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Abstract—Nodes that are part of a multihop wireless network,
typically deployed in mission critical settings, are expected to
perform specific functions. Establishing a notion of reliability
of the nodes with respect to each function (referred to as
functional reliability or FR) is essential for efficient operations
and management of the network. This is typically assessed based
on evidence collected by nodes with regards to other nodes in the
network. However, such evidence is often affected by factors such
as channel induced effects and interference. In multihop contexts,
unreliable intermediary relays may also influence evidence. We
design a framework for collaborative assessment of the FR of
nodes, with respect to different types of functions; our framework
accounts for the above factors that influence evidence collection.
Each node (say Chloe) in the network derives the FR of other
nodes (say Jack) based on two types of evidence: (i) direct evidence,
based on her direct transactions with each such node and (ii)
indirect evidence, based on feedback received regarding Jack from
others. Our framework is generic and is applicable in a variety
of contexts. We also design a module that drastically reduces the
overhead incurred in the propagation of indirect evidence at the
expense of slightly increased uncertainty in the assessed FR values.
We implement our framework on an indoor/outdoor wireless
testbed. We show that with our framework, each node is able to
determine the FR for every other node in the network with high
accuracy. Our indirect evidence propagation module decreases
the overhead by 37% compared to a simple flooding based
evidence propagation, while the accuracy of the FR computations
is decreased only by 8%. Finally, we examine the effect of different
routing protocols on the accuracy of the assessed values.

I. INTRODUCTION

In mission-critical deployments (e.g., tactical missions, disas-
ter recovery) of multihop wireless networks, nodes are expected
to perform specific functions (such as forward packets or
respond to queries). The reliability of nodes in performing
these functions, referred to as functional reliability or FR,
is critical for the efficient operations and management of
a network. Other nodes may rely on those nodes that are
deemed reliable in performing a desired function. We defer
a formal definition of FR to Section III. Roughly, the FR of
a node with respect to a specific function is the reliability (or
responsiveness) of that node in performing the function. A node
may become functionally unreliable for various reasons; e.g.,
it may misbehave due to a low battery or being disconnected,
misconfigured, or compromised.

Assessing a node’s FR in a wireless network is challenging.
First, links are lossy; second interference may cause unreli-
able operations or faulty observations. Finally, information is
relayed by other users (nodes), who themselves may not be
completely reliable. To our best knowledge, the dependencies
between these factors and a user’s FR have not been previously
investigated.

We design a framework accounting for the above factors
wherein nodes collaboratively assess the FR of every other
node. Every node (say Chloe) maintains an FR tuple with
respect to every other node (say Jack). Each element of the tuple
corresponds to Jack’s assessed FR with respect to a different
functionality (e.g., routing/forwarding, responding to queries
etc.). For instance, when Chloe wants to assess the end-to-
end (e2e) FR of Jack (whether he is reliable in responding

to a query), she accounts for the possibility that a transaction
may fail due to wireless induced effects or due to an unreliable
relay. In particular, Chloe builds evidence for Jack based on
the direct transactions she has with him. This is referred to
as direct evidence. Note that direct evidence does not mean
that there exists a physical one-hop distance between Chloe
and Jack. “Direct” here pertains to the fact that Chloe gathers
this evidence solely based on her transactions with Jack. Based
on a series of such transactions, Chloe applies the Maximum
Likelihood Estimation (MLE) framework, to estimate a direct
FR value for Jack. Here, she accounts both for the FR of each
relay on the path to Jack in forwarding packets (forwarding
FR), as well as the qualities of the links en route to Jack.

Chloe then combines the above direct FR for Jack, with
feedback relating to Jack from other users (say Tony) using
a gossiping scheme; this is referred to as indirect evidence.
The direct FR is combined with this indirect FR using the
Dempster-Shafer theory of evidence (DSTE). Indirect evidence
is vital since Chloe may not sufficiently interact with Jack; in
some extreme cases she may have no transactions at all and
may have to rely on other nodes to assess Jack’s FR.

The transactions between the FR assessment process and the
different network functionalities have complex interdependen-
cies. On the one hand, the assessed values can influence various
network functionalities (e.g., relay node selection). On the other
hand, the FR inference engine can itself be affected by the
operations of various network protocols. For instance, different
routing metrics, will result in the use of different paths; the
choice of the path influences the evidence collected for FR
assessment. In our work, we also experimentally assess the
impact of various routing policies on FR assessment.

In brief, our main contributions are summarized below:
(a) We design a collaborative FR assessment framework that

jointly considers the impact of the unique aspects of a wireless
network (i.e., channel related effects and unresponsive relays).
To our best knowledge, this is the first framework to jointly
consider these factors.

(b) We incorporate a lightweight evidence propagation
scheme in our framework, which intelligently filters duplicated
evidence and reduces the message complexity of propagation
from O(N2) to O(N) (N is the number of nodes in the network).
The reduction in message complexity comes at a price—
increased uncertainty in the reliability computations.

(c) We implement and evaluate our scheme on our wireless
indoor/outdoor 802.11 testbed. Our experiments show that each
node infers the FR values for every other node in the net-
work with high accuracy. Our lightweight evidence propagation
scheme reduces the propagation overhead by 37% compared to
a simple flooding based evidence propagation.

(d) We experimentally examine the impact of using different
routing metrics on FR establishment.

Scope of our work: As implicitly alluded to earlier,
reliability is typically function dependent. Jack may forward
packets destined to Chloe. However, he may not reply to e2e
queries for a specific application because the corresponding



application software (residing in his machine) is malfunctioning
or he is restricted by policy (Chloe may be unaware of this).
Our proposed framework is generic and can be used to assess
the FR relating to various wireless network functional contexts.
We showcase our framework by assessing e2e (response to
queries) and forwarding FRs. However, the applicability of our
framework is not limited to these contexts.

A limitation of our approach is that its assesses FR based
on Boolean outcomes (e.g., Did Jack respond to a query?). It
does not take into account possible subjectivity in assessing
an outcome. Further, if for example, the question is Did Jack
provide the relevant information in response to a query?,
there may be a response that indicates that he only provided
partial information. The extent of this partial information is
not accounted for and the system just counts the observation to
indicate a success or a failure. Taking into account subjectivity
of observations and partially successful outcomes is beyond
the scope of this work. We emphasize that our framework is
designed to capture the average FR based on observations over
sufficiently long periods. It does not address short-term trust
variations. Likewise, we do not consider security aspects such
as nodes that lie or collude.

Organization: The paper is organized as follows. Section
II discusses related work and provide background for our
framework. Section III describes our FR establishment scheme.
Section IV presents our lightweight evidence propagation
mechanism. Section V presents our implementation and the
evaluations of our scheme and Section VI our conclusions.

II. RELATED WORK AND BACKGROUND

Related Work: Wireless multihop networks require users
to perform specific functions for required network operations.
There exists work in the literature to determine whether or not
nodes are performing their functions in a non-cooperative set-
ting. Specifically, reputation systems to evaluate, and incentive-
based mechanisms to encourage cooperation and functional
compliance, have been studied. While our work is similar in
spirit to reputation systems, we believe we are the first to
account for wireless effects and the impact of other unreliable
nodes while estimating the functional reliability of nodes.

Reputation systems: Marti et al. [1] propose a scheme for
identifying reputable nodes with respect to the routing func-
tionality. They propose watchdogs that identify nodes that drop
packets based on promiscuous observations and a pathrater
that avoids paths with such misbehaving nodes. CONFIDANT
[2] [3] seeks to identify the routing reliability of nodes. The
architecture is similar to that of [1]; a monitoring system is
used along with reputation and path selection mechanisms
(no details are provided on how the reputation of a node is
updated in time). The above schemes focus only on the rout-
ing/forwarding functionality. Moreover, they do not account for
loss of information due to channel induced effects. Michiardi
et al. [4] design CORE, which is the first work to define
functional reputation. A node might have different reputation
values for different network functionalities. Without getting into
the details on every possible functionality, the authors present a
general scheme that makes use of observations from the users
of the network to estimate the functional reliability of a user.
What is missing from the above scheme however, is that it
does not account for the effect of wireless induced factors or
interference while assessing reputation. In summary, none of the
above studies account for the impact of the unique factors that
exist in a wireless network, on the estimation process. To our

best knowledge, we are the first to account for wireless induced
factors and the network functional context while assessing the
FR of a node.

Trust Assessment: Trust assessment is loosely connected to
our work. Probst et al. [5] propose local trust computations
based only on neighbors’ past behaviors. They do not consider
aggregation of trust values and their scheme is specific to the
topology and density of the network. Velloso et al. [6] present
an approach which combines local measurements with aggre-
gated trust values computing a weighed trust. However, they
do not provide a method to efficiently propagate these values
in the network. The interested reader can find a detailed study
on trust management in [7]. In contrast, our work is focused on
the assessment of the FR of a node (not trustworthiness) in a
wireless network, taking into account wireless induced factors.

Incentive-based mechanisms: Buttyan and Hubaux’s [8]
scheme provides incentives for users to cooperate and forward
packets for other users; however, it does not provide a rating
mechanism for the users. Users need to pay credits in order
to get their packets forwarded. Relays can accumulate credits
for future use; a node that does not have enough credits cannot
use the network services itself. SPRITE [9] also uses credits to
provide incentives to selfish users to cooperate; however, it does
not require any tamper-proof hardware as is the case with [8].
Our work is on assessing the functional reliability of nodes
and does not design methods toward ensuring compliance of
non-cooperative nodes.

Dempster Shafer Theory of Evidence: DSTE is a gener-
alization of the Bayesian inference theory. Based on evidence
from one or more observations (possibly by different entities
called sensors) of a system, DSTE estimates the system’s state.

Let us assume that Θ, is the set of all possible states of the
system and H (hypothesis) is a subset of Θ. Every sensor that
reports evidence is described by a Basic Probability Assignment
(bpa), m, representing a “measure of belief committed exactly
at (each) H” [10]:

m : 2Θ → [0, 1] (1) m(∅) = 0 (2)

m(H) ≥ 0, ∀H ⊆ Θ (3)
∑

H⊆Θ

m(H) = 1 (4)

Defining the belief (Bel) and plausibility (Pl) of H as:

Bel(H) =
∑

B⊆H

m(B), P l(H) =
∑

B∩H #=$
m(B), (5)

the true belief on H lies within the interval [Bel(H), P l(H)].
In the case of multiple sensors reporting independent evi-

dence for the system’s state, the DSTE rule of combination
(also known as orthogonal product ⊕) can be used. In
particular, let’s assume that we have two sources of independent
evidence with assigned bpas m1 and m2, respectively. Then,
these two sources of evidence can be combined to form a single
source of evidence with bpa, m12(Θ) for hypothesis Θ:

m12(Θ) = m1 ⊕m2 =

∑
B∩C=H m1(B)m2(C)

∑
B∩C #=$ m1(B)m2(C)

(6)

Intuitively, since the two sources of evidence are inde-
pendent, the product of the corresponding bpas for the two
hypotheses (e.g., B and C) gives the belief value on their
intersection. As a result, Eq. 6 provides the portion of the
total belief committed to hypothesis H from both sources of
evidence. The numerator computes the belief on H, since B



and C are constrained to the pair of sets whose intersection is
H, while the denominator computes the total belief (B∩C )= *).
More details on DSTE can be found in [10] and [11].

III. ASSESSING FUNCTIONAL RELIABILITY

We now describe our FR assessment framework. Formally,
the reliability or responsiveness of a node with respect to a
function (or operation) is the likelihood that it will perform
the function. For instance, if Chloe seeks some information
from Jack, Jack’s FR (from Chloe’s perspective) reflects the
likelihood that he will respond to that query. In a different
context, if Chloe relies on Jack to forward her packets to Bob,
Jack’s FR captures the likelihood that he will relay her traffic
toward the destination. As will be clear in the following, Jack is
associated with a tuple of FR values, whose elements embody
the likelihood that Jack reliably performs a corresponding
network function.

Our approach in brief: FR (as defined above) is assessed
based on a node’s own transactions with a peer1 and responsive-
ness information (relating to the same peer) obtained from other
nodes. We refer to the former as direct evidence and the latter
as indirect evidence. The details of the transactions depend on
the specific function considered. Irrespective of the specifics
of a function, given a series of observations (of whether or not
the peer performed the function), we use MLE to determine the
probability that the peer is reliable with regards to the particular
function. For instance, Chloe establishes direct evidence on
e2e transactions with regards to Jack based on the success or
failure of her transactions with him. We take into account the
“forwarding reliability” of relay nodes2 en route the peer (say
a vector T), and the qualities of the links on the path used
for the transaction (say a vector Q). These factors capture the
possibilities that a transaction may fail not because the end peer
did not respond, but because of link failures or an intermediate
node being unreliable with respect to forwarding traffic. Note
that the cardinality of T is the number of relays on the route and
that of Q is the number of links on the route. We apply MLE to
determine the probability that a peer is reliable in responding to
the e2e queries, given a series of observations and the vectors
T and Q, associated with each transaction attempt.

The FR established based on direct evidence is next updated
based on indirect evidence, i.e., through gossiping with other
nodes. We incorporate a degree of uncertainty in the computed
values as explained later. For simplicity, the term reliability or
responsiveness (FR) refers to e2e reliability unless explicitly
specified. We discuss the applicability of our framework in
other contexts in Section III-D.
A. FR representation

If one were to have a strict notion of FR, it should be
represented by a binary variable Z; Z is 0 if the node is
unreliable and, 1 otherwise. However, in reality there is an
uncertainty associated with FR and thus, we denote Z to be
the likelihood or probability that the node is responsive (with
respect to a function) and hence, Z ∈ [0, 1].

However, this single crisp value does not capture the degree
of uncertainty with regards to the peer entity under discussion.
To account for this, the actual value is considered to lie within
I = [a, b] ⊆ [0, 1]. The interval signifies the uncertainty associated

1We will use the terms peer and node interchangeably in the rest of the
paper.

2As explained later, “forwarding FR” is assessed using a different set of
observations but using the same statistical framework.

with the determination of the probability; its width captures
uncertainty that we have in our estimation. However, in some
parts of the paper, we will reduce this interval I to a single
point value r, through a function h for clarity and tractability.
Specifically, the function returns the mean value of the interval
I i.e., r = h(I) = a+b

2 . One can easily use other functions such
as min{a, b} or max{a, b} instead.

We assume that nodes either have a priori perceptions of
initial FR levels with respect to other nodes (as an example,
a resource rich node may initially be deemed completely
reliable), or that every node is reliable or unreliable with an
equal likelihood (i.e., each node associates an FR value in the
interval [0.5−ε, 0.5+ε] for all other nodes). These (initial) values
dynamically evolve as entities interact. If a node is responsive,
it should eventually be deemed reliable with a low uncertainty.
B. Updating FR values based on direct evidence

The first source of evidence for a node’s (say Chloe’s) view
of the FR of a peer (say Jack) originates from Chloe’s direct
transactions with Jack. The outcomes of these transactions via
a wireless network, depend on 3 factors: (i) the forwarding
FR of intermediate nodes that are responsible for relaying the
transaction data, (ii) the wireless link qualities on the route R
from Chloe to Jack, (iii) Jack’s reliability (which Chloe wants
to estimate).

In order to perform her estimation, Chloe monitors the
outcome of k consecutive direct transactions with Jack. These
observations form a sample set, indexed by j. For each trans-
action i Chloe records the outcome, ei, the probability that the
communication path meets the requirements of the application,
Qi, and the forwarding FR of the path, Ti. For a successful
transaction, we have ei = 1; otherwise ei = 0. Qi depends on
the specifics of the e2e transaction considered. When only the
delivery of the transaction packets is required (e.g., no delay
constraints), Qi is the delivery probability on the route Ri,
followed for the transaction i; this is estimated based on the link
quality ql of each of the intermediate links l of the route from
Chloe to Jack. Here, ql is essentially the Packet Delivery Ratio
(PDR) on link l and it can be calculated by having neighbor
nodes exchange probe packets3 [12]. Section III-D examines
transactions with different requirements and their mapping onto
Qi. Ti is calculated based on the forwarding reliability intervals
Ij of the intermediate nodes j that comprise the route Ri. In
particular:

Qi =
∏

l∈Ri

ql, Ti =
∏

j∈Ri

h(Ij) (7)

The above equations assume the independence (i) of the quality
of the links on a route and (ii) of the forwarding FR of the
intermediate relay nodes. In practice, there may be correlations.
First, the projected interference (which affects the quality of the
links) on consecutive links may not be independent. Second, the
forwarding reliability of the intermediate relays may depend
on evidence from common sources causing the independence
assumption to not hold. We make the independence assumption
due to the complexity in modeling correlations; however, our
evaluations suggest that in spite of these assumptions, our
models work well in practice.

Let us assume that Chloe associates with Jack a reliability
value of pi during her ith transaction with him. Then, it is easy

3We assume that this function(exchanging probe packets) is reliable; how-
ever, our framework could be used to assess the reliability of this function as
well.



to see that the ith transaction is a Bernoulli trial X, with a
probability of success pi ·Qi · Ti. Thus, the pdf of X is:

fi(X = ei) = (pi ·Qi · Ti)
ei · (1− pi ·Qi · Ti)

1−ei (8)

We use the MLE method [13] to update the estimate of the
FR of Jack, p, based on the current trial and the previous k− 1
trials. Then, Chloe’s view of Jack’s FR is the solution to the
optimization problem:

max
pj

1

k
·

k∑

i=1

log(fi(ei|pj)) (9)

pj ∈ [p̂, 1] (10)

where pj is the FR estimate based on sample set j. Given −→ej ,
Jack’s FR cannot be smaller than the percentage of successful
transactions in −→ej . When −→ej = *, p̂ captures the non-zero
probability that all Chloe’s transactions with Jack in the sample
window fail due to wireless induced failures or unreliable
intermediaries. Considering that Jack is 100% reliable, this
probability is equal to x =

∏k
i=1(1 − Qi · Ti). If x = 0, then

all the transactions failed due to Jack and hence, p = 0. As
x increases, the minimum FR of Jack increases as well. Even
if all transactions failed due to bad links or non-reliable relays
(i.e., x = 1), Jack cannot be deemed 100% reliable. In fact here,
Chloe does not know anything about Jack, which implies that
p = 0.5. As we see, there is a dependence between p and x (i.e.,
p = f(x) for some function f()). Assuming, for simplicity, a
linear relation between x and p we can calculate the minimum
FR of Jack in the average case to be:

p̂ =

{
(
∑k

i=1 ei)/k if −→ej )= *
(
∏k

i=1(1−Qi · Ti))/2 if −→ej = *
(11)

pj cannot be smaller than p̂, the min FR of Jack as per Chloe’s
view. Note here that, the optimization problem Eqs. (9)–
(10) always has a solution since the objective function is
continuous, and is constrained on a closed and bounded set.

Considering one sample set j and solving the MLE problem
provides Chloe with a single point estimate p̃j . In order to com-
pute the uncertainty on the FR value, she uses m consecutive
sample sets, i.e., a sliding window of samples. In particular,
if the first sample set consists of the observations indexed by
{1, 2, . . . k}, the second sample set consists of the observations
{2, 3, . . . , k+ 1}, and so on. Using the estimates computed from
MLE for each of the above sets, Chloe computes the average
estimator p̃ and its standard deviation p̃sd. Then for the real FR
value p∗, the following approximations hold:

p∗ ∈ [p∗min, p
∗
max] (12)

p∗min = max{0, p̃−
p̃sd
2

} (13)

p∗max = min{p̃+
p̃sd
2

, 1} (14)

One could have used a wider interval (e.g., equal to two or three
standard deviations). However, we want to keep the uncertainty
lower, by possibly trading some level of accuracy. Eqs. (12)-
(14) define the FR interval I with respect to Jack from the
perspective of Chloe, based on the direct evidence.

The use of a sliding window results in a subset of the samples
being common across windows. Thus, the estimates p̃j are
biased by the samples that are common across the windows.
To obtain unbiased estimates, one would need to use non-
overlapping windows. However, in such a case, the updates

are performed less frequently and one runs into the problem
of the evidence becoming stale. Our evaluations show that the
sliding window works well in practice.
C. Combining indirect evidence

Chloe can update her direct view of Jack’s FR via feedback
from other entities (say Tony) in the network. These entities
are the gossipers. Using the DSTE, Chloe can combine the
obtained feedback to derive an aggregated FR value for Jack.
The use of indirect evidence is vital; Chloe may have conducted
only a few or no transactions with Jack. In such cases, indirect
evidence helps her assess Jack’s FR. Our trust propagation
technique helps address the challenge that indirect evidence
may be unreliable.

As mentioned earlier, DSTE can be used to infer the likeli-
hood of a system of being in a particular state based on a set of
possibly contradicting pieces of evidence. Here, there are two
states in our “virtual” system; θ1, Jack is reliable, and θ2, he is
unreliable. Without loss of generality, we assume that we have
two independent sources of evidence; the interval Id derived
from Chloe’s direct observations on Jack, and the interval, Ig,
that Chloe obtains from a gossiper, Tony. More than two sources
of evidence can be aggregated sequentially in pairs.

Directly performing the aggregation on the intervals I∗ is
hard. Thus, we perform two separate aggregations; one on the
lower bounds of the intervals, and one on the upper bounds.
Each aggregation will yield an interval in which the real value
lies. Thus, Chloe will end up with an interval for the lower
bound for Jack’s FR, and another interval for the upper bound.
However, as we show later, for our system these intervals are
reduced to a single value.

A sketch of the aggregation process: Assume that
Id = [a1, b1], Ig = [a2, b2] and consider the aggregation on
the lower bound of the FR interval. First, we define the bpa
functions (recall section II), m, associated with each source of
evidence. The powerset 2Θ = {∅, {θ1}, {θ2}, {θ1, θ2}}. Note that
the elements of the powerset are the different hypotheses H, as
introduced in Section II. For the bpa of the direct observations
we have:

mmin
d (∅) = 0 (15) mmin

d ({θ1}) = a1 (16)

mmin
d ({θ2}) = 1− a1 (17) mmin

d ({θ1, θ2}) = 0 (18)

For the bpa of the gossip-based/indirect evidence we have:

mmin
g (∅) = 0 (19) mmin

g ({θ1}) = a2 (20)

mmin
g ({θ2}) = 1− a2 (21) mmin

g ({θ1, θ2}) = 0 (22)

We assume that the available pieces of evidence lead to a prob-
abilistic binary decision (i.e., a node is functionally reliable or
not). In other words, there is no uncertainty or ambiguity with
regard to the state, i.e., the probability that θ1 ∩ θ2 is 0. This
results in Eqs. (18) and (22) and these are key for proving
Lemma 1. As discussed in Section II, the bpa mmin

d expresses
the measure of belief committed on each hypothesis from the
direct evidence with regards to the minimum FR value of a
node. Since the direct FR of Jack as per Chloe is given by
the interval Id, the belief committed on the hypothesis that a
node is responsive (hypothesis θ1), with respect to its minimum
FR, is mmin

d = inf{Id} = a1 (Eq. (16)). Given, that θ1 and θ2
are complementary we get Eq. (17). The above steps apply to
mmin

g as well. (Below, we write m(∗) instead of m({∗}).)



Lemma 1: With the bpas defined in Eqs. (15)–(22), the
aggregated intervals are reduced to a single value.

Proof: Using the rule of combination (see Eq. 6), we
first compute the aggregated bpa, mmin

agg . It is easy to see that:
mmin

agg (∅) = mmin
agg (θ1, θ2) = 0. In addition we have:

mmin
agg (θi) =

2 ·mmin
d (θi) ·mmin

g (θi)

K
, for i = 1, 2 (23)

where K = 2 ·mmin
d (θ1) ·mmin

g (θ1) + 2 ·mmin
d (θ2) ·mmin

g (θ2).
Using the above aggregated bpa and the definitions of belief

and plausibility (Eq. (5)), we have:

Belmin(θ1) = P lmin(θ1) = mmin
agg (θ1) =

=
a1 · a2

a1 · a2 + (1− a1) · (1− a2)
(24)

This concludes the proof for the lower bound of the FR.
Similar steps can be followed for the upper bound.

Thus, after the aggregation process, Chloe’s updated estimate
of Jack’s FR is the interval:

T{Chloe,Jack} =

[
a1 · a2

a1 · a2 + (1− a1) · (1− a2)
,

b1 · b2
b1 · b2 + (1− b1) · (1− b2)

]
(25)

D. Our framework in different contexts
For ease of discussion, we have so far assumed a scenario

where Chloe estimates the e2e FR of Jack with a simple trans-
action type without any QoS requirements. Our framework,
however, is independent of the context as long as the obser-
vations are Boolean outcomes. To illustrate this, we consider
three contexts next.

e2e FR: The first scenario is a case where Jack is expected
to perform a function to satisfy an end-to-end requirement. In
the simplest case (as considered in our narrative), the desired
function is to just respond to a query. The only metric of interest
is the delivery of transaction packets e2e; in this case, the effect
of the wireless medium that is of interest is simply the PDR.
However, one can easily envision applications that have other
requirements. For example, there may be a requirement that
the response is received within a prespecified delay. In such
a case, one will have to hypothesize about the timeliness of
Jack’s response. The constraints will be the delays imposed by
retransmissions and queuing on the wireless medium and the
likelihood of the packets being delayed by unresponsive relays.
As a second example, if a query requests a video clip, one can
impose a requirement on the quality of the clip. Then one needs
to compute the likelihood that the degradation was caused by
channel induced failures or packet drops by relays as opposed
to Jack sending a poor quality clip. The examples here are not
exhaustive; however, if one can compute the likelihood of a
transaction not meeting the requirements due to wireless effects
or packet drops/delays by relays, one can apply our framework
to provide an assessment of Jack’s FR.

Forwarding FR: One may envision the forwarding FR
(alluded to in our earlier discussion) to be independent of the
e2e FR. Due to intermittent link qualities, interference, poor
battery state, or because of compromise Jack may not forward
traffic as expected. Jack’s neighbors can monitor (perhaps
promiscuously) his activities [1] with respect to forwarding
packets and obtain direct evidence −→e , which will lead to their
assessments of his forwarding FR. An important difference
with the e2e FR is that Chloe may not have a direct link to

Jack and thus, no opportunity to observe Jack’s forwarding
behavior. Thus, she has no direct evidence on Jack. Our
framework can still be applied by combining indirect evidence
from Jack’s neighbors. We evaluate our framework in terms of
its effectiveness in assessing the forwarding FR of nodes in
Section V.

Gossiping FR: In our framework, Chloe updates the FR
of Jack using indirect evidence from Tony. We have thus far
implicitly assumed that all nodes do provide such indirect
evidence. For a variety of reasons discussed earlier (e.e.,
poor battery, loss of connectivity) Tony may not however,
provide timely or accurate information with regards to Jack.
Furthermore, the accuracy of the evidence from Tony may
depend on factors such as his distance from Jack and Chloe
(the greater the distance the less accurate the evidence). The
probability of Tony providing timely/accurate evidence refers to
the gossiping FR of Tony as per Chloe. Modeling this leads to
additional complexities (finding the likelihood that timely and
accurate evidence is received from Tony). In our evaluations,
we assume that nodes are reliable with regards to the gossiping
function and we evaluate our framework on e2e and forwarding
FR. Determining the gossiping FR is cumbersome in terms
of obtaining the required evidence. Nevertheless, once the
evidence is in place, it is straightforward to infer the gossiping
FR. We will consider this in the future.

IV. LIGHTWEIGHT EVIDENCE PROPAGATION
Implicit in our FR assessment scheme was the use of a

propagation protocol for distributing indirect evidence. The
indirect evidence that Chloe obtained from Tony with respect
to Jack was simply Tony’s direct FR assessment of Jack. A
simple approach for evidence propagation is a flooding scheme;
Tony propagates his assessed direct FR values with respect
to all other nodes, to everyone. With this, every node (say,
Chloe again) will have a global view of the direct relationships,
and thus, she can use DSTE’s orthogonal product to compute
the aggregated FR on each of her peer network users. While
the scheme provides simplicity and accuracy the associated
overhead is large; the number of messages that need to be
transmitted is O(N2), where N is the number of nodes in the
network.

We therefore design a new mechanism for propagating the
assessed FR values (evidence) with the objective of reducing the
communication overhead incurred. If each node only commu-
nicates with its direct physical neighbors, the overhead can be
reduced drastically. As will be evident, the number of messages
that need to be transmitted with such an approach is linear with
respect to the number of users in the network, i.e., O(N).

Double Counting of Evidence: The use of local broadcasts
results in a challenge that we have to address. Each node
propagates evidence only to its physical neighbors. These
neighbors then fuse or combine this evidence and propagate it
to other nodes. Let us assume that Chloe gets observations with
regards to Jack from two of her neighbors, say, Jill and Jane.
However, this evidence may have originated at a single node,
say, Tony. Thus, Chloe will have to ensure that she does not
“double” count this evidence when computing an FR value for
Jack (since the originator is Tony for both pieces of evidence).
Below we present three operators that are essential for our
scheme for filtering such duplicate evidence.

Indirect relaying of evidence (as will be the case here) could
also result in a decrease in the accuracy of the computation
of FR at each node. Our experimental evaluations presented in
Section V demonstrate, however, that this impact is low.



A. Path FR operators
1) Fusion -: For simplicity, let us consider the 3-hop

physical topology of Fig. 1. The extension to an n-hop case
is trivial. Node C, wants to update X’s assessed FR, using
information gathered along the shown path. The steps followed
are:

   

Fig. 1. Fusion on path P:
P (X) = C(X) - A1(X) -
A2(X).





 






 






 




Fig. 2. Select operator on two
dependent paths.

Step 1: A1 updates X’s FR value through DSTE’s rule of
combination. The two sources of evidence combined are: (i)
X’s direct FR as per A1 (direct evidence) and, (ii) X’s direct
FR as per A2.

Step 2: C updates X’s FR in a similar manner using: (i)
its own direct FR for X and, (ii) A1’s updated FR for X (as
computed in Step 1).

Note that there are two crucial features of the fusion operator.
At every step, (i) the sources of the pieces of evidence that are
being combined are independent. Thus, the only requirement
for using the DSTE’s orthogonal product is fulfilled. (ii) Only
new information is being added, which guarantees that there is
no double counting of evidence.

2) Path Aggregation ⊗: In the majority of the cases, there
are multiple physical paths from source node C to node X. In
general, each of these paths will result in a different assessed FR
interval for X. C should be able to aggregate the different FR
intervals with respect to X derived on the basis of the different
paths. For this we will use the path aggregation operator ⊗.

Let us assume that (a) we have k independent paths (i.e.,
they do not share any intermediate common nodes) from node
C to node X and (b) using path Pi, C derives the interval [ai, bi]
to reflect the FR of node X. Then, the path aggregated FR
interval for X, from C’s perspective, is computed as

P (X) = ⊗k
i=1Pi(X) = [ min

j∈{1,2,...,k}
{aj}, max

j∈{1,2,...,k}
{bj}] (26)

The path aggregation operator computes the global min
(max) of the individually estimated lower (upper) bounds from
each considered independent path. Thus, the computed interval
is likely to be large and hence the uncertainty on the computed
FR value will be larger than what is computed with the basic
approach where all information is strictly accounted for. One
could more carefully try to combine evidence from the multiple
paths but the processing complexity will be higher. We choose
lower complexity in lieu of lower uncertainty with the objective
of keeping the process lightweight. Our experimental evalua-
tions show that this results in a small increase in inaccuracy.

In topologies similar to the one in Fig. 2, if one were to apply
the fusion operation on the two paths leading to node X and
then aggregate the FR intervals, double counting of evidence
will occur. This is because the paths are not independent (they
share common intermediate nodes); the evidence from nodes
A5 and A6 will be counted twice. We adopt a variant of the
select operator 〈S〉 [14] that chooses the stronger of two paths
(trivially extended to multiple paths).

Select makes use of the fusion operator, to compute the FR
interval on the furthest common node Y (A6 in our example)
along the two different paths (Pi = C − A1 − A2 − A5 − A6 and
Pj = C − A3 − A4 − A5 − A6 as in Fig. 2). Let us assume that

these intervals are: Pi(Y ) = [ai, bi] and Pj(Y ) = [aj , bj ]. Then,
the select operator picks path P as follows:

P = Pi(C, Y )〈S〉Pj(C, Y ) =






Pi, if ai > aj ,

Pj , ai < aj .

(27)

The select operator is optimistic, in the sense that it chooses
the path that leads to the maxmin FR value on the common
intermediate node. Note that, if ai = aj , P is randomly selected.

B. Tree construction and evidence propagation
Next, we present our tree based, lightweight evidence prop-

agation protocol. The goal is to identify a set of intermediate
nodes that will provide the indirect evidence in order to
update the assessed FR value on a specific network entity.
By only considering a subset of nodes in the network to
provide indirect evidence, we may reduce the accuracy of the
assessments; however, it helps overcome problems arising from
the duplication or double counting of evidence while reducing
the overhead incurred in FR propagation. Our scheme is based
on the physical network topology. In brief, all the independent
paths toward the target node are identified and the FR for a
node is updated only via these paths, utilizing the operators
presented above.

Toy example: Let us consider the physical topology pre-
sented in Fig. 3(a). Node C wants to update X’s FR value.
To achieve this, C needs to assimilate the knowledge obtained
from the nodes along the path toward X. However, blindly
aggregating the FR values reported by the intermediate nodes
can lead to double counting of evidence.



 



 



 





(a) Physical topo





 
















 






 






 





 












 











(b) FR propagation tree.
Fig. 3. Lightweight Propagation.

In order to construct the tree, we first identify all the different
paths that lead to node X. In the scenario under consideration
we have five paths. Among these, P1 is the only path that
does not share a common node with any other path i.e.,
P1 is independent of all the other paths. Using the fusion
operator we can estimate X’s FR through P1 to be P1(X), where
P1(X) = C(X)-A2(X)-A4(X).

The remaining four paths are not independent and therefore
we need to eliminate the dependencies. Starting bottom up
(i.e., from the target node X to the source C), P2 and P4

have A9 as a common node, while P3 and P5 both include
A10. For each of the above pairs of paths we apply the select
operator. In particular, we have P2,4 = P2(C,A9)〈S〉P4(C,A9)
and P3,5 = P3(C,A10)〈S〉P5(C,A10). Now we have reduced the
number of paths from four to two. These two paths however,
are still dependent (node A7 is common to both of them; A1

and A3 are also common on both paths, but A7 is the deepest
match). Thus, we apply the select operator again on the two
resulting paths and we have: P2,3,4,5 = P2,4(C,A7)〈S〉P3,5(C,A7).

The final step is to combine the evidence obtained from the
two independent paths, P1 and P2,3,4,5 to form an FR value
for X, using the path aggregation operator. In other words, C
computes P (X) = P1(X)⊗ P2,3,4,5(X).



Generalizing our algorithm: The first step toward updating
the assessed FR on a network entity is to construct a logical
tree that gathers all the possible physical paths from the source
to the target node X. The root of the tree is the source node,
C, while a leaf of the tree corresponds to the target X. The
1st level of the tree (children of root C) includes the physical
neighbors of root C. Recursively, the children of the nodes of
the ith level (forming the (i+ 1)st level) include the neighbors
of the nodes residing at this level. We continue until we cannot
further update the tree paths and we keep only the paths that
end at node X. The procedure requires nodes to indicate the
chain of evidence in their local broadcasts; in other words, they
announce the path via which the evidence was propagated. This
allows a node (say node C) to determine the topology. Clearly,
in the worst case, a piece of evidence has O(N) associated
node identities in the chain. For moderate sized networks, we
expect that this will not result in much overhead (assuming no
more than 32 bits if IP addresses are used as identifiers). Using
hashes of addresses could further decrease this overhead.

Next, we parse the tree and perform the following 3 steps:
1) Step 1 - Identify independent paths: If all nodes Ai, i ∈

{1, 2, ..., n}, belonging to a path Pi do not belong to any other
path Pj , then Pi is independent of any other path. Thus, the FR
of the leaf X along Pi is estimated using the fusion operator,
Pi(X) = C(X)-n

i=1 Ai.
2) Step 2 - Prune path dependencies: If two paths Pm and Pn,

share common nodes, we use the select operator to eliminate
the dependencies. As discussed, we first identify the deepest
matching node (e.g., node f). Note that the common nodes
can appear at different tree levels across the different paths;
however, they will appear in the same order. This is easy to
verify since the tree is based on the physical network topology.

After identifying f we retain path P , where P =
Pm(C, f)〈S〉Pn(C, f). This process continues until we remove
all dependencies. At the end of this step all paths that are still
under consideration, are independent.

3) Step 3 - Aggregate path FR: Using the path aggregation
operator, we aggregate the FR values along all the z (indepen-
dent) paths identified at the end of Step 2. In particular, the FR
of node X is updated to be: P (X) = ⊗z

i=1Pi(X).
Message complexity: The tree-based algorithm reduces the

communication overhead compared to the flooding approach.
It can be shown formally that the message complexity of our
scheme is O(N), where N is the number of nodes in the network.
Similarly, the time-complexity of tree-construction is also O(N).
We omit the proofs due to space limitations.

Discussion: With lightweight propagation, due to either link
failures or poor forwarding FR, indirect evidence from some of
the paths may be lost. However, we find in our experiments that
this does not significantly affect the accuracy in FR assessment
since in most cases, evidence is collected along the most
reliable paths. Finally note here that if a node on a path does
not have any evidence relative to a node (say, A7 does not have
any evidence relating to X), it may simply forward the evidence
from its predecessor or use a value of 0.5 relating to the FR of
X. The latter simply indicates that from A7’s perspective, the
events that X is functionally reliable or unreliable are equally
likely. We use the latter approach in our experimental studies.

Finally, we point out that the mechanics of the lightweight
evidence propagation is not new. While the mechanics of the
flood based approach is similar to link state routing update
propagation, that of the lightweight approach is similar to the
propagation of routing updates in distance vector routing [15].

The novelty of the approach is in filtering duplicate evidence.

V. IMPLEMENTATION AND EVALUATION OF OUR SYSTEM

We now present the implementation and experimental eval-
uations of our framework. We implement our scheme with
both (a) flooding based direct evidence propagation and (b)
our lightweight evidence propagation.

Protocol implementation and experimental setup: Our
implementation is on our 42-node wireless testbed, which
consists of both indoor and outdoor links as detailed elsewhere
[16].

Our measurements span many wireless links and routes of
different lengths, and packet delivery ratios (PDR). We exper-
iment with the 802.11g mode. Our framework is implemented
using the Click toolkit [17]. By default, we use ETX routing
[12] and the ETX metric is used to estimate link qualities.

Ground truth: We preconfigure each node’s forwarding FR
and the likelihood of its responding to e2e queries (e2e FR);
this defines the ground truth in terms of the actual long term
behavior of the node. Each node also has an initial FR value
for both forwarding and e2e queries with regards to every other
node. We set this to be 0.5 with an uncertainty of 0 for both
operations. With time, we expect that with our framework, FR
values evolve from this initial state, based on both direct and
indirect evidence; the FR values at the end of an observation
period is the assessed FR at the end of the period. Our objective
is to see how the assessed FR compares with the ground truth.

Functions examined: Each node (Chloe) randomly picks
a target (Jack) and sends ICMP queries; these queries
form the basis for the direct e2e observations. To decide
on the success/failure of an e2e transaction, we send 10
ICMP ECHO REQUEST messages and we expect x% these
to successfully result in ICMP ECHO REPLY messages. We
disable link layer retransmissions and we pick x% to be the
minimum delivery probability among all the links of the route.
To determine the success/failure of forwarding operations, we
configure the sender to be in the promiscuous mode to overhear
forwarded packets. If the PDR of the link between the forwarder
and the sender is y%, we expect the sender to overhear at least
y% of the ICMP ECHO REQUEST messages delivered to the
forwarder. Each experiment runs for 3000 seconds in which
each node makes on average 10–15 observations for every other
node.

Protocol Details: With flood based propagation, the direct
evidence of a node is broadcast every 10 seconds (this forms
indirect evidence for other nodes). Each node appends any new
information and re-broadcasts a received broadcast. With the
lightweight propagation scheme, each node locally broadcasts
its aggregated FR estimates for other nodes, every 10 seconds.
These broadcasts include the chain of evidence, which allows
each node receiving them to locally recreate the network topol-
ogy. When a node receives such local information, she updates
its aggregated FR (using DSTE) for each of its peers (indirect
evidence aggregation) and re-broadcasts the new information.
For both schemes, direct evidence is computed using MLE with
a sliding window of eight observations.

Accuracy in reliable and unreliable settings: First, we
examine the accuracy of the estimation process when using (i)
the flood-based evidence propagation and (ii) our lightweight
protocol. Initially, we preconfigure all nodes to be responsive
(forwarding and e2e FR values are 1 and their uncertainty is 0);
this represents the ground truth in terms of FR. Fig. 4 shows
representative assessed FR values and their uncertainty for 5
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(a) Flood-based propagation
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(b) Lightweight scheme
Fig. 4. FR assessment under benign settings (Preconfigured FR
is 1 for all nodes).

!"#

!"$

!"%

!"&

!"'

!"(

!")

*+,*- ./.,*-

!

!"0

!"/

!"#

1234,0$ 1234,00 1234,#0 1234,#! 1234,%0

(a) Flood-based propagation
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(b) Lightweight scheme
Fig. 5. Non-responsive relays can affect the e2e FR assessment
(Nodes 14 and 31 have a preconfigured forwarding FR of 0. All
other FR values are set to 1).
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(b) Lightweight scheme
Fig. 6. The assessed e2e FR for unreliable nodes (Nodes 14 and
31 have a preconfigured e2e FR of ‘0’. Other nodes are responsive).

nodes at the end of our experiment (later we present statistics
from a large set of trials). To annotate, the bars corresponding
to node 14 indicate that, the mean FR (computed over all nodes
in the network) on this node is 0.7, the maximum of the mean
FR values from among all these FR values is 0.8 and the
minimum is about 0.6. The uncertainty on the estimated values
for each individual assessment is typically < 10 % of the mean
FR value and these are not plotted to ensure clarity. These
results suggest that with both schemes the average assessed FR
values are sufficiently close to the ground truth. Since there are
uncertainties that influence the computed FR (wireless effects,
varying FR reports from gossipers), the average value almost
never converges to the ground truth within the experiment
duration. We see that the accuracy is typically lower with the
lightweight protocol since, with the latter fewer observations
are combined to form indirect evidence in the gossiping phase.
Although it is possible that with an increased number of
samples, the accuracy can sometimes decrease (rather than
increase), we do not observe this to be the case here.

Our results with the preconfigured forwarding FR values of
nodes 14 and 31 set to 0 with an uncertainty of 0 (ground
truth) are in Fig. 5. We observe that the assessed “average”
e2e FR is lower as compared with that in the “reliable” settings
scenario. For example, the inferred average e2e FR of node 11
is approximately 20% lower for both schemes. Many trans-
actions fail due to the forwarding unreliability. Unfortunately,
the estimation engines (slightly) penalize the end node as well,
due to the uncertainty in ascertaining the reason that caused the
failure.

Finally, we preconfigure the e2e FR of nodes 14 and 31
to 0 (i.e., they do not respond to ECHO REQUESTS) and
restore their forwarding responsiveness to ‘1’ (ground truth).
The results with our framework are presented in Fig. 6. We
see that the average e2e FR of these nodes is significantly
lower as compared to the other nodes (e.g., node 31 exhibits
an approximately 60% lower e2e FR as compared with node
30 for both schemes). This value still is about 0.2, due to the
small number of transactions. It is also influenced by the initial
FR value of 0.5. These factors result in increased uncertainty
in the assessment process, which reduces accuracy.

FR evolution with different initial values: As alluded
to above, the initial FR value that bootstraps the assessment
process can affect the estimated FR value since this is used
in the aggregation. To examine the impact of this parameter,

we experiment with different initial FR values. In particular,
we examine the average FR for node 31 (over the observation
period) with 3 different initial FR values, 0.2, 0.5 and 1 (all
with uncertainty 0). Fig. 7 presents our results, for 3 different
scenarios; node 31 is (i) a responsive node, (ii) an unreliable
relay and (iii) an unreliable node with respect to e2e queries.
The values depicted are the estimated average FR values (the
average computed on the perception of the mean responsiveness
of 31 by all other nodes) after 3000 seconds. It is evident, that
when the initial value is close to the actual value, the estimation
within the considered time is much more accurate. For instance,
when node 31 does not respond to e2e queries (e2e FR is 0),
when the initial FR is 0.2, the assessed value is approximately
0.18, while with an initial FR of 0.5 (respectively, 1) the
estimated values are larger, 0.31 (respectively, 0.34). With an
increase in the number of observations the effect of the initial
FR values decreases and the assessed values come closer to the
actual preconfigured FR values (shown next). However, strict
convergence is not achieved since there is always some degree
of uncertainty with regards to whether or not other factors (e.g.,
wireless effects) contributed to transaction/operation failures.

Accuracy vs number of observations: The number of e2e
transactions between users affects the accuracy of estimation
of both the forwarding FR as well as the e2e FR. Considering
the same set up as above, and preconfiguring nodes 14 and
31 to be non-responsive relays we run our experiments for a
larger period (≈ 10000 seconds), enough to perform up to 40
transactions pairwise. Fig. 8 presents the estimated FR values
with 20 and 40 pairwise transactions. As one might expect, with
more transactions (and thus, more observations), the assessed
FR values are closer to the actual preconfigured ones for both
responsive and unreliable nodes.

Overhead comparison of the flood based and lightweight
propagation protocols: We compare the two propagation pro-
tocols in terms of the induced overhead; we also look at
the accuracy achieved (in terms of the distance between the
assessed and the preconfigured FR values i.e., the ground truth).
We see from Table I that as expected flooding results in smaller
uncertainty. However, the mean distances from the ground truth
are very similar with both schemes. It is also evident that the
lightweight propagation results in about a 37% decrease in the
induced overhead. We believe that this is a significant reduction,
at the expense of a slightly higher inaccuracy and uncertainty.

Traffic Load(Bytes) Distance Uncertainty
Flooding 12387191 0.0945 0.121

Lightweight 7751196 0.1168 0.222

TABLE I
COMPARING FLOOD BASED AND LIGHTWEIGHT PROPAGATION.

Transactions between routing and FR establish-
ment/propagation protocols: Next we want to study
the impact of different routing protocols on the evolution of
the FR values using our lightweight protocol. As observed in
our first set of experiments, the presence of non-responsive
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(a) Benign node

!"#

!"$

!"%

!"&

!"'

!"(

!")

*

+,-+. /0/-+.

!

!"*

!"0

!"#

1234356-789:4-!"0 1234356-789:4-!"% 1234356-789:4-*

(b) Non-responsive relay
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(c) e2e non-
responsiveness

Fig. 7. Higher accuracy is achieved when the initial FR is closer
to the preconfigured FR.
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(b) 40 transactions
Fig. 8. More observations lead to higher accuracy (Nodes 14 and
31 are non-responsive relays. Other nodes are responsive).
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(b) e2e FR
Fig. 9. CDF of the distance between the assessed and real FR.

relays can affect the establishment of the e2e FR values
when ETX routing is used. The routes do not account for the
forwarding FR of nodes and hence, the presence of bad relays
on a path can cause transactions to fail. This consequently
results in a reduction in the accuracy of the assessed e2e FR.

We perform a large set of experiments where each node is
preconfigured with randomly chosen FR tuples (for forwarding
and e2e FR). We ensure that these FR values are evenly spread
across [0, 1]. We use 2 different routing metrics to find routes,
minimum hop count and ETX. Running 10 repetitions of our
experiments for 5000 seconds each, we obtain the results in Fig.
9. These figures depict the CDF of the distance between the
preconfigured (real) and the assessed average FR values for the
nodes. We observe that in all scenarios, minimum hop distance
performs the worst in terms of accuracy due to long unreliable
links that contribute to high uncertainty. A routing metric that
not only accounts for the link qualities (e.g., ETX), but also for
the forwarding responsiveness of the relays can further improve
the assessment accuracy. Designing such a metric is beyond the
scope of our study and is left for future work.

On the hardness of convergence: We observe from Fig. 9
that in the best case, almost 40% of our assessments differ
by at least 0.1 from the ground truth in terms of both the
forwarding and e2e FR. It is really hard, if not impossible,
to achieve strict convergence to the real FR values. There are
several reasons that contribute to this hardness. As seen earlier,
the forwarding FR affects the e2e FR (Fig. 5). Failures due
to forwarding attackers, will influence the assessed e2e FR.
As our experiments indicate (omitted due to space constraints)
the same happens when the transactions fail due to wireless
induced effects. In addition, as discussed earlier, the initial
value affects the assessment as well. Finally, gossiping adds
uncertainty and decreases the accuracy of the assessed FR. So
even for a completely (e2e) responsive node the assessment
engine cannot converge to the value of 1. We believe that this
level of accuracy however, is sufficient in most cases when
nodes make coarse grained assessments to hypothesize about
the reliability of peers.

VI. CONCLUSIONS

We design a framework for collaborative FR assessment
in wireless networks. Unlike in prior work, we account for
wireless induced factors and the reliability of intermediary
relays. The framework accounts for both direct transactions
between nodes and indirect feedback obtained from gossipers

about other nodes in the network. It consists of a lightweight
evidence propagation scheme that carefully filters out duplicate
evidence. Our evaluations on an indoor/outdoor wireless testbed
show that each node is able to estimate the FR values for other
nodes with a sufficiently high accuracy.
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