
FlexiWeb: Network-Aware Compaction for Accelerating
Mobile Web Transfers

Shailendra Singh
University of California,

Riverside
singhs@cs.ucr.edu

Harsha V. Madhyastha
University of Michigan

harshavm@umich.edu

Srikanth V.
Krishnamurthy

University of California,
Riverside

krish@cs.ucr.edu
Ramesh Govindan
University of Southern

California
ramesh@usc.edu

Abstract—To reduce page load times and bandwidth usage for
mobile web browsing, middleboxes that compress page content are
commonly used today. Unfortunately, this can hurt performance
in many cases; via an extensive measurement study, we show that
using middleboxes to facilitate compression results in up to 28%
degradation in page load times when the client enjoys excellent
wireless link conditions. We find that benefits from compression
are primarily realized under bad network conditions. Guided by
our study, we design and implement FlexiWeb, a framework that
determines both when to use a middlebox and how to use it, based
on the client’s network conditions. First, FlexiWeb selectively
fetches objects on a web page either directly from the source or
via a middlebox, rather than fetching all objects via the middlebox.
Second, instead of simply performing lossless compression of all
content, FlexiWeb performs network-aware compression of images
by selecting from among a range of content transformations. We
implement and evaluate a prototype of FlexiWeb using Google’s
open source Chromium mobile browser and our implementation
of a modified version of Google’s open source compression proxy.
Our extensive experiments show that, across a range of scenarios,
FlexiWeb reduces page load times for mobile clients by 35–42%
compared to the status quo.

Categories and Subject Descriptors
C.4 [PERFORMANCE OF SYSTEMS]: Performance attributes;
Measurement techniques; C.2.2 [Network Protocols]: Applica-
tions

Keywords
Cellular Network, Mobile Web Browsing, Compression Proxy,
Middle Box

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full cita-
tion on the first page. Copyrights for components of this work owned by others than
ACM must be honored. Abstracting with credit is permitted. To copy otherwise, or re-
publish, to post on servers or to redistribute to lists, requires prior specific permission
and/or a fee. Request permissions from Permissions@acm.org.
MobiCom’15, September 7–11, 2015, Paris, France.
c⃝ 2015 ACM. ISBN 978-1-4503-3543-0/15/09 ...$15.00.

DOI: http://dx.doi.org/10.1145/2789168.2790128.

1 Introduction
The ill-effects of slow websites, especially when browsing using
a cellular network, are well-documented. Recent surveys suggest
that two-thirds of users encounter slow websites every week [1],
and that 49% of such users abandon a site or switch to a competi-
tor upon experiencing large delays [1]. To address this, several
systems augment mobile web browsing with support from middle-
boxes or proxies in the cloud (e.g., [2], [3], [4], [5], [6], [7]); many
of these systems are widely used today, such as Opera Mini [5],
Amazon Silk [6] and Chrome beta [7]. These cloud-supported mo-
bile browsing options can potentially reduce download times, de-
vice energy consumption, and data usage costs.

Network conditions should dictate whether or not a middle-
box should be used for performing content compression: The
aforementioned middleboxes primarily compress content to be de-
livered to wireless clients based on the common belief that com-
pression reduces the volume of bytes downloaded, and thus, im-
proves performance. Unfortunately, this is not always the case. As
our first contribution, we conduct an extensive measurement study
which shows that, when network conditions are good, there could
in fact be an increase in page load times (by as much as 28%) due
to the use of middleboxes (we refer to this as Proxy Assisted
browsing). The problem especially occurs if the web page to be
downloaded only contains small objects (no high quality images
or large scripts). The primary reason for this degradation is that
diverting content to a middlebox causes additional delays due to
longer routes and/or processing at the middlebox; these delays off-
set the gains achieved due to compression in some cases, and thus,
worsen page load times. On the other hand, when network condi-
tions are bad, Proxy Assisted browsing decreases page load
times compared to Conventional browsing by 32%. This sug-
gests that the decision on whether or not to use middlebox support
for mobile web transfers must be made based on (i) network con-
ditions and (ii) object sizes.

Content transformations ought to be network-aware: Today,
most middleboxes for the mobile web apply the same compression
to all content. Insufficient compaction could potentially lead to
large page load times when network conditions are poor. If users
and web providers are willing to compromise on content quality
for better page load times, one could enable middleboxes to per-
form different degrees of content compaction based on network
conditions. Specifically, this is possible in the case of images if
the network conditions are bad. For example, when the quality of
the client’s network connection is very poor, the middlebox could

even take extreme steps, such as transform a color image to a gray
scale version, to ensure reasonable load times.

Challenges: Realizing the above vision towards network-aware,
dynamic usage of a middlebox for accelerating mobile web trans-
fers is associated with two primary challenges: (1) For every ob-
ject, the decision as to whether to fetch it directly or via the proxy
depends on the object’s size, but that is typically known only after
fetching the object. Issuing a HTTP HEAD request just to query the
webserver hosting the object for its size will add significant over-
head. (2) The extent to which any particular object on a page should
be compressed depends on the sizes of other objects on the page.
However, given how the process of loading a web page works, the
objects on a web page are only revealed iteratively as the page load
proceeds.

Design and implementation of FlexiWeb: As our primary
contribution, we design and prototype the FlexiWeb framework,
which addresses the above challenges, towards providing dynamic,
network-aware middlebox support for the mobile web. FlexiWeb
has a novel design that encompasses three key elements. First, it
uses an empirically derived model that determines, given an ob-
ject’s size and the network conditions, whether the object should
be fetched via a proxy1 or not. Second, FlexiWeb incorporates a
classifier that predicts an object’s size, based primarily on features
derived from the object’s URL. Third, FlexiWeb performs network-
aware data compaction at the proxy, wherein appropriate transfor-
mations are applied to images based on the bandwidth available
between the client and the proxy; other objects (e.g., Javascripts)
are compressed as in conventional middleboxes. For this, Flexi-
Web uses an online algorithm that selects near-optimal compaction
levels while attempting to keep page load times within a latency
target dictated by user tolerance (shown to be 2–5 seconds by user
studies [8]). We cast this algorithm as a utility maximization sub-
ject to latency constraints.

Flexibility: While performing content transformation, it is im-
portant to ensure that web browsing sessions do ensure a good
Quality-of-Experience (QoE). While transformations reduce de-
lays, they must still cater to a user’s or a web provider’s require-
ments in terms of quality (e.g., a user may not want gray scale
transformations). Hence, we allow users or web providers to set a
minimum quality limit either via browser settings or via metadata
embedded in a web page’s HTML; this sets the maximum allow-
able compression allowed on each object in a web page.

Evaluations: Finally, we perform extensive evaluations of Flexi-
Web both via in-house emulations and real-world experiments us-
ing AT&T and T-Mobile’s 4G networks in both static and mo-
bile settings. Our experiments demonstrate that FlexiWeb reduces
page load times by up to 35–42% as compared to both Proxy
Assisted and Conventional mobile web browsing.

2 To proxy or not to proxy
We begin with a measurement study to understand the implications
of using a middlebox for compressing mobile web content. We
first describe our setup for the measurements and then discuss the
results.

Client side setup: We set up multiple rooted mobile devices
(HTC One phones with Android 4.3) running the open source web
browser, Chromium, for Android. A Python program controls the
browser via Chromedriver using RemoteWebDriver. All experi-
ments are performed with a cold browser cache. We use “page load
times" as the primary metric to capture performance. The page
load time is defined as the time it takes for the browser to down-
1We use the terms proxy and middlebox interchangeably.

 0

 1

 2

 3

 4

 5

 6

 7

 8

Excellent Good Fair Poor

M
ea

n
T

ho
ug

hp
ut

 (
M

bp
s)

Network Conditions

(a)

 0
 100
 200
 300
 400
 500
 600
 700
 800

Excellent Good Fair Poor

M
ea

n
P

in
g

R
T

T
 (

m
s)

Network Conditions

(b)

Figure 1 (a) Average values of (a) Throughput (b) RTT between the client
and the proxy server in different cellular network conditions

Network Conditions RTT(ms) Throughput(Mbps) Loss Rate(%)
Excellent 100 5 0.006
Good 200 2 0.006
Fair 400 1 0.04
Poor 600 0.3 0.1

Table 1 Network Conditions (Note that MAC layer retransmissions limit
error rates even under poor conditions [9])

load and process all the objects associated with a web page. Most
browsers fire a Javascript event (onLoad()) when the page is loaded.
Chrome’s remote debugging interface provides us the time taken to
download each object in a web page.

Server side setup: To ensure that a phone retrieved the same
content each time it fetched a particular URL (in repeated exper-
iments), we captured Alexa’s top 500 websites (we believe these
represent typically downloaded web pages) and replayed the con-
tent using the Web Page Replay tool [10]. All content was cached
on our Web Page Replay server. Our server has 16 CPU cores and
64 GB of memory and is hosted on our campus network.

Network conditions: We operate over the 4G networks of two
major US cellular providers, AT&T and T-Mobile. To examine
the influence of different network conditions, for each provider, we
carefully choose four locations where the RTT and throughput val-
ues were similar to those listed in Table 1. We choose these lo-
cations after monitoring the network conditions by running a long
term (2 day) experiment to ensure the stability of the conditions
(they stayed more or less the same) as shown in Figures 1a and 1b.

Data collection: For each page downloaded, we record the
browser-reported page load time, as well as the load time for each
individual resource on the page. In addition, we run tcpdump on
the phone to capture a trace of all network traffic during the page
load. In each run, we first load a page by downloading the resources
on a page directly from the webservers hosting them, and then via
a compression proxy, back-to-back. We perform 10 trials for each
experiment.

Today’s compression proxies can increase mobile web page
load times: First we perform experiments over both AT&T and T-
Mobile’s networks, with currently deployed commercial compres-
sion proxies. Google’s Chrome mobile browser comes with the
Proxy assist option. Upon enabling this, the browser redi-
rects all the requests to Google’s compression proxy. Using this
feature, we perform experiments with a live version (clients down-
load the webpages directly from the source web sites as opposed
to downloading a replay from our web server) of Alexa’s top 500
websites.

Figure 2a shows the percentage gain in performance in different
network conditions, when using Google’s proxy in comparison to

 -40

 -30

 -20

 -10

 0

 10

 20

 30

 40

Excellent Good Fair Poor

Av
g.

 P
er

ce
nt

ag
e

G
ai

n
(%

)

Network Conditions

AT&T
T-Mobile

(a)

-6

-4

-2

 0

 2

 4

 6

Excellent Good Fair Poor

Av
g.

 In
cr

ea
se

 in
 P

LT
 (S

ec
on

ds
)

Network Condition

(b)

-40
-30
-20
-10

 0
 10
 20
 30
 40

Excellent Good Fair Poor

Av
g.

 P
er

ce
nt

ag
e

G
ai

n
(%

)

Network Conditions

(c)

Figure 2 (a) Gains from using a commercial compression proxy (Google compression proxy) in downloading Alexa’s top 500 web pages under different client
network conditions. Gains are measured in comparison to a Conventional browser. (b) Average increase in Page Load Time (PLT) in seconds from using
a commercial compression proxy (Google compression proxy) in comparison to a Conventional browser.(c) Gains from using a Proxy Assisted
browser (using our own proxy) in downloading Alexa’s top 500 web pages under different network conditions. Gains are measured in comparison to a
Conventional browser.

a Conventional browser (where all content is retrieved from
the source). We see that the use of the proxy provides an average
gain of about 32% in bad network conditions. In excellent network
conditions, the Conventional browser (no proxy) outperforms
the Proxy assisted browser by about 28%. Figure 2b shows
the average gain in page load times in seconds. We see that the
proxy can increase the page load time by ≈ 4 seconds. According
to prior studies [11] a 1 second delay could potentially result in a
nett loss of 2.5 million dollars in sales for an e-commence website.
It is also seen that a 4 second delay can cause up to 25% increase in
page abandonment. These results clearly demonstrate that the use
of a proxy can significantly hurt performance when network condi-
tions are excellent; however, as conditions degrade, compression at
a proxy can provide significant benefits.

An in-depth study: To get a further understanding of the im-
plications of using a compression proxy, we set up our own proxy
(to emulate the behavior of Google’s proxy) and conduct more in
depth studies.

Compression proxy setup: We set up the compression proxy
on Amazon EC2 to have a controlled environment. The proxy is
located in northern California, relatively close to the geographi-
cal region of the client. We use Google’s open-source compres-
sion proxy module called PageSpeed, which we setup as a forward
proxy [12]. We use the optimization strategies [13] recommended
for reducing page load times. These include combining and minify-
ing JavaScript (JS) and Cascading Style Sheets (CSS) files, inlining
small resources, and others. We configure PageSpeed to dynami-
cally optimize images by removing unused metadata, resizing im-
ages to specified dimensions, and re-encoding images to the WebP
format (which requires fewer bytes than other popular formats such
as JPEG and PNG).

Figure 2c presents the average gain in page load time with the
compression proxy as compared to Conventional browsing (or
direct downloads). We see that the results are very consistent with
what was observed with the real-world compression proxies.

The question that we then seek to answer is: “why does perfor-
mance degrade in excellent network conditions due to the use of a
proxy?" Via a careful study, we find that this is primarily due to
penalties associated with loading content via a compression proxy:
(i) circuitous routing between the client and web servers via the
middlebox, and/or (ii) processing delays at the middlebox.

Penalties due to route stretch: Zarifis et al [9] provide a detailed
analysis of path inflation in mobile networks and suggest that fac-
tors that primarily contribute to the path inflation are diversions

due to (i) ingress points and (ii) peering points. With regards to the
former factor, the device’s carrier network may not have ingress
points to the Internet in the device’s area. With regards to the latter,
the carrier network may connect with a web service provider at a
peering point or Internet exchange point (IXP), which may be at a
location distant from both the mobile device and the web provider.

An analysis of our traceroute data indicates that, in the presence
of a proxy, traversal of multiple peering points (because of three
different networks viz., the carrier network, the network hosting
the proxy and the network hosting the web server, instead of two)
is likely to lead to longer paths. Indeed, we observed that end-
to-end routes in some cases were inflated by up to 8 hops due to
the use of the proxy, which resulted in increases in RTTs by up to
45ms.

For example, when we fetched cnn.com without using the
proxy, from a location in Southern California, the request
for object http://i.cdn.turner.com/cnn/.e/img/4.
0/logos/city_of_tomorrow_bw.png traversed through
AT&T’s core mobile network to a CDN (content distribution net-
work) server which was geographically proximate to the client
(near Los Angeles). We also found that ingress points for AT&T’s
mobile core network were in the same geographical location. When
fetching the same object via the compression proxy, the request
went to the proxy server located in northern California and the re-
quest for the object was forwarded to the CDN located near the
proxy server (northern California). We observe a similar effect
when fetching the same object via Google’s compression proxy; the
request was sent to Google’s compression proxy located in north-
ern California while the closest CDN server was in region Southern
California (Los Angeles).

We wish to point out here that the cellular providers also deploy
(transparent) proxies in their core network. According to [14] how-
ever, only Sprint performs any form of content rewriting. Other
providers (T-Mobile, ATT and Verizon) primarily perform delayed
handshaking, connection persistence and redirection using such a
transparent proxy.

Penalties due to processing overhead: We find that the process-
ing overhead to convert an image to WebP format (the image trans-
formation performed by Google’s compression proxy) ranges from
10ms to 30ms per image, depending on the image’s size; if a web
page contains a large number of objects, the total processing delay
can be significant. In general, when compared to JPEG, the encod-
ing speed for WebP is ≈ 10X slower (and the decoding is ≈ 1.4X
slower) but it does provide ≈ a 30% gain in terms of a size re-

Object Size
Prediction Module

Request Splitting
Module

Network Aware
Compression Module

Network Measurement
Module

Web Server

Mobile Browser Compression Proxy

Direct Requests

Requests to Proxy

QoE Setting

Response from Proxy

RTT + TCP Throughput +
Loss Rate

Response to Proxy

Request to Server

Direct Response

Figure 4 Overview of FlexiWeb’s architecture

duction, on average [15]. A commercial proxy can reduce the pro-
cessing times by using advanced caching techniques (to amortize
processing costs across users) but websites are increasingly per-
sonalizing their content, e.g., amazon.com shows different items
to different users based on their browsing patterns. This, in turn,
results in the fetching of different objects for different users.

Impact of object size: To summarize, our evaluations indicate
that neither the Conventional nor Proxy Assisted ap-
proach is the winner in all scenarios (in terms of network con-
ditions). To further understand the implications of using Proxy
assisted browsers, we next analyze the data collected for both
types of browsing to understand the impact of network conditions
on load times for objects of different sizes. We partition objects
into 7 bins: 0–1 KB, 1–3 KB, 3–6 KB, 6–10 KB, 10–20 KB, 20–
40 KB, and ≥ 40 KB. In Figure 3, we compare the average load
times computed over all objects in each category, with both brows-
ing strategies in different network conditions. We see that when the
conditions are good, using the proxy is only beneficial for objects
larger than 30 KB. This suggests that the delays due to indirection
via the proxy outweigh the benefits of data compaction for small
objects. As network conditions degrade, fetching compressed ob-
jects via the proxy improves object download times as compared
to fetching them uncompressed directly from the source. In the
extreme case, we see that the proxy’s compression enables better
download times for objects of all sizes in poor network conditions.

Takeaways: In summary, our measurement studies suggest the
following. In very good/excellent network conditions, it is best if
only larger sized objects (> 30 KB) are diverted to a compaction
middlebox during a web page download. Under fair to poor net-
work conditions, one should retrieve all content indirectly via the
middlebox. While FlexiWeb addresses other key challenges as
well, these takeaways form the basis for middlebox usage in our
framework.

3 Design of FlexiWeb
In this section, we describe the design of the FlexiWeb framework.
As discussed earlier, FlexiWeb seeks to reduce page load times
while browsing the web on mobile devices. The key property of
FlexiWeb is that it is adaptive and achieves its goal under all net-
work conditions.

Overview: To improve the performance vs. experience tradeoff
on the mobile web, our over-arching goal is to enable mobile clients
to dynamically select which resources on a web page to download
via a proxy and to enable the proxy to determine how it should
transform every resource that it relays. This goal imposes three
logical challenges:

• How can a client account for the characteristics of the objects
on a page and its network conditions to determine what to fetch
directly from the source web servers and which objects to fetch
via the proxy?

• Since the determination of whether to fetch an object via the
proxy or not depends on the object’s size, how can we predict
an object’s size before fetching it?

• To ensure that all objects on a page are delivered to a client
within a target load time, the manner in which the proxy trans-
forms any particular object on a page must depend on the sizes
of other objects on the page. How can the proxy do so, given that
all the objects on a page are only revealed iteratively during the
page load process?
Our architecture of FlexiWeb towards tackling these challenges

is shown in Figure 4. The Network Measurement component at
the proxy measures the network’s characteristics via a series of
measurements. The measurements made by FlexiWeb do not con-
sume excessive resources on the client side in terms of bandwidth
or energy. These measurements are then fed back to the mobile
browser. The mobile browser contains an Object size prediction
module which estimates object sizes in a web page that it seeks to
download. This module essentially uses (i) measured distributions
to determine what objects (in terms of sizes) to fetch via the proxy
after transformation, and what objects to fetch directly from the
source and (ii) an incremental learning algorithm to predict object
sizes. The Request splitting module then fetches each object, either
directly from a web server or via the proxy; large objects are always
fetched via the proxy, while the decision on “from where to fetch
a small object?" is made based on network conditions (this part of
FlexiWeb uses the inferences from our measurements in Section 2).

The Network Aware Compression module at the proxy fetches
the objects from their sources. Note here that different objects
could be potentially fetched from different web servers (e.g., ads
may be fetched from a different domain than the one in which the
web page being fetched is hosted). Since not all objects are fetched
simultaneously, the proxy has to decide on the level of compression
(transformation) to be performed on each object as it is fetched,
with the objective of trying to keep the total page load time within
a target. The proxy meets this goal by using a novel algorithm to
dynamically choose the compression level for each object (images
specifically) prior to sending it to the mobile client. Specifically,
it performs an online optimization to determine object transforma-
tions that allow the download to fit within a target budget page load
time; it reverts to a minimal transformation (maximum compres-
sion) when the optimization formulation is infeasible.

Handling Videos: Videos in a webpage are downloaded as an
image (snapshot from the video) when a page is loaded by the
browser. If a user clicks on the play button of the video it starts
downloading/streaming the video from a server. Video streaming is
not considered to be part of the webpage download [16] and hence,
we do not address videos explicitly in this work.

In the rest of this section, we elaborate on the different function-
alities of FlexiWeb.

3.1 Splitting requests
Current proxy-assisted browsers either fetch all or none of the ob-
jects in a web page, via a middlebox. However, as seen earlier,
this model can hurt page load times when network conditions are
excellent. To minimize the page load times given the conditions,
FlexiWeb seeks to identify which objects should be diverted to the
proxy and which ones should not. Based on our measurements in
Section 2, we create a mapping between how objects should be re-

 0
 500

 1000
 1500
 2000
 2500
 3000
 3500
 4000

0-1 1-3 3-6 6-10 10-20 20-40 >40

A
vg

. L
oa

d
T

im
e

(m
se

c)

Object Size (KB)

Conventional
Proxy Assisted

(a)

 0
 500

 1000
 1500
 2000
 2500
 3000
 3500
 4000

0-1 1-3 3-6 6-10 10-20 20-40 >40

A
vg

. L
oa

d
T

im
e

(m
se

c)

Object Size (KB)

Conventional
Proxy Assisted

(b)

 0

 1000

 2000

 3000

 4000

 5000

 6000

0-1 1-3 3-6 6-10 10-20 20-40 >40

A
vg

. L
oa

d
T

im
e

(m
se

c)

Object Size (KB)

Conventional
Proxy Assisted

(c)

 0

 1000

 2000

 3000

 4000

 5000

 6000

 7000

0-1 1-3 3-6 6-10 10-20 20-40 >40

A
vg

. L
oa

d
T

im
e

(m
se

c)

Object Size (KB)

Conventional
Proxy Assisted

(d)

Figure 3 Download times of objects under various network conditions (a) Network: Excellent (b) Network: Good (c) Network: Fair (d) Network: Poor

Network Condition 0–1 KB 1–3 KB 3–6 KB 6–10 KB 10–20 KB 20–40 KB ≥ 40 KB
Excellent Direct Direct Direct Direct Direct Proxy Proxy
Good Direct Direct Direct Direct Proxy Proxy Proxy
Fair Direct Direct Proxy Proxy Proxy Proxy Proxy
Poor Proxy Proxy Proxy Proxy Proxy Proxy Proxy

Table 2 Mapping that dictates when to fetch an object directly from the source server and when to fetch it via the proxy

 0
 100
 200
 300
 400
 500
 600
 700
 800
 900

 1000

2/13
4/13

6/13
8/13

10/13
1/14

3/14
5/14

7/14
9/14

11/14
1/15

Av
g.

 O
bje

ct
Si

ze
 (k

B)

Time (mm/yy)

Html
JS

CSS
Image

Figure 5 Average object size of top 4000 Alexa web pages over last 2 years

trieved based on their sizes and current network conditions; Table 2
depicts this mapping. The Request Splitting Module uses this map-
ping to dynamically send the request for an object either directly to
the web server or to the proxy.

Dynamically selecting how to fetch an object based on its size
is challenging because any object’s size is not readily available to
the client. After fetching the main HTML file (e.g., index.html) of
a web page, current browsers parse the file to determine the next
object that is to be fetched in order to render the web page. At this
point, the browser only knows the object’s URL; the object size
information is yet unknown. While the browser could try to deter-
mine an object’s size by issuing a HTTP HEAD request [17] to the
web server hosting the object, this would add significant overhead
since it imposes an additional round trip of wide-area communica-
tion for every object.

3.2 Predicting object sizes
To predict the size of an object given only its URL, we rely on
learning and applying a predictive classifier. Based on the objects
that it fetches over time the proxy continually builds this classifier,
and periodically sends its prediction model to the client. The data
from Alexa’s top 4000 web pages gathered by http archive [16],
shows that the average size of web page objects changes only once
every few months (as shown in Figure 5). Thus, it suffices that the
update frequency of the prediction model is set to (say) every few
months.

 0

 0.2

 0.4

 0.6

 0.8

 1

 0 50 100 150 200 250 300

C
D

F

Size(KB)

(a) Sizes of all objects

 0

 0.2

 0.4

 0.6

 0.8

 1

 0 50 100 150 200 250 300

C
D

F

Size(KB)

(b) Sizes of image objects

 0

 0.2

 0.4

 0.6

 0.8

 1

 0 50 100 150 200 250 300

C
D

F

Size(KB)

(c) Sizes of CSS, JS, and HTML
objects

 0

 0.2

 0.4

 0.6

 0.8

 1

 0 50 100 150 200 250 300

C
D

F

Size(KB)

GIF
PNG

JPEG

(d) Sizes of different types of im-
ages

Figure 6 Characteristics of top 4000 Alexa Web pages.

Training the model: To construct a prediction model, a dataset
to train the model is required. The middlebox records the URLs of
the objects that it fetches and their corresponding sizes, and it feeds
this information as input to a machine learning algorithm to predict
the sizes of objects not seen thus far. Figure 6(a) depicts the distri-
bution of object sizes in such a sample dataset, which comprises all
objects seen on Alexa’s top 4000 websites. We see that over 80%
of objects are smaller than 50 KB. This is also true in the case of
images (Figure 6(b)). Figure 6(c) shows that objects with text con-
tent (JavaScript, HTML, and CSS) are even smaller. We find that
images are one of the biggest contributors to large web page sizes,
and hence, we looked at the distribution of the sizes of different
image types. Figure 6(d) shows that GIF images are much smaller
in size than PNGs and JPEGs.

Rather than attempt to predict the precise size of every object,
which is likely an impossible task, we leverage the fact that we only
need to map every object to one of the bins in Table 2. Therefore,
the problem at hand is to accurately predict the size range given an
object’s URL.

Extracting features: To perform this classification of ob-
ject URLs to size ranges, we extract various features from
every URL. First, we extract a “bag of words" [18] from
the host name in the URL. For example, the host name in
the URL http://i.cdn.turner.com/cnn/.e/img/3.
0/global/icons/gallery_icon2.png yields the follow-
ing bag of words: {i, cdn, turner, com}. In addition to features
extracted from the host name, we include features from the URN
and the type of content. Hence, the feature set for the above URL
would be domain = {i, cdn, turner, com}, urn = {cnn, .e, img, 3.0,
global, icons, gallery_icon2.png} and type = png.

Classifier: The problem of classifying a URL into one of the size
ranges is a multi-class classification problem, i.e., it is a classifica-
tion task with more than two classes. Many multi-class classifica-
tion algorithms make the assumption that each sample is assigned
to one and only one label; in our case, this means that an object’s
URL can only be “classified” into one size range.

The random forest learning algorithm [19], which is known to
perform well for multi-class classification problems can be utilized
at the proxy for our purposes. It uses multiple decision trees and the
final decision is made based on an aggregation of different decision
outcomes from the individual trees. The main parameters of the
random forest algorithm are the maximum depth of each (individ-
ual) tree, the maximum number of trees, and the maximum number
of features used to train the model; details can be found in [19].

Execution: In summary, the object size prediction component of
FlexiWeb executes as follows. First, the proxy labels every URL in
the training dataset by assigning each object to the appropriate class
based on its size. Next, the proxy uses the random forest learning
algorithm to generate a classifier model based on the extracted fea-
tures from the labeled dataset. The client browser then uses this
model to predict the size of the object associated with each request,
and subsequently (in conjunction with network condition assess-
ments), it makes a decision on whether to retrieve the object via the
proxy or directly from the source.

3.3 Assessing Network Conditions
An assessment of network conditions by the Network measurement
module at the proxy serves two purposes. First, it enables the Re-
quest splitting module at the client to determine whether to retrieve
each object from the source directly or via the proxy. Second, it
also enables the proxy to make an informed decision on the extent
to which it should compress each object. To assess network con-
ditions, the Network measurement module at the proxy tracks the
RTT, the loss rate, and the TCP throughput to the client.

A simple way to accurately estimate network conditions is to
perform measurements in the background; the client and the proxy
would exchange packets periodically to infer network conditions.
However, such an approach will be prohibitive in terms of band-
width and energy overheads on the client side. In FlexiWeb, to
enable accurate estimation of the average RTT and throughput, the
client browser always downloads the main HTML file for every
web page via the proxy. The main HTML file is typically suffi-
ciently large for the purposes of FlexiWeb’s estimation of network
conditions, since the HTML’s transfer requires the transmission of
tens of packets. This also solves the issue of cold start, when the
client browser is sending a page request for the first time.

From the HTML’s transfer, the Network measurement module
obtains a sequence of RTT samples, and uses the median sample
value to estimate the RTT to the client; we borrow this approach
from [20]. Since web page loads last only tens of seconds, these
RTT measurements suffice in predicting subsequent data transfer
delays to the specific client.

The proxy sends this “network condition report” back to the
client in the object response headers of the requests; this enables the
client to determine the network conditions (excellent, good, fair or
poor as in Table 1) and how to fetch other objects on the web page
(using Table 2).

3.4 Network Aware Compression
Current practices: Current proxy-assisted browsers transform
content in a pre-determined manner. For example, scripts, CSS
files, and other text-based content are minified and zipped before
they are sent to the mobile client [21]. On the other hand, prox-
ies convert images to a fixed image format with a fixed compres-
sion ratio [13]. For example, Google compression proxy’s recom-
mended setting is to transform images to Google’s WebP image
format with a pre-defined quality; WebP is known to have much
better performance in comparison to other image formats (e.g., the
average WebP file size is 25–34% smaller compared to the JPEG
file size with equivalent image quality).

Problem formulation: In contrast to the status quo, we seek
to adaptively transform any web page’s content in a manner that
enables us to deliver the page within the user’s attention span, irre-
spective of the client’s network conditions; a user’s attention span
has been shown to be in the 2 to 5 second range previously [8].

To deliver a web page’s content within the user’s attention span,
in this work, we focus only on adaptively transforming images on
the page. Since images make up around 65% of the bytes on the
average web page [16], transformation of images (to either signifi-
cantly compressed versions or lower qualities) can significantly re-
duce page load times. Text and Javascript are compressed as with
traditional proxy assisted browsers (to static extents). The adaptive
transformation of images is based on assessed network conditions.
If network conditions are good very little compression is invoked;
on the other hand, if conditions are poor, higher levels of compres-
sion (including a lowering of the image quality) are in play. Our
focus here is primarily to achieve the right balance between page
load time and user experience. Reducing the download time of an
image by applying an appropriate transformation is important, but
at the same time, quality or utility of the transformed image is also
important. To achieve the right balance, we associate each trans-
formed version of an image with a cost and a utility.

Cost: We define the cost of a transformation as the time taken to
download the transformed image from the proxy to the client. Since
TCP throughput can be modeled as MSS

RTT×√
p [22] (where MSS is

the maximum segment size, RTT is the round-trip time between
the proxy and the client, and P is the packet loss rate), we compute
the download time for an image of size S bytes as S×RTT×

√
P

MSS ; the
proxy measures the RTT and loss rate using the technique described
earlier. Here, the size S corresponds to the transformed size of
the image. Thus, the higher the degree of compression due to the
transformation, the lower will be the cost.

Utility: We use the Peak signal-to-noise ratio (PSNR) as the util-
ity resulting from a transformation. PSNR is the most widely used
metric to quantify the quality or utility of images. It essentially
captures the relative quality between two images and is defined as:

PSNR = 10log

(
MAX2

MSE

)
,

where MAX is the maximum possible pixel value (defined next)
and MSE is the mean-squared error given by:

MSE =
1

mn

m−1∑

i=0

n−1∑

j=0

[I(i, j) −K(i, j)]2.

In the above, the two images are of size m × n and I(i, j) and
K(i, j) are the pixel values in the two images at position (i, j).
The pixel values essentially reflect the intensity level in each pixel;
thus, if the intensity is represented using 8 bits, then MAX will be
255. For color images (with three RGB values per pixel), note that
the MSE is the average over all RGB values. With higher levels
of compression or transformation, MSE increases and thus, PSNR
decreases.

The proxy calculates the PSNR (utility) with each transformation
with respect to the original image. Clearly, the more aggressive the
transformation, the lower will be the utility of the image.

Cost vs. utility trade-off: As evident from the above discussion,
a higher degree of compression reduces both utility and cost; an at-
tempt to either decrease cost or increase utility adversely affects the
other. Thus, though FlexiWeb should ideally maximize utility and
minimize cost, both objectives cannot be realized simultaneously.
Instead, it seeks to do the best it can in reducing cost and increasing
utility as follows.

For tractability, we consider a limited number of transformation
choices, and the proxy chooses from one of these options depend-
ing on network conditions. The set of transformations range from
high utility and high cost to low utility and low cost: WebP with
85% quality, WebP with 65% quality, WebP with 45% quality,
WebP with 25% quality, WebP with 5% quality, and a gray scale
version of the image. As one might expect, the lowest quality im-
age (gray scale) has the least associated cost but also offers the
least utility; the highest quality image provides the highest utility
but also incurs the highest cost.

Processing times: In the above discussion, we characterize the
cost associated with a transformation to be the time taken to down-
load that specific transformed version of an image. In reality, there
is an additional cost due to processing the image. We find that re-
gardless of which transformation we perform on each specific ob-
ject, the processing delay does not change by much. We perform all
of the transformations on 1000 images from Alexa’s top 500 web-
pages and we find that the processing times are almost identical; in
the worst case, the difference in processing time is about 8 % for a
very few objects (we omit results due to space constraints). Thus,
the processing cost does not influence the choice of transformation
and is hence ignored here.

Compressing objects based on network conditions: Utilizing
the cost vs. utility characterization of web content as above, we
cast the proxy’s task of performing network aware compression as
follows.

Suppose that the client needs to download a total of N images
in sequence over the duration of a web page download, and that it
has a total page load time budget of B seconds (within which the
page should be ideally downloaded). For every image object i, let
us assume that the proxy can apply Mi different transformations.
The question then is “which transformation should the proxy apply
on each image ?" The overall goal here is to maximize the sum of
utilities (i.e., PSNR values) of all the selected versions for the N
images, subject to the constraints that (i) exactly one version for
each requested image must be selected, and (ii) the total cost of all
the selected versions must be within budget B (within the desired
page download time). Note that maximizing the sum of the PSNR
(chosen as the utility) values corresponds to a minimization of the
sum of expected distortion over the images in the web page; the
lower this value, the better the quality of the downloaded content
and thus, user experience.

The above optimization can be formulated as follows:

maximizexij∈{0,1}

N∑

i=1

Mi∑

j=1

uijxij (1)

subject to
Mi∑

j=1

xij = 1,∀i

N∑

i=1

Mi∑

j=1

cijxij ≤ B,

Here, the indicator variable xij is 1 if version j of image i is se-
lected, and 0 otherwise. uij and cij are the utility and cost, respec-
tively, associated with version j of image i.

The transformation selection problem as formulated in Equa-
tion 1 maps to the Multi-Choice Knapsack Problem (MCKP). The
time budget is the size of the knapsack, and the goal is to fill in ob-
jects (images) such that the total utility of the objects in the knap-
sack is maximized. However, in our case, a client’s requests for
objects are made online, i.e., the middlebox does not have a priori
knowledge of future image requests since the objects are dynami-
cally fetched. Thus, we need an online algorithm for solving the
MCKP problem.

The online MCKP problem is well studied. Competitive on-
line algorithms have been proposed [23] with the relaxed constraint∑M

j=1 xij ≤ 1 for all i, i.e., the algorithm need not to choose a ver-
sion for each image (image can also be discarded). We modify the
relaxed online MCKP algorithm designed by Zhou et al. [23] for
solving our problem. Specifically, (i) we do not allow for the dis-
carding of images and (ii) we modify the time budget dynamically
to account for time spent either due to transfer of other content
(e.g., compressed Javascripts or text) or inactivity due to waiting
for objects. However, these uncertainties can cause us to exceed
the original target time budget. Thus, our modified goal is to try
and stay within the budget, but if we are to exceed it, to do so to the
minimum extent possible.

Now, the online transformation selection problem 1 can be trans-
formed into the following relaxed problem with the inequality con-
straints shown; if an online algorithm for the relaxed problem has
competitive ratio C (the performance of the algorithm w.r.t the op-
timal), then, so does the original problem in Equation 1.

maximizexij∈{0,1}

N∑

i=1

Mi∑

j=1

u′
ijxij (2)

subject to
Mi∑

j=1

xij = 1,∀i

N∑

i=1

Mi∑

j=1

c′ijxij ≤ B,

In the above formulation, the key idea is to subtract the utility
and cost of the cheapest transformation of each image from other
transformations of the same image, and use these modified utilities
u′ and costs c′ as the new representations associated with the corre-
sponding transformations. If the relaxed problem does not choose
a transformation, in our case we default to the cheapest transfor-
mation. The reader is referred to [24] for the proof of the above
claim.

The algorithm provides a competitive ratio of log(U
′

L′)+1, where
the utility to cost ratio of the transformations are upper and lower

Algorithm 1 Online selection of best image transformations

1: Initialize: b = 0 , Q (QoE level)
2: Event: Image i requested at time ti
3: if Q← auto then
4: Mi ←Mi
5: else
6: if Q ∈ {1, 2, 3, 4, 5} then
7: Mi ← Mi −Q, by removing the lower Q transformations
8: end if
9: end if

10: for j = 1→Mi do
11: u′

ij ← uij − ui1

12: c′ij ← cij − ci1

13: end for
14: transformations ← {j|u

′
ij

c′ij
≥ φ(b, B)}

15: if transformations is not empty then
16: J ← argmaxj{u′

ij |j ∈ transformations}
17: if b+ c′ij ≤ B then
18: selectedTransform ← J
19: else
20: selectedTransform ← 1
21: end if
22: else
23: selectedTransform ← 1
24: end if
25: Deliver transformation selectedTransform
26: if time ti ≥ b then
27: b← ti + c′i,selectedTransform

28: else
29: b← b+ c′i,selectedTransform

30: end if

bounded by U ′ and L′, respectively. Zhou et al. also assume that all
transformed versions are much smaller in size than the knapsack,
which is true of objects on a web page (each image is transferred in
a time << B).

Algorithm 1 presents our approach to modifying and using Zhou
et al.’s solution to our problem of selecting the appropriate transfor-
mations of images at the FlexiWeb proxy. The intuition behind the
algorithm is as follows. We only want to pick image transforma-
tions that have a sufficiently high utility to cost ratio, i.e., ones that
satisfy a certain efficiency threshold. As we spend more budget,
this threshold should increase (in other words, the cost for trans-
ferring objects later in the page load should decrease). This effi-

ciency threshold is captured by a function φ(b(t),B) = (UL)
b(t)
B L

e ,
where b(t) is the amount of the budget spent at time t.2 φ(b(t),B)

increases with b(t)
B , the fraction of the knapsack filled at time t.

Therefore, as time progresses, fewer transformations satisfy the ef-
ficiency condition.

Referring to Algorithm 1, the proxy first initializes the cur-
rent usage b to 0. Then, the transformations uij −→ u′

ij and
cij −→ c′ij , are performed. The proxy then considers the set of
transformations that have a utility-to-cost ratio that is higher than
φ(b,B). It chooses the transformation that has the maximum utility
and fits within the budget; otherwise (i.e., if none fit within the bud-
get), it chooses the cheapest transformation. At the end of each step
(i.e., after an image is transformed and sent to the client), the proxy
updates b with the cost of the selected transformation. The current
budget usage is updated after the selection of a transformation. In
case of inactive time periods (because of waiting for objects) an in-
crease in knapsack usage is applied (lines 19-22 in Algorithm 1).
2We perform a one time estimation of U and L offline, using a
training set of images.

Whenever static compression is applied to objects such as JS, CSS
etc., we again apply an increase in knapsack usage (as with inac-
tivity periods). If the target budget is exceeded, then the middlebox
simply performs the cheapest transformation on each image, prior
to sending it to the client. Note here that we simply subtract an
object’s cost from the budget, despite the client fetching multiple
objects on a page in parallel, because we consider bandwidth to be
the bottleneck between the client and the proxy.

QoE vs. page load latency: While transforming content, it
is important to ensure that web browsing has a good, associated
Quality-of-Experience (QoE). While transformations reduce de-
lays, they must still cater to a user’s or a web provider’s require-
ments in terms of quality (e.g., a user may not want gray scale
transformations). Hence, users or web providers can set a minimum
quality limit either via browser settings or via metadata embedded
in a web page’s HTML; this sets the maximum allowable compres-
sion level (QoE level) allowed on each object in a web page. The
QoE level is set to an auto mode by default. In this mode, all possi-
ble (Mi) transformations are considered (when applying Algorithm
1). Instead of the auto mode, the user or the provider can specify a
QoE level from 1 to 5. If QoE level 1 is chosen, Algorithm 1 can
use Mi − 1 transformations; the the lowest quality transformation
is left out. If a QoE level of 5 is chosen, Algorithm 1 can only
apply a single transformation, viz., the one that performs the mini-
mum compression and retains the highest quality (WebP with 85%
quality). Note that the higher the level of QoE chosen, the larger
could be the deviation (increase) with respect to a desired page load
time. At this time, FlexiWeb chooses the higher of the QoE levels
specified by the user and the provider.

4 Implementation and Setup
In this section, we first describe our implementation; subsequently
we elaborate on our experimental setup.

4.1 Implementation of FlexiWeb
Client side implementation: We modify Google’s Chromium
38.0.2125.50, an open source Android browser to implement the
client side modules of FlexiWeb. Specifically, we make changes to
the url_request module in Chromium to 1) determine whether or
not to go through the proxy, for each object, and 2) to predict the
size of any object based on its URL. We also modify Chromium
to store network measurements in the browser cache after retriev-
ing them from the HTTP request response header sent by the proxy.
For each web page, the request for the main HTML file always goes
through the compression proxy; this allows the proxy to gather ac-
curate network condition estimates (RTT and throughput). These
estimates are returned to the client in a custom field in the HTTP
response (sent by the proxy). The estimates stay valid for 15 sec-
onds, and if no object is fetched via the proxy by then, the client
sends the immediately following request via the proxy. Based on
an object’s size and the current network conditions (stored in the
browser), our modified version of Chromium chooses between re-
trieving the object via a proxy or directly from the source.

Proxy side implementation: We configure the compression
proxy with 4GB memory and 2.40 GHz Intel Core 2 CPU, running
Ubuntu 12.04. It is implemented using Google’s mod_pagespeed-
1.8.31.4 module running on top of an Apache 2.2 web server. TCP
CUBIC is used. The Apache web server runs in the forward proxy
mode. All the requests pass through mod_pagespeed module be-
fore content is compressed. We implement the passive RTT, thro-
ughput and loss rate estimation scheme described in [22] as a kernel
module; the estimated values are exposed using the Linux socket
interface, to other programs and modules. Specifically, these values

are used by the network aware compression module to calculate the
cost of a transformation. We implement the network-aware com-
pression module by modifying the mod_pagespeed’s image trans-
formation module to invoke network-aware compression (using Al-
gorithm 1) instead of static compression. To report the network
conditions to the client, we implement an Apache module to con-
trol and modify the HTTP response headers. This Apache module
reads the current RTT, loss rate and throughput values and adds
them to every out going response to the client using the previously
discussed custom header field.
4.2 Experimental Setup
Scenarios for evaluation: We have three different scenarios in
which we evaluate FlexiWeb.

Controlled settings: To reduce variability and control network
conditions, we tethered our client phone to a laptop using a USB
connection and applied traffic shaping to the tethered connection
using Dummynet [25]. We emulated a 4G network with an uplink
bandwidth of 1 Mbps [26] and with varying downlink bandwidths
shown in Table 1.

An automated script was used to change the values of the link
bandwidth, the loss rate and RTT for every test case.

Static clients on cellular networks: To evaluate FlexiWeb on real
cellular networks, we use AT&T and T-Mobile’s 4G network con-
nections. To create different network conditions we run experi-
ments at the same locations that we used to gather our measure-
ments in Section 2. Due to space constraints, we only present re-
sults from AT & T’s network except in some sample cases.

Mobile scenarios: Finally, we also evaluate FlexiWeb in mobile
scenarios. We choose around 20 paths in two US metropolitan areas
in two states with a mix of local streets and Interstate highways.
Our speeds on interstate highways were around 65 miles per hour
while on city streets our speeds were 30-40 miles per hour. We
omit the exact details of the paths to preserve anonymity.

Web pages requested: We use the top 500 web sites visited
by mobile users to run our tests (the top Alexa sites). These have
a good mix of news websites, online shopping and auction sites
as well as professionally developed websites of large corporations.
These websites contain anywhere from 5 to 323 objects. The ob-
jects in these sites were spread across 3 to 84 domains. Each web
site had HTML pages, Javascript objects, CSS and images. Due
to experimentation constraints (time), the experimental results re-
ported for mobile scenarios are only using the top 50 web pages.

Execution: We setup 2 rooted mobile devices (HTC One phones
with Android 4.3) running Chromium (with our modifications) for
Android. We generated a random order in which to visit the web
sites and used that same order across all experiments. The period
between website requests was set to 60 seconds both to allow for
websites to load completely, and to reflect a nominal think time that
users typically indulge in between requests. If the web page took a
much shorter time to load, the system was idle until the 60 second
window elapsed. We used the “page load time" as the primary met-
ric of performance. We alternated our test runs between “Direct”,
“Compression Proxy” and “FlexiWeb” to ensure that temporal fac-
tors did not affect our results. With Direct, requests are directly
sent to the source web server. With Compression proxy, all the
requests are sent to a proxy with static compression settings where
images are transformed to WebP with a quality of 75% (this is what
is done with commercial proxies today [27] to achieve some com-
pression without compromising the quality significantly). We ran
each experiment multiple times at different times during the day.

 -40
 -30
 -20
 -10

 0
 10
 20
 30
 40
 50

Excellent Good Fair Poor

A
vg

. P
er

ce
nt

ag
e

G
ai

n
(%

)

Network Conditions

Compression Proxy
FlexiWeb

(a)

 0
 0.1
 0.2
 0.3
 0.4
 0.5
 0.6
 0.7
 0.8
 0.9

 1

 20 25 30 35 40

C
D

F

PSNR (dB)

Compression Proxy
FlexiWeb

(b)

Figure 7 : (a) Performance gains with FlexiWeb (b) PSNR of transformed
images

5 Evaluation of FlexiWeb
We evaluate FlexiWeb extensively, in each of the scenarios de-
scribed in Section 4, and discuss the results below.

Performance of FlexiWeb in controlled settings: We first eval-
uate FlexiWeb in the controlled network settings listed in Table 1.
We calculate the percentage gains relative to the direct scheme (no
proxy) for both (i) FlexiWeb and (ii) compression proxy based
browsing. Figure 7a shows the average percentage gains in page
load times under different network conditions. The results, shown
in Figure 7a, indicate that the compression proxy degrades the per-
formance in terms of page load times, by up to 32% as compared
to direct browsing in excellent network conditions (also seen ear-
lier). As network conditions degrade, the compression proxy out-
performs direct browsing; in all other settings the reduction in ob-
ject sizes (from compression) outweigh the latency overheads of
longer routes and processing. We see that FlexiWeb outperforms
compression proxy based browsing by up to 45% in excellent net-
work conditions. FlexiWeb significantly gains from sending re-
quests for small objects directly to the web server; it thereby avoids
the latency overheads incurred in retrieving such objects via the
proxy. FlexiWeb still downloads the large objects via the proxy, but
after performing network-aware compression (large objects benefit
from compression). As network conditions deteriorate, the perfor-
mance gains with FlexiWeb in comparison to compression proxy
based browsing diminish (only about 10 %). This is because the
gains due to compression now increase and almost all objects are
now retrieved via the proxy; FlexiWeb outperforms the compres-
sion based proxy here, mainly due to network-aware compression.

Next, we present the PSNR values of the transformed images
with FlexiWeb and the traditional compression proxy. Figure 7b
shows that the average degradation of PSNR using FlexiWeb is
only ≈ 4 dB in comparison to compression proxy; this is in spite
of FlexiWeb performing more aggressive compression during poor
network conditions.

How does FlexiWeb provide performance gains?: Next, we ex-
amine the gains from the two main functions performed by Flexi-
Web i.e., request splitting and network-aware compression. We an-
alyze the web page download traces and separate the objects into
those retrieved directly from the source web server and those via
the proxy. We measure the gain with respect to each object’s load
time due to each function, in comparison to the load time of the
object when fetched directly from the server. We then calculate the
average gain across all objects fetched, with respect to each func-
tion. From Figure 8a, we see that in excellent and good network
conditions the gains are primarily due to objects being fetched di-
rectly from the source web server; in excellent conditions, almost
70% of the gains are due to this. As network conditions degrade

-30

-20

-10

 0

 10

 20

 30

 40

Excellent Good Fair Poor

P
er

ce
nt

ag
e

G
ai

n

Network Conditions

Request Splitting
Network Aware Compression

(a)

 0

 20

 40

 60

 80

 100

0-1kb
1-3kb

3-6Kb
6-10Kb

10-20Kb

20-40Kb

>40Kb

A
ve

ra
ge

 P
re

ci
si

on
(%

)

Object Size Range

(b)

 0

 0.2

 0.4

 0.6

 0.8

 1

 50 60 70 80 90 100

C
D

F

Competitive Ratio(%)

(c)

Figure 8 : (a) Impact of request splitting and network aware compression on FlexiWeb’s gains (b) Precision in predicting object sizes (c) Competitive analysis
of online MCKP

the number of objects fetched via the proxy increases and the gains
due to network-aware compression dominate. Since in poor net-
work conditions, FlexiWeb fetches all objects via the proxy, all the
gains are due to network-aware compression.

Accuracy of object size predictions: Next, we evaluate the accu-
racy with which FlexiWeb predicts the size of objects. We use the
data collected at the proxy as described in Section 3. We use the
10 fold cross validation method [28]. We divide our dataset into
two parts: a training set that contains 30% of the dataset, and a test
set that contains the remaining 70%. We train our model using the
training set and later perform prediction on the remainder (70 %)
of the data which was held out. For the purposes of evaluation, we
use the precision criterion [29], which determines the fraction of
records that are correctly classified from among those that that are
grouped under a classification. Specifically,

Precision(%) =

(
TruePositive

T ruePositive+ FalsePositive

)
× 100.

Figure 8b shows that the accuracy of predicting the size of ob-
jects based on the URL text is quite high. We can predict objects of
size 0 to 1 KB and objects larger than 20 KB with more than 90%
accuracy. We can predict other object sizes with at least 70% accu-
racy. Note that an inaccurate prediction simply causes FlexiWeb to
fetch the object sub-optimally (directly instead of via the proxy or
vice versa). Thus, while it slightly causes a degradation in Flexi-
Web’s performance, it does not disrupt the web browsing process.
Note here that our prediction has high accuracy because we only
seek to predict “the" range into which an object’s size falls, and not
the object’s precise size.

Quantifying the sub-optimality of network-aware compres-
sion: For network-aware compression, we use the modified online
MCKP algorithm shown in Algorithm 1. To illustrate the diffi-
culty of the online transformation selection problem, consider an
end user with a time budget of 5 seconds to download a page. Let
the download of version j of image i be represented by a utility-
cost pair (uij , cij), where uij is the utility (e.g., PSNR or negative
distortion) and cij is the cost. Suppose the first image has two
possible versions with utility-cost pairs (1,1), (2,2), and the second
image also has two versions with utility-cost pairs (2,1),(4,2). If
the user requests for both the images sequentially, then the optimal
(offline) solution is to choose the stream (1,1) followed by (4, 2).
This gives a total utility of 5 with a total cost of 3. However, an on-
line transformation selection algorithm must first choose a stream
from (1, 1), (2, 2), without knowledge of the subsequent request.
Our online MCKP algorithm is likely to choose the transformation
(2, 2) followed by (2, 1), resulting in sub-optimal utility.

Here, we seek to quantify the sub optimality of Algorithm 1.
We select 100 web pages from the Alexa’s top 500 web pages
with varied number and sizes of the objects. We first download
the pages using a modified version of MCKP, called OPT-MCKP.
OPT-MCKP [30] is an offline version of MCKP, where the object
requests are known in advance. With this information OPT-MCKP
can always choose the right transformation. We repeat the same
experiment using our ON-MCKP algorithm (Algorithm 1) . A pop-
ular way to evaluate online algorithms is using what is called the
“Competitive Ratio" [31]. The competitive ratio of an online al-
gorithm for an optimization problem is simply the ratio between
the cost of the solution found by the algorithm and the cost of an
optimal solution. Figure 8c shows the CDFs of Competitive ratio
(converted to percentage) across the 100 pages; we see that 80% of
the time, the page load times with ON-MCKP are within 10%-20%
of that with OPT-MCKP.

Number of objects and web pages downloaded within a time
budget: Next we evaluate FlexiWeb in terms of number of objects
retrieved within a specified time budget of 5 seconds. We compare
the number of requests satisfied by FlexiWeb in comparison with
conventional compression proxy based browsing. Figure 9a depicts
the CDF of the percentage of additional objects retrieved by Flexi-
Web as compared to conventional compression proxy based brows-
ing; we see that FlexiWeb fetches 17% more objects on average,
within the same time budget. FlexiWeb achieves this by fetching
small objects directly from the web server in excellent and good
network conditions; the decrease in per-object download times al-
low the downloading of more objects within the page load time
budget. Even in bad network conditions FlexiWeb fetches 1-2%
more objects on an average than conventional compression proxy
based browsing, but mainly due to network aware compression. An
increase in number of additional fetched objects also translates to
an increase in the number of web pages downloaded in the target
budget. Figure 9b shows the CDF of page down load times of web
pages using regular compression proxy and FlexiWeb. We see that
FlexiWeb can download about 19% more web pages on average,
within a target budget of 5 seconds.

Evaluations on AT &T and T-Mobile’s networks: We evaluate
FlexiWeb on real cellular networks to show that the gains seen in
controlled settings also exist in real cases. From Figure 9c and 9d
we see that FlexiWeb outperforms conventional compression proxy
based browsing in excellent network conditions (by up to 38% with
T-Mobile and 37 % with AT & T) In poor conditions it out performs
the latter by up to 6% with T-Mobile and 2 % with AT & T. The
gains are in between for other network conditions.

Scenarios with mobility: Next, we seek to evaluate FlexiWeb
in scenarios where a passenger accesses web pages while in a mov-

 0

 0.2

 0.4

 0.6

 0.8

 1

 0 5 10 15 20 25 30 35 40

C
D

F

Extra Fetched Objects(%)

Excellent
Good

Fair
Poor

(a)

 0

 0.2

 0.4

 0.6

 0.8

 1

 0 1 2 3 4 5 6 7 8 9 10 11 12
C

D
F

Page Load Time(s)

FlexiWeb
Compression Proxy

(b)

 -40

 -30

 -20

 -10

 0

 10

 20

 30

 40

Excellent Good Fair Poor

A
vg

. P
er

ce
nt

ag
e

G
ai

n(
%

)

Network Conditions

Compression Proxy
FlexiWeb

(c)

 -40

 -30

 -20

 -10

 0

 10

 20

 30

 40

Excellent Good Fair Poor

A
vg

. P
er

ce
nt

ag
e

G
ai

n(
%

)

Network Conditions

Compression Proxy
FlexiWeb

(d)

 0

 0.2

 0.4

 0.6

 0.8

 1

 0 10 20 30 40 50 60

C
D

F

Avg. Percentage Gain

(e)
Figure 9 : (a) Percentage of extra fetched objects in a time budget of 5 seconds (b) Gains in page load times (c) Performance of FlexiWeb on T-Mobile’s
network (d) Performance of FlexiWeb on AT&T’s network (e) Gains with FlexiWeb in mobile settings

ing car. We choose 20 different paths to capture typical scenarios:
(i) driving on a highway at high speeds and (ii) driving around in a
city at moderate speeds. We used two mobile devices (both HTC
One phones) connected to two laptops via USB, one downloading
web pages via a conventional compression proxy while the other
does so using FlexiWeb. We choose to download Alexa’s top 50
web pages for this experiment. Both the devices are connected to
AT & T’s network. In addition to page load times we also keep
track of signal strengths at both the devices. We start the experi-
ments on both the phones at almost the same time to avoid varia-
tions in network conditions. We measure the average percentage
gains with FlexiWeb while downloading all the web pages. In Fig-
ure 9e, we plot the CDF of this average percentage gain over all
the webpages downloaded on the different paths; we see that 80%
of the time, FlexiWeb provides an average percentage gain of 34
% over compression proxy based browsing, in terms of page load
times. In 20% of the cases, it only provides 14% gains. Upon
closer inspection, we found that some paths were experiencing ex-
cellent to good signal strength throughout while others were ex-
periencing low signal strengths much more often than good signal
strengths. It is well known that excellent/good signal strength is
highly correlated with good network conditions (low RTT and loss
rates, high throughputs) while the opposite is true with low/poor
signal strength [32]. In excellent/good network conditions Flexi-
Web significantly outperformed conventional compression proxy
based browsing (since FlexiWeb retrieved most objects in the web
pages directly and only few large objects via the proxy). On paths
where network conditions were bad, both the conventional com-
pression proxy based browser and FlexiWeb, fetched almost all ob-
jects via the proxy. FlexiWeb outperformed conventional compres-
sion proxy based browsing because of its network-aware compres-
sion module.

6 Related Work
Measurement studies: There is prior work on characterizing the
properties of web pages, and protocols that impact mobile web
browsing. The study in [33] shows that optimization of compute
intensive tasks at proxies only offers marginal gains. In [34], the
complexity of web sites is studied via browser-based active mea-
surements. Other studies have evaluated the benefits of existing
mechanisms for improving mobile web performance. Erman et
al. [35] showed that SPDY [36], a recently proposed alternative to
HTTP, does not clearly outperform HTTP over cellular networks.
They identify the disharmony between TCP and cellular networks
as the underlying cause. Similarly, Sivakumar et al. [37] showed
that proxy-assisted thin client browsers, such as Amazon Silk [6],
do not provide clear benefits in terms of page load time and en-
ergy. None of these efforts study the implications of using Proxy

Assisted mobile web browsing in different network conditions,
as we do here.

Client-based solutions: Client-side solutions have been pro-
posed to improve mobile web performance. WebSieve [38] gen-
erates mobile-friendly websites from the original desktop versions.
Zoomm [39] speeds up web page loads by parallelizing the execu-
tion of dynamic components of any web page. Adrenaline [40] par-
allelizes the fetching of web pages by decomposing existing web
pages on the fly into loosely coupled mini pages, and loading mini
pages in parallel via separate processes.

User studies: Lymberopoulos et al.’s user study [41] shows that
mobile web browsing exhibits a strong spatio-temporal signature,
different for every user. Based on this study, they propose a ma-
chine learning based model to accurately predict future web ac-
cesses for a user, and they use this prediction to prefetch content in
a timely manner. Wang et al. [42] show that caching and prefetch-
ing provide very limited benefits for mobile web browsing, but
speculative loading can decrease page load times by up to 20%.

Unlike FlexiWeb, none of the above approaches consider mod-
ifying web clients to dynamically select when to use proxies for
data compaction.

Proxy-based solutions: Due to the computation and bandwidth
limitations on mobile devices, researchers have proposed to offload
various types of functionality from client devices to proxies. For
example, Zhao et al. [3] offload execution of dynamic content to the
proxy, while Cho et al. [43] propose the delegation of DNS lookups
and TCP connection establishment to the proxy. Chava et al. [44]
try to reduce the usage cost incurred by the end-user by computing
a cost quota for each web request, and having a proxy adapt the web
page accordingly. The cost quota for each web request is dynami-
cally calculated based on the pricing plan of the user and her current
data usage levels. Recently, Google [13] and Nokia [45] have in-
corporated data compression proxies in their mobile web browsers;
these proxies (hosted in data centers) are expected to reduce cellu-
lar data usage and speed up mobile web browsing. Wang et al. [2]
propose a framework that allows the execution of “any" portion of
the page load process in the cloud (unlike browsers such as Opera
Mini that only allow fixed parts to be executed in the cloud).

None of these proxy-based solutions are network-aware. While
some of the proprietary solutions are not documented, to our
knowledge, all existing systems always fetch content via the proxy,
unlike FlexiWeb; further, they apply the same content compression
irrespective of network conditions.

7 Conclusions
In this paper, we argue based on an in-depth measurement study
that always using cloud-based middleboxes to assist mobile brows-
ing can be detrimental to performance in terms of web page down-

load times. Our measurements reveal that the middlebox should be
used only when network conditions are bad; otherwise, most ob-
jects in the web page should be directly fetched from the source
web server. Based on this observation we build FlexiWeb, a frame-
work that supports network-aware middlebox usage. In addition,
FlexiWeb also performs dynamic network-aware compression to
provide further performance gains. We demonstrate via extensive
experiments that FlexiWeb outperforms conventional compression
proxy based browsing by decreasing page load times by as much as
42 %, on average.

8 Acknowledgments
This work was sponsored by the Army Research Laboratory
and was accomplished under Cooperative Agreement Number
W911NF- 09-2-0053. The views and conclusions contained in this
document are those of the authors and should not be interpreted
as representing the official policies, either expressed or implied,
of the Army Research Laboratory or the U.S. Government. The
U.S. Government is authorized to reproduce and distribute reprints
for Government purposes notwithstanding any copyright notation
here on. We would like to thank our anonymous shepherd, for
her/his constructive comments and guidance through the camera
ready submission process.

9 References
[1] [Online]. Available: http://bit.ly/1sgDfJ1
[2] X. S. Wang, H. Shen, and D. Wetherall, “Accelerating the mobile

web with selective offloading,” in Proceedings of the Second ACM
SIGCOMM Workshop on Mobile Cloud Computing, ser. MCC ’13.
New York, NY, USA: ACM, 2013, pp. 45–50. [Online]. Available:
http://doi.acm.org/10.1145/2491266.2491275

[3] B. Zhao, B. C. Tak, and G. Cao, “Reducing the delay and power
consumption of web browsing on smartphones in 3g networks,” in
Distributed Computing Systems (ICDCS), 2011 31st International
Conference on, 2011.

[4] K. Matsudaira, “Making the mobile web faster,” Commun. ACM,
2013.

[5] [Online]. Available: http://www.opera.com/turbo
[6] [Online]. Available: http:

//docs.aws.amazon.com/silk/latest/developerguide/split-arch.html
[7] [Online]. Available: https:

//developers.google.com/chrome/mobile/docs/data-compression
[8] J. Nielsen, Usability Engineering. Morgan Kaufmann, 1993.
[9] K. Zarifis, T. Flach, S. Nori, D. Choffnes, R. Govindan,

E. Katz-Bassett, Z. M. Mao, and M. Welsh, “Diagnosing Path
Inflation of Mobile Client Traffic,” in Passive and Active
Measurement Conference (PAM ’14), March 2014.

[10] [Online]. Available: http://info.iet.unipi.it/~luigi/dummynet/
[11] [Online]. Available:

https://blog.kissmetrics.com/loading-time/?wide=1
[12] [Online]. Available: https:

//httpd.apache.org/docs/2.0/mod/mod_proxy.html#forwardreverse
[13] [Online]. Available:

https://developers.google.com/speed/articles/spdy-for-mobile
[14] X. Xu, Y. Jiang, T. Flach, E. Katz-Bassett, D. Choffnes, and

R. Govindan, “Investigating transparent web proxies in cellular
networks,” in Technical report 14-944, University of Southern
California. USC, 2014.

[15] [Online]. Available: https://www.igvita.com/2013/03/07/faster-
smaller-and-more-beautiful-web-with-webp/

[16] [Online]. Available: http://httparchive.org
[17] [Online]. Available:

http://www.w3.org/Protocols/rfc2616/rfc2616-sec9.html
[18] T. M. Mitchell, Machine Learning. McGraw-Hill, Inc., 1997.
[19] R. A. Berk, Statistical Learning from a Regression Perspective.

Springer, 2008.

[20] J. MOGUL and L. BRAKMO, Method for dynamically adjusting
multimedia content of a web page by a server in accordance to
network path characteristics between client and server. U.S. Patent
6,243,761, 2001.

[21] [Online]. Available:
https://developers.google.com/web/fundamentals/performance/
optimizing-content-efficiency/optimize-encoding-and-transfer

[22] M. Mathis, J. Semke, J. Mahdavi, and T. Ott, “The macroscopic
behavior of the tcp congestion avoidance algorithm,” SIGCOMM
Comput. Commun. Rev., 1997.

[23] Y. Zhou, D. Chakrabarty, and R. M. Lukose, “Budget constrained
bidding in keyword auctions and online knapsack problems,” in
Proceedings of the 17th International Conference on World Wide
Web, WWW 2008, Beijing, China, April 21-25, 2008, 2008.

[24] A. G. Jiasi Chen and M. Chiang, “Qava: Quota aware video
adaptation technical report,” Department of Electrical Engineering
Princeton University, Princeton NJ, USA, Tech. Rep., 2012.

[25] [Online]. Available: http://info.iet.unipi.it/~luigi/dummynet/
[26] J. Huang, F. Qian, A. Gerber, Z. M. Mao, S. Sen, and O. Spatscheck,

“A close examination of performance and power characteristics of 4g
lte networks,” in Proceedings of the 10th International Conference
on Mobile Systems, Applications, and Services, ser. MobiSys ’12.
ACM, 2012.

[27] [Online]. Available:
https://developers.google.com/speed/pagespeed/module/install

[28] [Online]. Available:
http://scikit-learn.org/stable/modules/cross_validation.html

[29] D. M. W. Powers, “Evaluation: From Precision, Recall and F-Factor
to ROC, Informedness, Markedness & Correlation,” Tech. Rep.,
2007.

[30] H. Kellerer, U. Pferschy, and D. Pisinger, Knapsack Problems.
Springer, Berlin, Germany, 2004.

[31] S. M. LaValle, Planning Algorithms, 2006.
[32] Q. Xiao, K. Xu, D. Wang, L. Li, and Y. Zhong, “Concise paper: Tcp

performance over mobile networks in high-speed mobility
scenarios,” IEEE ICNP, 2014.

[33] Z. Wang, F. X. Lin, L. Zhong, and M. Chishtie, “Why are web
browsers slow on smartphones?” in Proceedings of the 12th
Workshop on Mobile Computing Systems and Applications, ser.
HotMobile ’11. New York, NY, USA: ACM, 2011. [Online].
Available: http://doi.acm.org/10.1145/2184489.2184508

[34] M. Butkiewicz, H. V. Madhyastha, and V. Sekar, “Understanding
website complexity: Measurements, metrics, and implications,” in
Proceedings of the 2011 ACM SIGCOMM Conference on Internet
Measurement Conference, ser. IMC ’11. New York, NY, USA:
ACM, 2011, pp. 313–328. [Online]. Available:
http://doi.acm.org/10.1145/2068816.2068846

[35] J. Erman, V. Gopalakrishnan, R. Jana, and K. K. Ramakrishnan,
“Towards a spdy’ier mobile web?” in Proceedings of the Ninth ACM
Conference on Emerging Networking Experiments and Technologies,
ser. CoNEXT ’13. New York, NY, USA: ACM, 2013, pp. 303–314.
[Online]. Available: http://doi.acm.org/10.1145/2535372.2535399

[36] [Online]. Available:
http://www.chromium.org/spdy/spdy-whitepaper

[37] A. Sivakumar, V. Gopalakrishnan, S. Lee, S. G. Rao, S. Sen, and
O. Spatscheck, “Cloud is not a silver bullet: a case study of
cloud-based mobile browsing,” in 15th Workshop on Mobile
Computing Systems and Applications, HotMobile ’14, Santa
Barbara, CA, USA, February 26-27, 2014, 2014.

[38] M. Butkiewicz, Z. Wu, S. Li, P. Murali, V. Hristidis, H. V.
Madhyastha, and V. Sekar, “Enabling the transition to the mobile
web with websieve,” in Proceedings of the 14th Workshop on Mobile
Computing Systems and Applications, ser. HotMobile ’13. ACM,
2013. [Online]. Available:
http://doi.acm.org/10.1145/2444776.2444795

[39] C. Cascaval, S. Fowler, P. Montesinos-Ortego, W. Piekarski,
M. Reshadi, B. Robatmili, M. Weber, and V. Bhavsar, “Zoomm: A
parallel web browser engine for multicore mobile devices,” in
Proceedings of the 18th ACM SIGPLAN Symposium on Principles
and Practice of Parallel Programming, ser. PPoPP ’13. New York,

NY, USA: ACM, 2013, pp. 271–280. [Online]. Available:
http://doi.acm.org/10.1145/2442516.2442543

[40] H. Mai, S. Tang, S. T. King, C. Cascaval, and P. Montesinos, “A case
for parallelizing web pages,” in Proceedings of the 4th USENIX
Conference on Hot Topics in Parallelism, ser. HotPar’12. Berkeley,
CA, USA: USENIX Association, 2012, pp. 2–2. [Online]. Available:
http://dl.acm.org/citation.cfm?id=2342788.2342790

[41] D. Lymberopoulos, O. Riva, K. Strauss, A. Mittal, and A. Ntoulas,
“Pocketweb: Instant web browsing for mobile devices,” in
Proceedings of the Seventeenth International Conference on
Architectural Support for Programming Languages and Operating
Systems, ser. ASPLOS XVII. New York, NY, USA: ACM, 2012,
pp. 1–12. [Online]. Available:
http://doi.acm.org/10.1145/2150976.2150978

[42] Z. Wang, F. X. Lin, L. Zhong, and M. Chishtie, “How far can
client-only solutions go for mobile browser speed?” in Proceedings
of the 21st International Conference on World Wide Web, ser. WWW
’12. New York, NY, USA: ACM, 2012, pp. 31–40. [Online].
Available: http://doi.acm.org/10.1145/2187836.2187842

[43] J. Cho, J. Jeong, and E. Seo, “Twob: A two-tier web browser
architecture optimized for mobile network,” in Proceedings of the
10th International Conference on Advances in Mobile Computing
& Multimedia, ser. MoMM ’12. New York, NY, USA: ACM,
2012, pp. 267–270. [Online]. Available:
http://doi.acm.org/10.1145/2428955.2429006

[44] S. Chava, R. Ennaji, J. Chen, and L. Subramanian, “Cost-aware
mobile web browsing,” Pervasive Computing, IEEE, vol. 11, no. 3,
pp. 34–42, 2012.

[45] [Online]. Available: http://developer.nokia.com/Develop/Series_40/
Nokia_Browser_for_Series_40/

