
detected, sending alarm messages in the presence of fire or,
generating sensor status reports (such as low battery level
or low signal power). We describe the main design features
of our approach:
Support for Multiple Traffic Classes: Events sensed by
different sensing devices may have different requirements
with respect to transmission rates and throughput at the
sink. For example, multimedia images will require higher
transmission rates and higher throughput than alarm reports.
Hence, our goal is to allocate rates to each initiating flow
based on its application class. This is important, because,
if rates are allocated unfairly to the different classes, con-
gestion might cause dropped packets as well as arbitrary
delays. In these cases, it may be more important for the
sink to receive low rates from all types of sensors in the ge-
ographical region of interest rather than a high rate from a
single sensor.
Proactive Rate Control: In disaster recovery missions,
events are likely to be detected at random times and at
random places in the sensor network, thereby dynamically
changing the interference patterns among flows. This char-
acteristic hinders our ability to predict the network behavior
and effectively identify points of congestion. In addition,
the presence of multiple classes of traffic makes the prob-
lem even more difficult. Our goal is to proactively monitor
the network and identify or predict the onset of congestion.
A propagation scheme is also required for the information
to be quickly exchanged between the sensors and to notify
the sources that route packets through the congested area
to reduce their sending rates. Such proactive rate control
allows us to anticipate unpredictable injection of flows and
avoid dropping critical packets upon congestion.
Timely Event Reporting: Events must be reported in real-
time after they occur. However, in a congested network,
delays dramatically increase. More specifically, delays are
attributed to processing, transmission and queuing of the
events as they propagate across multiple sensors in the net-
work. Among these, queuing delay and transmission delay
are the predominant delay factors as the network load in-
creases. Delays due to contention can be considered part
of the queuing/processing delay since, as contention grows,
more packets build up in the sensor queue increasing their
service times. Thus, effectively managing the traffic load
can lead to considerable reduction in delays. Due to the
unpredictability in the initiation of flows and the diverse re-



quirements of the flows with respect to their sending rates,
congestion control becomes challenging.
Network Parameters:We define a number of measures to
evaluate the performance of our approach. To represent the
current network load conditions we define the local load
observed by a sensor as ρ and we use the Traffic Inten-
sity, denoted as γ, to represent the collective network load.
More formally, we define γ as the probability of at least
one packet being present at any sensor queue in the net-
work. The Traffic Intensity Threshold γthres defines the de-
sired network load that does not underutilize the network
nor causes congestion. This allows us to identify whether
congestion has occurred. Calculation of γ and selection of
γthres are provided in Section 3.2.

A flow i is defined as a tuple Fi{si, ri, ai, ci}, where si is
an identifier that specifies the source sensor and the particu-
lar flow itself, and ri and ai are the requested and allocated
rates pertaining to this flow. Multiple flows may be initi-
ated from the same source sensors; each flow has its own
ri and ai which are based on the current Traffic Intensity
measurement and may vary with time. Furthermore, a flow
may request multiple times to be added to the network (for
example, when other flows complete and there are available
resources). Finally, ci represents the Flow Class. Classes
for flows are application-specific. A class determines the
rate that should be allocated to a new flow based on the Rate
Allocation Policy.

A Rate Allocation Policy is defined as a functionAwhich
takes as input, the requested rate and the flow class param-
eters and returns the allocated rate for each flow. In order
to allocate a rate to a new flow, A must be provided with
an estimate of the maximum aggregate rate Rest that can
be supported in the network without causing γthres to be
exceeded. The Aggregate Estimated Maximum Rate, Rest,
is defined as the rate that, when allocated to all interfering
flows, the Traffic Intensity becomes equal to γthres.

One important question is how to estimate Rest. Given a
specific rate, we would like to calculate the expected value
for γ. Modeling the behavior of γ with changing rate allows
us to predict the value of Rest. More specifically, given the
aggregate rate allocated to all the flows active along paths
that interfere with each other (Rtot) and the Traffic Intensity
γ resulting from this rate, we can use the model to identify
the additional rate (positive or negative) at which γthres will
be achieved. Note that Rtot is only concerned with a partic-
ular collection of flows that traverse interfering paths. We
provide an approximate model for capturing the behavior of
the traffic intensity in Section 3.3.

3 CoBRA Framework

Our proposed COngestion-Based Rate Allocation (Co-
BRA) framework is designed to handle congestion by pro-
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Figure 1. CoBRA Framework Components.

viding fast feedback with respect to the current congestion
level and to support localized decision making for allocating
rates to flows of multiple classes. Decisions are taken based
on the congestion level of the network. CoBRA consists
of the following components: (i) a Cluster-based Network
Structure to support decentralized decision making, (ii) a
Distributed Traffic Intensity Estimation process that uses a
(iii) Traffic Intensity Model and (iv) Rate Allocation Policies
employed at the clusters and the sources. The interactions
between the components of the CoBRA framework are il-
lustrated in Figure 1.

3.1 Cluster-based Network Structure

Our framework’s operation is driven by the underlying
architectural constructs. We adopt a technique proposed
previously for grouping sensors in order to provide collec-
tive and distributed functionality [6, 11]. This technique is
based on organizing the network into clusters. Each cluster
is governed by an appointed sentinel sensor, i.e., a cluster-
head. Sensors locally compute their traffic load and send it
to the sentinel via a single-hop broadcast. The sentinel then
processes the reported values to produce a collective cluster
estimation of the Traffic Intensity.

We have chosen a cluster-based solution due to its mul-
tiple benefits. Clustering offers scalability and allows for
highly accurate estimations since a collection of sensors can
better capture interactions between multiple flows. In addi-
tion, the selection of a single sensor as a representative for
the whole cluster allows for the aggregation of updates to be
propagated to the sources. Furthermore, cluster-based solu-
tions allow us to achieve relatively low overhead since only
clusterhead sensors are required to exchange control infor-
mation. The overhead is justified by the major energy sav-
ings achieved due to the reduction in wasteful packet drops
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Figure 2. The Simulated Network. Each curve in (b) corresponds to a cluster in (a).

in turn leading to squandered energy.
The cluster construction is completed in two steps: The

first step is the election phase in which, with some probabil-
ity P, sensors broadcast a sentinel announcement message
after the lapse of a random timer. While waiting for the
timer to expire, if a sentinel announcement message is re-
ceived, the sensor will simply join the sender’s cluster and
stop. Else, the probability P increases. If after the increase
of P, the sensor has still not become a sentinel, the timer is
reset. Eventually, after a small number of iterations, each
sensor either becomes a sentinel or a member of a cluster
headed by a neighbor sentinel.

The second step is path discovery. A small number of
packets are sent from each sentinel towards the sink via
the underlying routing protocol. For a sentinel, the down-
stream clusters1 are defined to be the clusters towards which
a packet is sent and upstream, the clusters from which pack-
ets are received. By overhearing the (one-hop) communica-
tions of its cluster members, the sentinel builds a table of
the downstream and upstream clusters; thus, it may be able
to periodically send traffic intensity updates towards the up-
stream path. This table is updated when regular traffic pack-
ets are sent during the normal network operation.

Updates by the cluster members are sent to the sentinels
periodically (i.e., proactively). Because during periods of
quiescence the intensity level is low, sensors and sentinels
send updates only after a threshold for the local load ρ and
γ, respectively, has been exceeded. Thus, energy is saved
and the proactivity level can be tuned. Message delivery
is assumed to be handled by the routing protocol. The as-
sumption is that the routing protocol allows sensors to dis-
cover and store information with regard to their neighbor-
hood. Update delivery optimizations are left to the design
of the routing protocol although the utilization of the Zone
Routing Protocol (ZRP) [6], that combines proactive and
reactive zone routing, is highly suitable and practical.

1Clusters are identified by their sentinel’s ID.

3.2 Distributed Traffic Intensity Estima-
tion

In this subsection, we provide a methodology for approx-
imating the traffic intensity. The traffic intensity is collec-
tively estimated across multiple clusters. The estimation
is based on a queuing network model, wherein each sen-
sor is modeled as a queue. The queues are then intercon-
nected within a cluster to form a network. It is assumed that
the resulting network is a BCMP network of queues, which
enables us to represent the state of the network in a prod-
uct form [7]. This approximation model provides us with
macroscopic network statistics allowing us to deal with the
complexity of effectively estimating congestion.

In this approximation, the traffic intensity γ is defined as
the steady state probability of at least one packet existing in
the queueing network and is calculated as[7]:

γ = 1 − P (0, 0, ..., 0) = 1 −
N∏

i=1

1 − ρi

where P (n1, n2, ...ni, ..., nN ) is the steady state probability
that the population in queue i (of N queues)is ni and ρi is
the load for queue i being defined as incoming packet rate
over the service rate, i.e., ρi = λi

µi
, and can be computed

locally at each sensor. An analysis on the value of γ shows
us that for increasing load ρi when γthres = 0.95 the cluster
is considered to be congested.

3.3 Modeling the Traffic Intensity

Modeling how the traffic intensity values change with
varying rates allows for the allocation and adjustment of
rates to the sources within a cluster. Finding an exact ex-
pression for γ is very hard since we can make no assump-
tions regarding the distributions of the incoming and the ser-
vice rates. We develop another approximation model which
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seems to provide an accurate representation of the behavior
of the traffic intensity.

To extract the approximate traffic intensity model, we
look at its properties. We present these properties, using a
sample experimental result shown in Figure 2, where two
flows are initiated at the same time from clusters 1 and 2.
We trace the flows’ paths and find that the first flow traverses
Clusters 2, 4 and 5 to reach the sink and the second flow
traverses Clusters 1, 3, 4 and 5. We measure the γ value
calculated within each cluster with increasing sending rates.
We present our observations below:

• The resulting experimental outcome shows that the es-
timator curve follows a sigmoid function2. We can thus
try to model the estimator’s values with changing rate
with such a function.

• The estimation interval te was 3 seconds. We see that
at the end of the estimation interval, different clusters
have different estimated values (i.e., the curves are dif-
ferent). This tells us that the perceived traffic inten-
sity at each cluster may vary, i.e., the curve modeling
the traffic intensity at a specific point in time may dif-
fer. As traffic load increases, the queuing delay will

2The value of γ increases slowly at low rates but fast as the rate ap-
proaches the congestion value.

increase at the interfering clusters and cause later in
time, packets from queues prior to the congested clus-
ter to also be delayed and eventually result in the build-
ing up of these queues. As we show below, model pa-
rameters can be tuned to consider this effect.

Based on our first observation, we try to model the γ
curve as a sigmoid function which can be represented as
follows:

f(r) =
1

1 + φe−χ(r−ψ)
(1)

where r represents the total rate observed for the collection
of flows considered in the model. Parameters φ > 0, χ >
0, ψ > 0 define the details of the shape of the curve and can
be fine tuned to better approximate the estimator’s behavior.

Now, given Equation 1, we know that the model must
return the value ‘0’ for a rate equal to ‘0’. Also, the Traffic
Intensity has an asymptote at γ = 1. The final model can
be, then, represented as:

γ(r) =
f(r) − f(0)

1 − f(0)
, r ≥ 0 (2)

We plot Equation 2 in Figure 3 for different parameters.
Other parameters could also be considered. We find that
the parameter that most affects the outcome of the curve,
and thus would mostly affect our estimation of the required
values, is ψ. We use Parameter Tuning to decide the value
of ψ which defines the most appropriate sigmoid curve to
be advised at different point in time. Remaining parameters
are set as predefined constant values.

We apply Parameter Tuning based on our second obser-
vation. Parameter Tuning can be done periodically and lo-
cally at the sentinel using the received updates concerning
current flows on the path(s) that the cluster is involved in. Its
goal is to utilize Equation 2 to calculate Rest as defined in
Section 2 and appropriately allocate it to the sources within
each cluster using the Rate Allocation Policy.



More specifically, assume that we have received a spe-
cific value for the total rate Rtot allocated to flows along a
path. Assume that we are also provided with the estimation
of γ. We can then use Equations 3 below which are trans-
formations of Equation 2, solved for ψ and r respectively,
first to calculate ψ for the specific point in time and then
to calculate Rest for a desirable value of γ. In the solution
for ψ, set r = Rtot while in the solution for r, the result
represents Rest.

ψ =
ln 1−γ−e−χr

γϕe−χr

χ
, r = −

ln 1−γ
γϕeχψ+1

χ
(3)

We provide two examples of how Parameter Tuning can
be done (shown in Figure 4). In the first example we re-
ceive a total rate of 6 packets/sec and γ is estimated at 0.02.
Thus, using the values in Equations 3, we get the value of
ψ. We can now “predict” what would be the sustainable
rate for a requested γthres of, say, 0.95 (i.e. the congestion
threshold). Therefore, we may decide on whether it would
be advisable to allow a new flow.

In the second example, the value of γ is near 0.9 at a rate
of 19 packets/sec. We may again calculate ψ and choose a
reduced rate in order to achieve a value of, say, 0.6, for γ
(as it pertains to an uncongested scenario).

3.4 Rate Allocation Policies

We implement two policies for rate allocation based on
admission control and proportional rate allocation. These
policies can be customizable and can be plugged-in to the
CoBRA framework to define how Rest should be allocated
to flows of different classes. The Rate Allocation Policy is
implemented at the sentinel and executed periodically to ad-
just the rates of the cluster sensors that are sources of traffic.
A source may implement its own policy with respect to the
received γ value. For example, a rate control scheme may
be implemented to reduce the source rate when a specified
γthres has been exceeded.

With our framework, two basic Rate Allocation Policies
are implemented at the sentinels: (i) proportional allocation
of the estimated maximum aggregate rate, and (ii) admis-
sion control based rate allocation.
Proportional Rate Allocation:In the Proportional Rate Al-
location policy, the proportion of the rate assigned to each
flow is decided by a weight w(ci) per class ci, i.e., each
class is represented by a weight. Note that proportional
sharing is done among the classes that interfere due to cou-
pled paths. Each set of interfering flows is treated indepen-
dently. Proportional rate allocation implies that flows of the
same class get the same proportion of Rest.

The algorithm is described below. Let ai represent the
rate assigned to flow i and Rtot be the aggregate rate for all

active interfering flows as defined in Section 2. (Rtot is ini-
tialized to ‘0’). The mechanism described below is a simple
example of an application of our framework and could be
extended to implement more sophisticated algorithms. The
algorithm works as follows:

• γ < 0.95: Given an incoming flow i, assign the rate
requested ri to that flow independently of its class;
ai = ri. Next, update Rest. To do this, retrieve the
current estimated value of ψ, using γ and Rtot, as in
Equation 3.

• γ > 0.95: This signifies congestion. The rates cannot
be allocated in full and adjustment needs to be per-
formed. For each of the active flows (say i) including
the new flow, and nj active flows of class j, allocate to

flow i rate ai as: ai = w(ci)∑
j

nj ·w(cj)
·Rest.

Admission Control: In the admission control policy, each
sensor within a cluster, before it initiates a flow, will have to
predict whether the introduction of a new flow will congest
the network. This is done by using the framework’s com-
puted traffic intensity, γ, given the total rate that will result
if the sensor initiates the flow.

As mentioned earlier, a flow may request to enter the net-
work multiple consecutive times. Thus, it may eventually
be able to enter when another flow completes and frees up
network resources. This might cause a source to experience
extended waiting times before being admitted. However the
admission algorithm might be adjusted to accommodate ad-
ditional weighting factors which can in addition account for
the waiting times. The algorithm is described below:
For a newly created flow:

• Update Rest. To do this we retrieve current estimated
the value of ψ using the observed γ and Rtot.

• Given the requested rate ri, calculate the new value of
γ with rate equal to Rtot + ri.

• If the calculated γ < 0.95 (the aggregate rate is less
than the value of of Rest) admit the flow and assign
ai = ri; else reject the flow.

• Repeat the process periodically.

4 Evaluation

We have implemented and tested our framework within
Network Simulator ns-2 [2]. We generated for each ex-
periment, 5 random network topologies in a square area
of 100m x 100m and have calculated average values. We
varied the network density using different numbers of sen-
sors (60, 120 and 200 sensors). One of the sensors was se-
lected at random to be the sink. The simple CSMA–based



MAC protocol, with an exponential backoff policy was as-
sumed; this has been generally used in prior work on sensor
networks [16][19][18] that do not specifically address the
MAC layer.

The sensor nodes are set up to simulate the characteris-
tics of MICA motes [1]. They are homogeneous and have a
transmission range of 25m. Data packets are 30 bytes (the
standard size). The memory in a mote is 4KB; thus, the
queue size is set to a size 65 packets. We assume the pres-
ence of robust physical layer techniques to cope with bit er-
rors; hence, packet drops are attributed only to queuing re-
lated drops and to collisions. We have simulated a scenario
where multiple consecutively occurring events are sensed at
random points on the sensor field.

4.1 Overall Load Adjustment

We compared CoBRA with a very popular conges-
tion/rate control technique used in [10, 19], i.e., AIMD
(Additive Increase – Multiplicative Decrease) with reactive
backpressure, in which messages are forwarded all the way
to the source upon the detection of congestion. In this, con-
gestion is identified when a queue of a sensor overflows. We
also compare CoBRA to a basic approach in which sources
start sending with a specified rate without any rate and con-
gestion control algorithms employed. In our comparisons,
we vary the maxrate value for AIMD, i.e., the maximum
rate a source can send during the additive increase. Rates
are dropped to half while congestion persists.

We have evaluated CoBRA using the proportional rate
allocation policy, described in Section 3.4, where we set all
flows to be of the same class. We vary the requested rate for
the sources in our experiments. We set γthres = 0.95. We
have experimented with random networks of sizes 60, 120
and 200 nodes in order to change the network density. Due
to space limitation we present our results for 200 nodes, a
test case for dense networks, and 60 nodes, a test case for
sparse networks.

Our first experiment was to measure the per-hop delay
metric. Per-hop delay is a fairer metric than the end-to-
end delay because flows may be initiated close or further
away from the sink. We first show, in Figures 5 and 8,
that both AIMD and CoBRA achieve lower per-hop delays
than the basic approach (no policy used for rate control).
CoBRA performs better than AIMD at higher rates, i.e., at
higher loads. This is because AIMD is reactive and packets
that have reached the queues when overflow was observed,
experience high delays during the time backpressure mes-
sages are forwarded towards the sources. We also notice
that the improvement in per-hop delay is more significant
with higher density networks.

With respect to the total throughput, we observe in Fig-
ures 6 and 9, that CoBRA manages to deliver about 10%

Flow ID Rate(p/s) Start Time Weight

1 35 0 1
2 35 5 2
3 35 10 3
4 35 15 1
5 35 20 2

Table 1. Flow Setup (Proportional Rate Allo-
cation).

more packets per second than AIMD and the basic ap-
proach. This is because CoBRA avoids the additive increase
phase while the reduction in rate when congestion occurs is
smoother. In addition, AIMD will cause packet drops and
thus, a reduction in throughput is caused when the sources
reach high rates during additive increase. CoBRA, on the
other hand, provides an adaptive aggregate rate estimation
which allows smooth adjustments of the reallocated rates to
sources.

Finally, in Figures 7 and 10, we see that besides deliv-
ering more packets than AIMD, CoBRA also achieves a
slightly higher delivery ratio. We note that the higher de-
livery ratio reflects also energy savings, since much less en-
ergy is wasted due to packets dropped en route the sink.

4.2 Evaluation with Proportional Rate
Allocation

In our second set of experiments, our attempt is to evalu-
ate how wellRest is estimated and how rates are allocated to
the flows. We concentrate on dense networks of 200 nodes.
We implement the proportional rate allocation scheme de-
scribed in Section 3.4, in which the specific class of a flow
is reflected by its weight. The weight of a flow defines the
relative proportion ofRest that the flow should be allocated.
The algorithm periodically recalculates Rest and re-assigns
rates at each cluster.

We start five flows consecutively, one every 5 seconds at
random positions in the network. In our experiments, our
observation was that all flows eventually interfere with each
other either near or further from the sink. We have delib-
erately selected a requested rate of 35 packets/sec. In Fig-
ure 5 we saw that with the basic technique (no congestion-
control algorithm), when all flows send with a rate of about
20 packets/sec, the packets start to experience very high and
arbitrary delays which signifies congestion. We have cho-
sen the rate of 35 packets/sec to ensure that no two flows
will receive full rate without causing congestion. Finally,
weights are assigned as shown in Table 1.

In Figure 11 we plot the allocated rates throughout the
simulation execution per flow. Initially, Flow 1 receives the
full requested rate as the calculated γ remains below γthres.
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Figure 6. Throughput (Dense
Network).

 0.4

 0.5

 0.6

 0.7

 0.8

 0.9

 1

 5  10  15  20  25  30  35

D
el

iv
er

y 
R

at
io

Rate Request (p/sec)

BASIC
AIMD/BP

COBRA

Figure 7. Delivery Ratio
(Dense Network).
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Figure 8. Average Per-Hop
Delay (Sparse Network).
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Figure 9. Throughput (Sparse
Network).
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Figure 10. Delivery Ratio
(Sparse Network).

When Flow 2 with weight 2 (i.e., double than that of Flow 1)
is introduced, the proportional rate assignment algorithm re-
quires that Flow 1 should be assigned half the rate assigned
to Flow 2. Therefore, a rate of about 17 packets/sec is re-
allocated to Flow 1. Similarly, the introduction of flows 3,
4 and 5 forces the reassignment of rates to the sources.

Note that the fluctuations observed are caused because of
the variations in the estimation of Rest at each source clus-
ter. For example, when a new flow is introduced, the traffic
increases suddenly and the traffic intensity is overestimated.
Thus, the rate allocated is lower because of the underestima-
tion of Rest.However, very quickly, ψ is re-calculated and
the allocation of the rates is improved. We also note that
the estimator provides more accurate feedback (less fluctu-
ations) as the number of flows increases.

Figure 12 shows that CoBRA compared to AIMD with
backpressure, performs better in terms of the resulting av-
erage per-hop delay. CoBRA is more conservative than
AIMD in terms of the total allocated rate. On the other
hand, it avoids additive increase which might cause conges-
tion at the point where the rate reaches the maximum value,
even if sources do not reach the maximum simultaneously.

In Figure 13, we notice that CoBRA manages to main-
tain fair total throughput for the flows with respect to
their weights whereas the AIMD/BP technique cannot ad-

equately adjust the throughput. This is because the mul-
tiplicative decrease when receiving a congestion backpres-
sure message does not consider each flow’s class.

Finally, in terms of delivery ratio, we observe in Figure
14 that both techniques achieve very high ratios (over 85%
in almost all cases). We do notice however, that the low
weight flows 1 and 4 have lower delivery ratios. This is be-
cause, fewer packets are received from these sources (with
CoBRA), due to the proportional rate sharing.

4.3 Evaluation with Admission Control

In the third set of experiments we test the ability of our
framework, when calculating Rest, to allow or disallow the
initiation of a new flow, while doing this on a localized,
cluster level.

We start 5 flows, one every 5 seconds with the rate re-
quests shown in Table 2. One of the flows is stopped at some
specific point in time and frees the allocated resources. In
Figure 15 we plot the assigned rates for the admitted flows.
Flows 1, 2 and 3 are admitted. When Flow 4 attempts to en-
ter, the sentinel rejects the flow as the intensity estimation
exceeds the preset threshold of 0.95. This is also the case
for Flow 5. However, as soon as Flow 1 stops, Flow 4 reat-
tempts to enter and is admitted shortly after. Notice that the
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Flow ID Rate(p/s) Start Time End Time

1 10 0 25
2 20 5 30
3 15 10 30
4 15 15 30
5 20 20 30

Table 2. Flow Setup (Admission Control).

rates fluctuate slightly (around ±0.5 packets/sec and very
rarely as much as −2 packets/sec). This is observed espe-
cially when a flow is initially admitted and is attributed to
the fact that the flows are not completely smooth and there-
fore the intensity estimates may fluctuate. The rate policy
could be further modified to start a flow only when the exact
rate can be archived and stop it otherwise at each (periodic)
rate allocation instance. Finally, in Figure 16 we plot the
per-hop delay. We notice that the delay is kept mostly at
very low levels (< 0.05s), while this is true for all flows.
This means that our framework manages to control the load
without irregular delays among different flows. A small
number of packets may experience higher delay occasion-
ally; more precisely when a new flow is admitted and the
Traffic Intensity Estimation has not yet been fine-tuned.

4.4 Energy Cost

In our last experiment we measure the energy savings
of using CoBRA. Our goal is to study whether the usage
of our techniques is beneficial with respect to the overhead
messages produced during the proactive updating phase and
the benefits gained due to reduction in packet drops. As
discussed in Section 3.1, updates are triggered when ρ and
γ exceed a specific threshold. The energy wastage, W , is
measured as the total number of bytes transmitted for up-
dates, U , plus the total number of bytes transmitted in pack-
ets that are eventually dropped, D, i.e., W = U · hopsU +
D · hopsD. The parameters hopsU and hopsD represent
the total number of hops that the packets where forwarded.
Data packets for CoBRA and AIMD are sd = 30 bytes,
update packets for CoBRA are also su = 30 bytes while
backpressure messages with AIMD are sbp = 13 bytes.

For AIMD/BP, U is equal to the number of backpres-
sure messages sent, times the size of the backpressure mes-
sage i.e., UAIMD = NBP · sbp. For CoBRA, U is equal
to the number of sentinel and sensor updates, times the size
of the update message i.e. UCoBRA = (NSENTINEL +
NSENSOR) · su. For both cases, D is equal to the num-
ber of dropped packets, times the data packet size D =
NDROPPED · sd. Note that sensor updates are always sent



at one hop. We can, then, calculate WAIMD and WCoBRA

which we plot for a network size of 200 nodes.
In Figure 17 we show the total number of overhead

bytes broken down in terms of control and dropped pack-
ets. Control packets for CoBRA include sensor and sen-
tinel updates while for AIMD, only include backpressure
messages. We notice that as the rate request increases (and
consequently the load that is attempted to be injected into
the network) CoBRA produces more update messages and
thus has higher overhead with respect to this type of mes-
sages. Also note that when control packets are low for Co-
BRA, the wasted bytes due to dropped packets are higher
because the proactive phase does not take full effect. As the
rate request increases, AIMD cannot effectively handle con-
gestion in a timely manner and the wastage due to dropped
packets dominates over the control packet overhead. We
reiterate here that the proactive process is started when spe-
cific thresholds for the traffic load are exceeded, a fact with
additional positive effects: Due to it’s adaptive nature, Co-
BRA regulates congestion, thus, controls the load. This
results in limiting the need for control packets during the
proactive update process. The overall overhead is shown in
Figure 18, where we observe that the benefits gained with
CoBRA due to the reduction of dropped packets compen-
sate for the proactive updates.

5 Related Work

Resource management for real-time traffic has been
mostly studied in the area of wireless ad-hoc networks. In
[5] a resource reservation strategy is proposed based on the
EDF scheduling policy. This work concentrates on admis-
sion control at the MAC layer. In [17], QoS soft guarantees
are achieved, but as in our work, no MAC layer scheduling
is assumed. However, only single–hop networks are consid-
ered. In [13] the authors attempt to solve the problem of fair
bandwidth assignment for multihop wireless networks. Un-
like our work, the goal is to maximize end-to-end through-
put via maximization of the spatial reuse of the spectrum.

Further research on resource reservation include the
SWAN protocol [3]. SWAN is a simple, stateless end-to-
end resource reservation mechanism to support real-time
and best effort traffic. Although in sensor networks sim-
plicity is desirable, end-to-end solutions might not be re-
sponsive enough, especially in highly unpredictable event-
based environments. In [21], a localized admission control
technique is proposed which considers the effects of multi-
ple interfering flows. However, these techniques might be
unsuitable for sensor networks due to their complexity, es-
pecially as multiple classes need to be supported.

Scheduling messages with deadlines has been the prob-
lem dealt with in [9]. This work provides an efficient,
centralized algorithm for communication scheduling that

avoids delays due to contention. MAC layer prioritization
techniques have also been proposed in [20] while bursty
traffic support (also at the MAC layer) was studied in [22].

Congestion Control techniques are used to control the
network load level. In [11], a technique is proposed that dif-
ferentiates between low and high importance packet flows.
Rate allocation and control is, however, only limited to
AIMD-like techniques. In our work, instead, we propose a
generic framework utilizing traffic intensity modeling to al-
low implementation of different rate allocation algorithms.
CODA [19] is another congestion control mechanism for
sensor networks that employs end-to-end and backpressure
techniques to reduce congestion. The technique is reactive
and may not avoid dropping a large number of packets when
multiple flows are introduced simultaneously. Other works
such as [10] and [4] study the effects of congestion on real-
istic tree structured, sensor deployments and propose solu-
tions for relieving congested areas.

SPEED [8, 15] is a routing protocol developed to support
real-time packet delivery in sensor networks. It is based on
the idea of maintaining a specific traffic velocity along the
path given an initial deadline. Although the simplicity of
SPEED makes it an attractive solution, it does require topol-
ogy information; congestion is still dealt with in a reactively
manner by rerouting packets away from the hotspot areas.

Rate control techniques have also been utilized to avoid
overload. ESRT [16] is a protocol for rate control in sensor
networks aiming to achieve a specific level of reliability.
The reliability metric is used as a parameter for adjusting
the rates in the presence of congestion. ESRT requires a
centralized sink to adjust the rate for all the sensors in the
network and is better suited for monitoring applications.

6 Conclusions

In this paper we have presented CoBRA, a framework
that handles congestion and enforces rate control, to sup-
port multiple classes of flows in sensor networks. CoBRA
provides collective and distributed network traffic intensity
estimation and modeling of its behavior. This model can
be used within clusters of sensors to make localized deci-
sions as to how rates can be assigned to active or prospective
flows in order to maintain a desirable network load level.
CoBRA supports rate allocation algorithms. We implement
a simple proportional rate allocation algorithm using our
framework and show, via simulations, that it is fairer and
more responsive in terms of delay than traditional, reac-
tive AIMD/BP techniques. We also implement admission
control showing that our estimations can handle randomly
initiated flows of multiple classes. For our future work we
intend to study the performance of CoBRA over different
routing protocols.
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