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Abstract— We propose the first practical solution to the long-
standing problem of secure wireless routing in the presence
of colluding attackers. Our secure routing protocol, Sprout1,
continuously tries new routes to the destination. Routes are
probabilistically generated, with complete disregard for perfor-
mance metrics. This makes Sprout uniquely resilient to attack: it
cannot be tempted by shortcuts. In order to avoid compromised
routes, and to ensure good overall performance, the quality
of each active route is monitored by means of signed end-
to-end acknowledgments. The amount of traffic sent on each
route is adjusted accordingly. Sprout effectively mitigates the
vast majority of known routing layer attacks, even when under
assault from a large number of colluding attackers. Experiments
on our 31-node testbed demonstrates the real-world performance
of Sprout in terms of packet delivery ratio, round-trip times and
TCP throughput. Our security analysis and simulation results
show that Sprout is able to quickly find working paths in
networks of hundreds of nodes and dozens or more attackers.
For example, in a network of 200 nodes and an astounding 64
attackers, Sprout, on average, found a successful route within
less than 10 attempts. Yet, in benign settings, Sprout provides
TCP throughput within 15% of the shortest path throughput.
Overall, Sprout consistently delivers high, reliable performance
in benign as well as hostile environments.2

I. INTRODUCTION

Routing protocols are subject to a wide variety of attacks,
many of which can be highly disruptive. Many sophisticated
attacks are “insider attacks”, in which the attacker has ac-
cess to legitimate nodes or certain cryptographic credentials.
Attacks by independent insiders have been addressed in the
literature, including [2]–[7]. However, much of the previous
work focuses on providing a secure environment for “insider”
nodes with respect to attacking “outsiders”. Current secure
routing protocols rarely address attacks by multiple colluding
insiders. The problem becomes more pronounced in open
networks, where nodes are considered legitimate members by
default. Previous work on probabilistic routing focuses on
selfish routing, and does not directly address routing security.

We propose Secure Probabilistic Routing (Sprout), a prac-
tical solution to the long-standing problem of secure wireless
routing in the presence of multiple colluding insider attackers.
Sprout effectively mitigates the vast majority of the known

1The name “Sprout” has been used before. In [1], the SPROUT DHT social
network routing algorithm was proposed. We apologize for any confusion.

2Prepared partially through collaborative participation in the Communi-
cations and Networks Consortium sponsored by the U. S. Army Research
Laboratory under the Collaborative Technology Alliance Program, Cooper-
ative Agreement DAAD19-01-2-0011, and partially with support from the
U.S. Army Research Office under the Multi-University Research Initiative
(MURI) grant W911NF-07-1-0318. The U. S. Government is authorized to
reproduce and distribute reprints for Government purposes notwithstanding
any copyright notation thereon.

routing layer attacks, and provides good performance in be-
nign conditions. Sprout is a source-routed, link-state, multi-
path routing protocol. In contrast with previous work, Sprout
generates routes probabilistically, focusing in the first stage
on diversity, rather than predicted performance. This makes
it more resilient than previously proposed routing algorithms,
to a wide variety of attacks. The obvious drawback of this
approach is that many of the generated paths are of poor qual-
ity, and may include attackers. To address this, a performance
based path selection algorithm is used as a second stage, which
assigns a probability to each generated route depending on its
measured reliability and end-to-end delay. Reliable routes with
short round-trip times carry the majority of packets, while a
fraction of packets are sent along other routes, to maintain
diversity. With every new route sampled, the probability of
finding a good one increases rapidly.

The primary contributions of this paper are as follows:

• A secure link-state dissemination protocol that minimizes
the types of fake links available to colluding attackers.

• A probabilistic route generation algorithm that quickly
finds routes through massively polluted link-state graphs.

• A probabilistic route selection algorithm that effectively
balances security and performance, and

• A comprehensive evaluation, through analysis, simulation
and implementation, of the above.

We have implemented Sprout in Linux, and deployed it
on our 31-node indoor wireless testbed. Our experiments
demonstrates the real-world performance of Sprout in terms
of packet delivery ratio, round-trip times and TCP throughput.
Sprout effectively mitigates a wide range of attacks, and
delivers consistently high, reliable performance in hostile
environments. For example, in a network of 200 nodes and an
astounding 64 attackers, Sprout, on average, found a successful
route within less than 10 attempts. Similarly, in a massive
sybil attack with almost 3 times as many attacker identities
as legitimate identities (576 vs. 200), Sprout was on average
able to find a successful path after 35 attempts. While the
focus of this work is on security, rather than performance,
our evaluation shows that even in benign conditions, Sprout
performance is within 15% of that of shortest path routing.

The rest of the paper is structured as follows. Sec II provides
an overview of prior related work In Sec. III, we describe
the Sprout protocol in detail. Sec. IV analyses Sprout’s re-
silience to routing attacks. Sec. V assesses Sprout’s high-level
performance in large networks, facing massive, sophisticated
attacks. Sec. VI describes our implementation of Sprout, and
its performance on our experimental testbed.



II. RELATED WORK

Previous work on secure routing [2]–[6], [8] has addressed
independent attackers. However, attacker collusion is fre-
quently, and imprudently, disregarded. In addition to regular
attacks, colluding attackers can a) pose as each other, creating
the appearance of links that do not exist, b) vouch for each
other, making attacking nodes appear legitimate, and c) collude
to create evidence against legitimate nodes, in a blackmail
attack, making them appear to be malicious or defective.

In general, previously proposed techniques are insufficient
for dealing with colluding attackers. A commonly used se-
cure routing technique is node-disjoint k-path routing. This
technique cannot provide routing security in any network that
is not k-connected. The problem is dramatically compounded
by colluding attackers; in the absence of specific security
measures, colluding attackers can frequently manipulate the
routing metric to ensure that the shortest k − 1 disjoint paths
all contain attacker nodes. Sprout does not require node- or
edge-disjoint paths.

Avoiding links or nodes after they display malfunctioning
or malicious behavior is another common secure routing tech-
nique [5]. The difficulty lies in accurately determining what
node is malfunctioning; attackers may be able to implicate
other nodes, enabling a powerful denial-of-service attack.
ODSBR [7] tracks down faulty links using signed acknowl-
edgments from intermediate relay nodes. ODSBR is highly
susceptible to the sybil and wormhole attacks, where colluding
attackers may create a large number of fictitious links, all of
which must be identified as bad before the protocol succeeds.
Sprout bases routing decisions on route performance rather
than individual links or nodes.

Other related work includes [9], which assumes an accurate
link-state graph, and the probabilistic techniques proposed in
[10], [11]. These do not address routing security. In SMT [12],
the authors assume the existence of multiple paths of varying
reliability, and design an end-to-end secure message transmis-
sion protocol that exploits these paths to ensure maximum
reliability and throughput. The SMT approach for end-to-end
reliability is well suited for use together with Sprout.

In [13], Perlman describes a secure flooding protocol for
wireline networks, and a link-state routing protocol which are
highly resilient to byzantine and denial-of-service attacks. This
work shares some aspects with Perlman’s early efforts, and we
use the secure flooding protocol as described in that work.

III. SECURE PROBABILISTIC ROUTING (SPROUT)

Sprout is a source-routed, link-state, multi-path routing
protocol with a probabilistic twist. Routing is done in two
stages: route generation, and route selection. In the route
generation stage, a large number of routes is probabilistically
generated, independent of any routing metric. This initial
disregard for performance, resulting in a highly diverse set
of routes, is fundamental to the security of the protocol In the
route selection stage, the performance of each active route is
monitored by means of signed end-to-end acknowledgments.
The reliability and round-trip time of an active route deter-
mines the fraction of packets sent over it.

A. Scenario and Security Model

We consider a multi-hop wireless network, and a very strong
attacker model. Attackers control multiple nodes, and attacker
nodes are potentially connected through high-speed out-of-
band communication links. This is a reasonable attacker
model: attackers can simply use existing alternative means
of communication. Furthermore, attackers are able to “spoof”
MAC addresses and/or any other identifiers. However, at-
tackers are not able to break encryption or cryptographic
signatures. Being a routing protocol, Sprout does not explicitly
address jamming or MAC layer denial of service attacks.
However, routes affected by localized jamming or DoS attacks
are automatically avoided by Sprout.

Each node holds a unique, signed, public-private key pair,
which we will also refer to as the node’s identity. Valid
identities are signed by an offline certifying authority (CA).
For the purpose of this presentation, a node’s identity is created
and signed by the manufacturer, and then permanently stored
in the device. Note the similarity to how MAC hardware
addresses are assigned: after the manufacturer assigns the
identity, anybody may purchase the device. This very lax certi-
fication policy avoids all of the problems generally associated
with having a CA: it is merely a manufacturing detail. A
similar method works for existing devices: identities can be
made available for purchase from the CA at some minimum
price. The minimum price is a requirement in Sprout, lest an
attacker create an unlimited number of identities3. An attacker
may still purchase or otherwise acquire a large number of
identities for use in an attack. In Sec. VI, we evaluate Sprout
with respect to large numbers of attacker identities.

It is assumed that a node s communicating with node d
has securely acquired the identity of d, or is able to do so
on demand. If nodes are to have IP addresses, Sprout can
accommodate this through the use of “Statistically Unique and
Cryptographically Verifiable” (SUCV) [14] identifiers.

Each node exchanges a symmetric key with each of its
known neighbors, using the public key of the neighbor to
bootstrap key setup. The symmetric key is used to encrypt
all one-hop communication between nodes. Each source also
exchanges a symmetric key with any active destination upon
connection establishment. This key is used to sign end-to-end
acknowledgments, and for end-to-end payload encryption.

Nodes are assumed to have enough computational power
to perform verifications of signatures produced by a public
key crypto-system, as well as for creating signatures, both at
a rate similar to the rate with which the link state changes.
In contrast with most previous work, we do not assume that
the network is (A + 1)-connected, where A is the number of
attackers. However, we do assume that the network can remain
connected in the absence of attacker nodes.
B. Constructing the Link State Graph

At the core of any link-state routing protocol lies an algorithm
for constructing a link-state graph. In an unprotected link-state
protocol, attackers have an unlimited opportunity to pollute the

3Clearly, if a public-private key system is already in place, these (more
secure) identities can be used in place of the minimum-security identities
required by Sprout.



Type Field Name Comment
public key node1 The ID of Node 1
certificate node1 cert Signature (of ID) from the CA

seqno node1 seq Sequence Number
public key node2
certificate node2 cert same as above

seqno node2 seq
signature node1 sign Signature of msg above line
signature node2 sign Signature of msg above line

TABLE I
LINK ESTABLISHMENT MESSAGE

Type Field Name Comment
public key node id The ID of the Node
public key neighbor id The ID of the lost Neighbor
certificate node cert Signature (of ID) from the CA

seqno node seq Sequence Number
signature node sign Signature of msg above line

TABLE II
LINK TEAR-DOWN MESSAGE

global link-state graph. We propose a link-state construction
scheme with several security features to limit the types of fake
links that an attacker can introduce:
• Link-state updates are signed and based on the public

keys of the two end-points of a link.
• Link-state updates are exchanged between neighbors over

links encrypted by efficient symmetric cryptography.
• The TrueLink [15] protocol is used to protect against a

“Wormhole attack”.
Sec. IV provides a detailed security analysis. TrueLink is a
timing-based MAC-layer mechanism that verifies that a direct
link exists to an apparent neighbor. It was shown in [15] that
TrueLink makes it theoretically impossible (constrained by the
speed of light) to create wormholes longer than the nominal
transmission radius. Note that while TrueLink effectively stops
Wormhole attacks, it does not stop colluding attackers from
creating the appearance of links incident upon one or more
of the nodes under their control. This capability is sufficient
to wreak havoc with most routing protocols, and Sprout was
specifically designed to address this problem. We now provide
details on our link-state dissemination technique.

When a new link is discovered, or when a previously
announced link fails, a link-state update message is broadcast
throughout the network. Tables I and II describe the format of
the link-state update messages.4

The secure broadcasting scheme proposed by Perlman [13]
is used to ensure that link updates reach all nodes. Nodes
reserve buffer space for each unique and certified public key,
and only forward messages with verified signatures. Recall that
all one-hop communication is protected and signed through
symmetric cryptography. Only link-state updates received from
one-hop neighbors with an already established symmetric
key are passed to the relatively CPU-intensive verification
algorithm. Should a neighbor forward a link-state update
which does not pass the signature verification (after passing a
standard CRC check), it is marked as faulty or malicious. Any
communication from nodes marked as faulty or malicious is

4The size of a link establishment message, using Elliptic Curve Cryptog-
raphy [16] is around 128 bytes. A tear-down message is approx. 64 bytes.
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Fig. 1. Successfully generating a simple path through a link-state graph. As
the route grows, more nodes (gray) end up in the considered list.

ignored. In addition, Sprout limits the rate at which any pair of
nodes may issue link-state updates to one update every tRATE

seconds. In combination, this effectively mitigates DoS attacks
on CPU-intensive cryptographic operations.
C. Probabilistic Route Generation

Even with the measures introduced above, the link state
graph may potentially be polluted by certain classes of non-
existing links. A probabilistic route generation algorithm
makes Sprout robust to such attacks.

The route generation algorithm probabilistically generates
simple paths through the link state graph. A simple path
contains no loops. Moreover, only nodes that are adjacent on
the path have direct links between them (i.e. no short-cuts). 5

To see how a simple path is generated, consider the network
depicted in Fig. 1. Route generation starts at node S, with
D as the destination. From node S, there are three potential
next hops, one of which is chosen uniformly at random.
We will call nodes that have already been considered for
inclusion considered, and the remaining nodes available. As
an example, once the first hop has been selected, none of
the three considered nodes (colored gray) may subsequently
appear on the generated route. This includes the selected node,
as nodes may only appear once in a simple path.

Algorithm 1 presents the high-level algorithm for the prob-
abilistic generation of a route. This algorithm assumes that
the destination node is part of the connected link-state graph.
At each step, until the destination is reached, we select a
new next-hop and append it to the route. If we reach a point
where there is no next hop, and we still haven’t reached the
destination, we restart the process and try again. All nodes
are once again open for consideration. The considered list
contains a list of all nodes that have so far been either
considered, or chosen, to be the next hop at some point
along the route. The function select one takes a list and the
destination as arguments and returns one element from the list.
If the list contains dst, select one returns dst. Otherwise, an
element is selected from the list uniformly at random.

Each hop of a generated route is probabilistically chosen
among the available neighbors of the current router. Since
no metrics are used in making the choice, an attacker cannot
manipulate this choice by any means other than announcing
fake links. As is often the case with randomized algorithms,

5Note that in restricting routing to use simple paths, we rely on good nodes
to only announce links of “sufficiently high” quality.



Algorithm 1 Function generate route(src, dst)
tries ← 0
while n != dst and tries++ < MAX TRIES do

n ← src
route ← ’(), considered ← ’(n)
while n != dst and (n.neighbors - considered) != ’() do

next ← select one (n.neighbors - considered, dst)
considered ← considered + n.neighbors
route ← route + ’(next)
n ← next

end while
end while
if tries < MAX TRIES then

return route // route reached destination
else

return ’() // after MAX TRIES no route was found
end if

the first route generated may be of poor quality. However,
given a small number of attempts, the probability of finding a
high-quality route is high (see Sec. VI.)
D. Packet Forwarding and Source Route Representation

Each packet contains the entire route from the source to the
destination, represented as an array of node identifiers. The
header also contains a hop count, which is incremented at each
node on the route to the destination, acting as an index into
the source route array. Public keys are long and cumbersome
to use in a source route. Instead, we apply a secure one-way
hash function on each node’s public key, and use the hash
value in the source route representation.At each intermediate
node along the route, the next hash value in the source route
is matched against the hash values of the node’s neighbors.
In the extremely rare event of a hash collision, the packet is
forwarded to all matching neighbors. Once the packet reaches
its destination, a signed network layer acknowledgment is sent
back on the reverse route.
E. Route Selection with Route Performance Feedback

Route generation in Sprout is extremely exploratory, gen-
erating routes with no regard to prior history, or expected
performance. To ensure good performance, a route selection
algorithm balances the exploration of new routes with the
exploitation of known, active routes of reliable quality.

For every packet transmission, Sprout will either generate
a fresh route, using the algorithm described above, or use one
of the currently active routes. A fresh route is generated with
probability p(c), where c is the number of currently active
routes. We use

p(c) = max(K,
1

1 + c
),

where K is a positive constant < 1. This results in new
routes being generated quickly initially, and ensures that new
routes are continuously probed throughout the operation of
the protocol. Second, if a fresh route was not generated,
a route is selected from the set of active routes, with a
probability proportional to its score σ(r) as described below.
In memory constrained environments, a constant upper limit
on the number of active routes is applied. When a new route
is sampled, this route replaces the lowest-scoring route in the
set of active routes.

Before a route can be scored, measurements of route per-
formance are needed. In order to probe the quality of a route,
one or more packets are sent along it. Depending on the
quality of the route, and the presence of any attackers on the
route, we may or may not receive an acknowledgment for the
packet. A per-route transmission window keeps track of the
last N packets sent, including the time of transmission, and
a packet sequence number. The same number is included in
the acknowledgment for a packet. This information is used to
gather several statistics about the route (listed in Table III.)

rout Packets sent but not yet acked
rrtt Round-trip time (exp. avg.)

rlate Packets not yet acked, delay > γrrtt

rpdr Packet delivery ratio (exp. avg.)

TABLE III
PER-ROUTE STATISTICS USED FOR COMPUTING THE ROUTE SCORE.

Upon the receipt of an acknowledgment on route r, any
outstanding packets with lower sequence numbers that were
sent on route r are considered lost, and their records are
removed from r’s transmission window. Acknowledgments are
returned along the reverse route. Thus, no packet reordering
occurs which may otherwise cause packets to be considered
lost improperly. rout is the current number of records in
the transmission window. The avg. round-trip time, rrtt is
calculated using an exponential average, with a tunable pa-
rameter αrtt determining the rate of adaptation. The statistic
rlate is similar to rout but counts only the records where
the ack is delayed by more than γrrtt, where γ > 1. The
optimal value of parameter γ depends on the underlying delay
characteristics of the network. Values close to 1 are well
suited to networks with highly predictable delay, whereas
higher values may be necessary where more variance in delay
is expected. Finally, rpdr indicates the packet delivery ratio,
computed as an exponential average, with a tunable parameter
αpdr. Choosing low values for αrtt and αpdr results in a
protocol that is highly reactive to recent events, whereas values
closer to 1 provide more stability, focusing on the longer term
performance of a route.

Given a set of active routes, what routes should we use,
and in what proportion? This is determined by the scoring
function σ(r). Our goal is to strike a good balance between
diversity and performance optimization. To compute σ(r), we
use a heuristic that combines several of the collected statistics:

σ(r) =

(
rpdr

rrtt

)2

(1 + rlate ∗ rout)
. (1)

Let us take a closer look at Eq. 1. The term rpdr

rrtt
is the inverse

of the expected delivery time, which can be seen as a quality
estimate of the route. By putting the square of the route quality
in the numerator, we ensure that route selection will tend
toward high-quality routes. In the denominator, outstanding
packets give a strong negative bias to a route, but only if 1 or
more packets are late (beyond γrrtt ms). By penalizing routes
with late packets, route selection quickly shifts away from
routes that encounter a sudden drop in performance; yet it
does not avoid reliable routes with many outstanding packets.
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Fig. 2. Solid lines indicate actual links. Attackers (top) cannot fake links
between normal nodes (bottom). They are limited to faking links between
themselves, and links between an attacker and any neighbor of an attacker.

Note that generate route generates routes in a memoryless
fashion. Thus, active routes may occasionally be re-generated.
This provides a way for routes that experience temporary
packet losses to recover from drastically decreased scores.

IV. ANALYSIS - ATTACK RESILIENCE

Unprotected wireless multi-hop networks are subject to a wide
range of attacks. In this section, we analyze two major classes
of attacks, pollution of the link-state graph, and dropping of
payload packets. In general, an attacker may wish to add
links to the link-state graph in an attempt to make most data
packets go through it. Once a packet is within the attackers’
control, it can choose to drop it, risking detection, or forward
it, increasing the probability that additional packets are sent
through it in the future. Some aspects of these attacks are
difficult to analyze, and we address these through simulation
and testbed experimentation, presented in Sections VI and V.

A. Polluting the Link State Graph
Maintaining a consistent view of the network topology is
an important component of any link-state routing protocol.
A successful attack on the link-state graph will either add a
“fake” link, or remove an actual link, from the link-state tables
of some or all nodes in the network. Fig. 2 illustrates the types
of fake link attacks Sprout can and cannot protect against.

A correct link establishment or tear-down message, see
Tables I and II, requires the signatures of one or both end-
points of a link. This effectively prevents the attacker from
announcing or removing links between two “good” nodes.
To prevent an attacker from “tunneling” packets between two
good nodes, to make it appear as if they are neighbors (also
known as a wormhole attack), the TrueLink [15] protocol is
employed at the MAC layer. The remaining attacks all involve
the addition of “fake” links, or links between attacker nodes.
These attacks are exhaustively listed and addressed below.
Adding a Link Between an Attacker Node and a Neighbor
of any Other Attacker. If the attacker controls more than
one node, it may, through a combination of address spoofing
and key sharing, create the impression that one node simulta-
neously appears in the location of all other attackers. This
makes it possible to fool a “good” node into believing it
is the neighbor of a remote attacker, whereas it is actually
communicating with a nearby colluding attacker.

The attacker may use this technique to increase the degree
(number of neighbors in the link-state graph) of the nodes
under its control. This increases the expected probability that
an attacker node is selected as the next hop in any given step
of the path generation process. However, note that the overall
degree of the attacker (the total number of nodes with a direct

link to one or more attacker nodes) does not increase through
this attack. An interesting equilibrium exists where the attacker
is unable to add more links without reducing the effectiveness
of its attack. A node with very high degree is likely to be
considered early on. However, nodes are considered at most
once per path generation attempt. Thus, high-degree nodes are
likely to quickly be removed from consideration. In addition,
after adding a high degree node to the route, the next step will
lead to a large number of nodes being marked as considered.
This, in turn, increases the probability of the path generation
attempt failing. We evaluate the effect of fake link attacks
experimentally in Sections VI and V.
Adding a “Virtual” Attacker Identity to the Graph. This
attack, sometimes called the sybil attack, is similar to the one
described above. If an attacker has access to a number of
identities (i.e. public-private key pairs signed by the offline
CA) larger than the number of physical nodes it controls,
it may be able to create the appearance of more than one
node existing in a single physical location. This increases
the probability that payload packets are sent through attacker
nodes. Attacks on payload packets are addressed in IV-B, and
the effect of the sybil attack is simulated in Section V.
Adding a Link Between Two Attacker Nodes. Since the
attacker controls the cryptographic keys of both end-points,
this attack cannot be prevented in the link-state collection
stage. Instead, this attack is effectively addressed by the
proposed probabilistic path generation technique.

Recall that paths are generated one hop at a time, starting at
the source. In each step, one of the non-considered immediate
neighbors of a node is chosen uniformly at random. Thus,
in order for a link between two attackers to be chosen, the
path must already include at least one attacker node. Thus,
adding links between two attacker nodes does not constitute
an effective attack.
Summary. The global link-state graph in Sprout is highly
robust to pollution attacks. However, two feasible attacks
were identified: a) adding links between an attacker and any
neighbor of any other attacker, and b) adding virtual attacker
identities to the graph. These attacks are countered by the route
generation and selection components, as discussed below.

On the Presence and Effectiveness of Attacker Nodes:
Let us assume the attacker does not announce fake links, but
simply drops some or all payload packets that arrive at a
node under its control. Our goal is to calculate the probability
of a generated route containing one or more attackers. Let
us first consider a network without attackers. Let N be the
number of “good” nodes, and D their average degree. Let
L be the average path length of a generated path between a
pair of randomly chosen “good” nodes. We can then write the
probability of generating a successful path of length k as

p(k) =
D

N
(1− D

N
)k−1

k∏
i=0

1− (1− (1− D

N
)i−1)D. (2)

Here, the terms on the left compute the probability of
reaching the destination in step k, and the product term is
the probability of not reaching a dead end in any step < k.
The full derivation of this expression is available in [17]. For



D
N → 1, p(1) goes to 1, and p(k) goes to 0 for k > 1. This
is consistent with our model, since a fully connected network
will always find a one-hop path to the destination.

The probability that a path generation attempt is successful
can be written as

∑N
k=1 p(k). Thus, the expected path length

E[k], given that the attempt was successful, is:

E[k] =
N∑

k=1

k
p(k)∑N
j=1 p(j)

. (3)

Numerically, with N=200 and D=8, we get a probability of
0.739 of a path generation attempt being successful, and an
expected path length of 13.7 hops. Recall that Sprout generates
many routes of varying quality, and sends traffic over these
paths according to their performance. This means that the
expected number of hops traversed by the average packet is
generally significantly smaller than the expected length of a
freshly generated route.

We can now determine the probability that a given path
contains at least one attacker node. Using the same scenario
as in the previous subsection, let there be A attacker nodes,
chosen uniformly and at random from the original set of
nodes. Let the graph, with the attacker nodes removed, remain
connected. This preserves pairwise connectivity between all
normal nodes in the absence of the attacker nodes, without
which it is impossible for any routing protocol to work. The
probability of a node chosen at random being an attacker node
is A

N . Thus, the probability of a given path being compromised,
pc equals one minus the probability of the path containing no
attackers, or

pc = 1− (1− A

N
)E[k].

Numerically, with N = 200, and D = 8, we have pc =
0.066 for A = 1, pc = 0.129 for A = 2, and pc = 0.68 for
A = 16. This means that as the number of attackers increases,
the probability of generating a compromised route goes up.
However, even for a large number of attackers, a significant
fraction of generated paths are not compromised. These results
match our simulation results well (see Fig. 5).

B. Attacks on Payload Packets
In an open network containing attacker nodes, it is inevitable
that some payload packets will be sent on a route that contains
an attacker. The attacker then has the choice of forwarding the
packet, or dropping it.6

We would like to determine the impact of attacker nodes
being part of one or more routes in the set of active routes
to a destination. Our metric of choice is the probability that
a given packet gets dropped by an attacker node. The scoring
function in Eq. 1 can not be analyzed easily, due to the highly
dynamic nature of the variables rlate and rout. However, we
can upper bound the impact of an attack by setting rlate = 0
for all routes for the sake of the analysis. This has the effect of
ignoring the dynamic penalty on late (possibly lost) packets,
and reduces Eq. 1 to the more tractable rscore = r2

pdr/r2
rtt.

6Other possibilities include recording the encrypted packet, delaying the
packet, observing the timing or simply existence of traffic in the network, etc.
Such attacks are outside the scope of this analysis.

Let us first consider a simple scenario, with only two
paths. Let both paths have the same round-trip time rrtt, but
one of the paths contains an attacker node. Let us assume
that both paths have a natural packet delivery ratio of 1 ≥
r̄pdr > 0, reflecting spurious losses. In addition, the attacker
node forwards a fraction µ of the packets received, to avoid
detection; thus the compromised route has an overall packet
delivery ratio of r̂pdr = µr̄pdr. Given N good paths and M
compromised paths, we can write the steady state probability
that a given packet is sent over the compromised route as

pq =
µ2

λ2 M
N + µ2

, (4)

Here λ is a round-trip time factor 0 < λ which describes
the difference in average round-trip-time between “attacker”
routes and normal routes. λ < 1 means “attacker” routes
have a shorter rtt than normal paths. Again, the derivation
is available in [17]. We can see that in order maximize the
probability of dropping packets, the attacker needs to minimize
the term λ2 M

N , where M
N is closely related to the probability of

generating a compromised route, pc, which was derived earlier.
We also see that constructing compromised routes with half
the normal round trip time is likely to achieve the same attack
power as quadrupling the number of compromised paths. In
general, µopt is the solution to the following cubic equation:

µ3 + λ2 M

N
µ− 2λ2 M

N
= 0. (5)

In conclusion, while the attacker can maximize the power of
its attack by carefully choosing µ, increasing the number of
attacker nodes, or potentially introducing extraordinarily short
routes, none of these methods are able to bring the packet
delivery ratio close to 0 without an extreme expenditure of
resources.

C. Miscellaneous Other Attacks

For completeness, we discuss several additional attacks that
have been considered in the secure routing literature. There is
no risk of a blackmail attack in Sprout. Performance statistics
are kept strictly on routes, not nodes, and thus, no opportunity
exists for an attacker to make it appear as if a good node is
behaving inappropriately. In a replay attack, attackers record
routing messages, and replay them at a later time in order to
cause routing disruptions. In Sprout, sufficiently large serial
number fields (32 bits) in link-state updates make replay at-
tacks on control messages, including signed ACKs, infeasible.
Rushing attacks are specific to reactive routing protocols,
and do not apply to Sprout. Lower-layer attacks, such as
Jamming or MAC-Layer DoS are not explicitly addressed
in this paper. The effects of these attacks are localized, as
Sprout effectively finds routes around underperforming links.
In the Jellyfish attack, attackers selectively drop a few packets
crucial to upper layers. Due to the small volume of dropped
packets, the attack can potentially be mounted without risk of
detection by security mechanisms at the lower layers. The use
of multiple concurrent paths and randomized path selection in
Sprout mitigates this problem. Finally, attackers may reduce
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performance for other users by sending large amounts of data.
Such problems may be addressed by a variety of fairness
mechanisms, which are outside the scope of this paper.

V. PERFORMANCE EVALUATION - SIMULATION

We use a custom built simulation environment to test the
performance and attack resilience of the route generation al-
gorithm in larger networks with many attackers. Path selection
and real-world performance is studied in the implementation
section. The simulator was built for a high-level study of
routing protocols, and does not simulate the MAC/PHY layers.
The network graph is generated by placing nodes uniformly at
random on a rectangular field. We create edges between nodes
that are within transmission range of each other.

Sprout Routes are Surprisingly Short: To assess the
performance of probabilistic route generation, we study the
quality of routes generated in larger networks. We select a
pair of nodes, and run the route generation algorithm 50 times
(trials). This process is repeated 100 times per topology, for
25 topologies, for a total of 120,000 routes generated for
each considered network size. We used randomly generated
topologies of sizes 50, 100, and 200 nodes. Node density was
set to approximately 8 nodes per radio range, which ensured
that all graphs were connected. In these experiments, there are
no adversarial nodes; the goal of the experiment is to study
probabilistic route generation in a benign setting.

Fig. 3 shows the path stretch incurred by Sprout for a
varying number of trials. Path stretch is calculated as the
minimum length of the generated routes up to a given trial,
divided by the length of the route computed by shortest path
routing. Results show that the route found in the first trial is
on average twice as long as the shortest path. However, as
more routes are generated, one can expect to quickly find a
route that is within a small margin of the shortest path. For
example, with 100 nodes, 15 trials on average finds a path
with a length within 10% of the optimal.

All-Out Attacks on Sprout Don’t Pay. The following
experiments evaluate the resilience of Sprout’s route gener-
ation algorithm to fake link attacks. We generate 200-node
topologies, with between 4 and 64 attackers. The attackers
are placed in a grid pattern, optimizing their coverage of
the network, whereas the good nodes are placed uniformly
at random. The attackers are configured to announce only a
percentage of the total number of links that could be faked.
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Fig. 4. Successful Attemps vs. No. of Fabricated Links. The route generation
algorithm forces attackers to announce fewer than the maximum number of
fabricated links.

Fig. 5. Successful Attempts vs. Number of Attackers. The line shows
analytical results for 200 nodes, for graphs with random, uniform selection
of neighbors.

These links are chosen uniformly at random. No links between
attackers are announced; our analysis suggests that doing so
would be a poor attacker strategy, making it less likely that
generated routes contain attackers.

Fig. 4 shows the percentage of successful routes found,
given a varying percentage of faked links. Each bar combines
the success ratio of all attacker scenarios (4-64 attackers), to
give an overall picture. We find that to maximize its impact,
the attacker should announce only 40 to 50% of the fake links
at its disposal. This has to do with a trade-off in the way
routes are generated in Sprout, as described in Section III-C.
We note that even under ideal attacker conditions, with 200
normal nodes and 64 colluding attackers announcing 40% of
the possible fake links, 9% of all route generation attempts
result in a good route.

Even Large Numbers of Attackers Cannot Stop Sprout.
The strength of an attacker is often measured in terms of the
number of nodes under its control. We vary the number of
attacker nodes, and measure the success ratio of generated
routes in randomly generated topologies of 50, 100 and 200
nodes. Again, node pairs are selected uniformly and at random.
Attackers announced 50% of available fake links. Fig. 5 shows
that while increasing the number of attackers does result in a
consistently lower success ratio, even with 64 malicious nodes
attacking a network of 200 good nodes, around 10 percent of
route generation attempts result in finding a good route. Recall
that once Sprout has found a good route, route selection will
make use of it for effective data delivery.
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Fig. 6. (a) CDF of Successful Attempts for varying Number of Attackers (200 good nodes). (b) CDF of Successful Attempts for varying Network Size
(64 attackers). For moderate numbers of attackers, routes are found quickly. Even with 64 nodes attacking a network of 200 good nodes, 95% of routes are
found within 40 attempts. (c) Successful Attempts vs. Number of Virtual Attackers Per Physical Attacker. With 9 physical attackers and a total of 576 virtual
attacker identities, 3% of attempts find a successful route.

For large numbers of attackers, the analytical prediction
from Sec. IV is significantly lower than the simulation results.
Instead of considering a distribution of path lengths, the
analysis considers only the expected path length. In scenarios
with large numbers of attackers, long generated routes are
very likely to contain one or more attackers. However, shorter
routes are still likely to succeed. By only considering the
expected path length, the analysis thus provides a pessimistic
performance prediction. The simulation captures the distribu-
tion of path lengths, resulting in more realistic numbers.

Figures 6 (a) and 6 (b) show CDFs of the number of
attempts needed to find the first good route, with respect to the
number of attackers, and with respect to network size. Node
pairs that are far apart, or that have a particularly difficult
network topology between themselves, frequently require a
larger number of attempts than nodes that are in the vicinity
of each other. We note that 95% of all pairs in the most difficult
scenario, find a good route within 40 attempts. Less than 1%
of the pairs fail to find a route within 100 attempts.

Sprout Successfully Withstands Massive Sybil Attacks.
Although an attacker may control few nodes, it may still be
able to acquire a large number of certified public-private key
pairs. Using multiple sets of credentials per node, the attacker
may be able to increase the strength of its attack. Note that
the multiple-identity attack is the strongest version of the sybil
attack, where a single node takes on multiple unique identities.

In these experiments, we generate topologies of 200 normal
nodes, and vary the number of physical attackers between
1 and 9. Each physical attacker takes on between 2 and
64 identities, and announces fake links for each of these
separately. To maximize the effectiveness of the attack, each
virtual attacker announces 50% of its available links, selected
uniformly and at random. Fig. 6 (c) illustrates the effect of
a multiple-identity attack. We observe that a single physical
attacker is unable to mount a significant attack; even with 64
virtual attacker identities 60%, of the attempts find a good
route, and the number appears to stabilize above 50%. With
more physical attackers, fewer attempts are successful. Yet,
with 9 physical attackers, each with 64 virtual identities (a total
of 576 attacker identities in a network of 200 good nodes),
3% of attempts still find good routes, with 10% of node pairs
requiring over 100 attempts to find a good route.

We observe that a massive sybil attack is an effective means

of multiplying the effect of an attack. If possible, a mechanism
for limiting the number of identities available to an attacker
is an effective way of limiting the power of a sybil attack. If
such a mechanism is not feasible, Sprout is able to successfully
find routes even under a sybil attack of massive proportions.
However, finding such a route may take longer than under
less adverse conditions. Recall that once a good route has
been found, route selection will ensure that the majority of
packets are sent along this route. This ensures good overall
performance once a valid route to the destination is found.

VI. PERFORMANCE EVALUATION - IMPLEMENTATION

The previous section evaluated the high-level performance
of the route generation algorithm. To determine the perfor-
mance of Sprout in a more practical setting, we implement
Sprout in Linux and test it for performance and attack re-
silience in experiments on our local wireless research testbed.

While we would have liked to compare Sprout against other
competitive secure routing protocols, we were unable to find
any implementable secure routing protocol theoretically able
to withstand the attacks described in this paper, see Sec. II.

In these experiments, we emulate the black hole, gray
hole, and fake link attacks. We measure packet delivery
ratio, response time and TCP throughput, both under benign
conditions and during attack. We demonstrate good general
performance numbers and a dramatically increased resilience
to attack. For reference, we also show shortest path routing
performance. This helps understand the performance penalty
incurred by using Sprout for routing security.

Our indoor testbed is comprised of 31 Soekris net4826
nodes, deployed on the 3rd floor of Engineering Building
Unit II at the University of California, Riverside; the network
is depicted in Fig. 7. Each node runs a Debian v3.1 Linux
distribution with kernel version 2.6.13.2 and mounts its root
partition over NFS from a server at start-up. We have equipped
nodes with EMP-8602-6G 802.11a/b/g WiFi cards, which em-
bed the Atheros AR5006 chipset; the cards are controlled by
the latest Linux MadWifi driver [18]. Each card is connected
to a 5-dBi gain external omnidirectional antenna. For these
experiments, we use the cards in 802.11g mode. TCP selective
acknowledgments (TCP SACK) were enabled.

Our Sprout implementation is based on a combination of
the OLSR [19] implementation from olsr.org, for gathering
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Fig. 8. Median Packet Delivery Ratio vs. Experiment Time. Error bars are
5th and 95th percentile. Black-hole attack starts at time 120s, ends at 240s.
Sprout delivery ratio is marginally affected by a black-hole attack.

and distributing topology information, and the Click modular
router platform [20], version 1.5, for all Sprout specific
functionality, including source routing. The source code for
our Sprout implementation is available at [21]. Our imple-
mentation also supports shortest path routing, for comparison
purposes. All OLSR optimizations for efficient broadcast were
turned off, as they are incompatible with the secure broadcast
scheme employed, see [13]. Unless otherwise noted, experi-
ments were repeated at least 25 times for reliability of results.
In the experiments on the testbed, routes used by Sprout ranged
in length between 2 hops and 9 hops. For these experiments,
we used αrtt = 0.9, and αpdr = 0.9, reflecting a tradeoff
between long-term stability and near-term “reactiveness to
change”. We used γ = 1.25 to allow for a moderate level
of variability in the round-trip time.

Sprout is Nearly Unaffected by Black Hole Attacks: In
a black hole attack, a node drops all data packets it receives,
instead of forwarding them toward their intended destination.
Our first experiment involves a single pair of nodes, nodes 20
and 34, and a simple black hole attack mounted by node 31.
We set up node 20 to ping node 34 four times per second, and
observe the resulting packet delivery ratio (PDR) and round-
trip times (RTT). Figs. 8 and 9 show the evolution over time,
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Fig. 9. Median Round-Trip Time vs. Experiment Time. Sprout round-trip
time is marginally affected by a black-hole attack.

of the PDR and RTTs achieved by Sprout as compared to
shortest path routing. As the black hole attack commences
(at time 120s), Sprout experiences a slight drop in PDR, but
quickly detects the attack and shifts traffic to better routes.
Shortest path regains its performance after the attack ends (at
time 240s). Node 31 was, for most of the time, on the shortest
path, which is apparent in the shortest path results. A higher
average RTT is experienced with Sprout (by about 15 percent)
due to route diversity; multiple routes are used, some of which
have a longer RTT than the shortest path.

Gray Hole Attacks Don’t Work Against Sprout: In a gray
hole attack, the attacker drops some, but not all packets. By
forwarding some packets, the attacker may give the appearance
of operating properly, thereby convincing the routing protocol
to send more packets through the attacker. In this experiment,
node 31 is once again the attacker, this time mounting gray
hole attacks with a packet forwarding ratio between 10 and
90 percent.
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Fig. 10. Packet Delivery Ratio vs. Gray Hole Forward Ratio. Gray hole
attack is ineffective on Sprout. Shortest path PDR reflects packet drops on
the forward and reverse paths combined.

Fig. 10 shows the end-to-end packet delivery ratio as we
vary the percentage of packets forwarded by the gray hole
attacker. The route selection mechanism in Sprout detects the
high number of packet drops occurring on routes through
the gray hole attacker, and avoids these routes, effectively
mitigating the attack. We show shortest path results for ref-
erence. Shortest path routing incurs packet drops on both the
forward and the reverse path, resulting in a measured PDR of
approximately p2, where p is the probability of the gray hole
attacker forwarding a packet.

Sprout Successfully Withstands Fake Link Attacks: With
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the fake link attack, two or more attackers collude to create
fake link announcements for links between distant nodes. Fake
link attacks are extremely effective against shortest path and
shortest multi-path routing algorithms, as long links between
distant nodes appear as valuable shortcuts. In Sprout, attackers
are limited to announcing fake links between themselves, and
between an attacker and a neighbor of any other attacker.

In these experiments, nodes 21, 27, and 40 were set aside as
attackers. A total of 40 fake links were announced with nodes
15, 18, 20, 24, 25, 29, 34, 35, 37 and 41 as endpoints, for those
attackers that did not have valid links to these nodes. Attackers
were configured to drop all incoming data payload packets,
and to forward all link-state updates. Each experiment included
four scenarios: a) Sprout with attack, b) Sprout without attack,
c) shortest path with attack, and d) shortest path without
attack. In the “no attack” scenarios, the attackers did not
participate in the network. For each experiment, we performed
two measurements. First, a 2-minute ping session, at 4 pings
per second. Second, a 1-minute TCP session. We ran these
experiments for three node pairs: 20-34, 20-24 and 15-17. We
ran these experiments 25 times back-to-back.

Figures 11 (a) through 11 (c) show the results of this
experiment. Sprout was highly competitive with respect to the
end-to-end packet delivery ratio, consistently outperforming
shortest path under benign conditions, and being marginally
affected by the attack. Shortest path results are not shown for
the attack scenario, as no packets were successfully delivered
in this case. As observed earlier, Sprout does incur an increase
in round-trip time, as compared to shortest path routing, see
Fig. 11 (b). This is due to the higher route diversity. Finally,
the TCP results in Fig. 11 (c) shows Sprout providing reliable
performance under attack as well as in benign conditions.
We note that while shortest path achieves higher average
throughput under no-attack conditions, the variability is higher.

VII. CONCLUSION

In this paper, we present Sprout, a secure routing protocol
resilient to a wide range of routing layer attacks, and the first
to provide robustness to large numbers of colluding attackers.
Unlike previously proposed approaches, Sprout probabilisti-
cally generates a multiplicity of routes, without requiring these
paths to be node- or edge-disjoint. Each route is continuously
appraised by means of signed end-to-end acknowledgements,
and the amount of traffic forwarded on a given route is deter-
mined by the assessed quality of the route. We demonstrate

through analysis, simulation and real-world experiments on
our 31-node experimental multi-hop wireless network, that
Sprout effectively handles a rich set of possible attacks. We
also find that Sprout TCP throughput comes within 15% of
that of shortest path routing, a small price to pay for vastly
improved security.
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