
Network Coding Aware Queue Management in
Multi-Rate Wireless Networks

Nicola De Coppi†, Jianxia Ning∗, George Papageorgiou∗, Michele Zorzi†,
Srikanth V. Krishnamurthy∗ and Thomas La Porta‡

†University of Padova & CFR, Italy ∗University of California, Riverside, USA ‡Pennsylvania State University, USA
†{decoppin, zorzi}@dei.unipd.it, ∗{jning, gpapag, krish}@cs.ucr.edu, ‡ {tlp}@cse.psu.edu

Abstract—While network coding can potentially provide signif-
icant throughput benefits by combining packets prior to forward-
ing them, the achievable gains are directly related to the coding
opportunities at a relay that performs encoding. If the relay does
not have packets destined for distinct destinations, that can be
encoded together, the network coding gains could be marginal.
Towards increasing the opportunities for network coding, in this
paper we propose a queue management scheme, that arbitrates
the rate at which distinct transmitters send packets to a common
relay which applies network coding. Our queue management
approach prioritizes the channel access of nodes that do not
have enough enqueued packets at the common relay, thereby
essentially attempting to balance the number of packets from the
distinct senders at the relay. We perform extensive simulations of
our approach (built as a wrapper on top of the popular network
coding approach COPE) in multi-rate scenarios. We find that
our approach yields throughput gains of up to 57% compared to
COPE due to enhanced opportunities towards encoding packets.

I. INTRODUCTION

Network coding has been proposed to increase the capacity
of wireless networks towards the ever increasing demand for
wireless capacity due to the emergence of high bandwidth
applications. The fundamental idea in network coding is to
reduce the number of wireless transmissions by encoding
together different packets. In contrast with the traditional store
and forward paradigm, network coding uses a store, code
and forward approach. Network coding has been applied in
both multicast and unicast contexts. In particular, the COPE
architecture [1] for network coding in wireless mesh networks
has received a lot of attention; COPE has shown that it can
improve the throughput of unicast traffic in dense networks
with bursty flows. In addition, network coding aware rate
adaptation algorithms [2] [3] have recently been proposed;
these are built on top of the COPE architecture to further
increase throughput.

Scenario of Interest: First, let us revisit network coding in
brief. Let us consider the five node topology as in Fig. 1. The
five nodes typically occur in larger networks and thus, this
topology is often analyzed for its simplicity. In this topology
there are two flows, from Alice to Dave and from Bob to
Chloe. Jack is the relay node and is responsible for forwarding
packets. When COPE is used, Jack transmits an XOR of
the packets (a ⊕ b) received from Alice (a) and Bob (b).
Using network coding the number of transmissions is reduced
from four to three. However, in this example, to decode the
coded packet successfully, Chloe and Dave have to correctly
overhear packets a and b, respectively. The radio channel

conditions between the sender and the overhearing node, and
the transmission rates of Alice and Bob, affect the overhearing
at Chloe and Dave. If Chloe cannot overhear the packet from
Alice, it will not be able to decode the XORed packet from
Jack and the native packet will have to be retransmitted.

Fig. 1. A topology of five nodes with network coding. Two flows Alice →
Dave and Bob → Chloe go via Jack who performs network coding.

Loss in Coding Opportunities: When a relay node that
performs network coding (Jack) has packets for different next
hops (Chloe and Dave), it computes the probability that the
receiver nodes can decode the coded packet. If the probability
is greater that a certain threshold, it XORs native packets
destined for these next hops and sends the coded packet on the
wireless channel. However, if the relay does not have packets
for the different next hop nodes (Chloe and Dave), it has
to send each native packet as they are and thus, the coding
opportunity is lost. To visualize the problem, assume that Jack
maintains virtual queues for Chloe and Dave. If there is im-
balance between these virtual queues, the likelihood that one
of these queues becomes empty increases and consequently
Jack loses coding opportunities.

Losing coding opportunities can be detrimental to through-
put gains possible with network coding and should be avoided,
especially in the presence of heavy traffic. Let us again
consider our example with Alice, Bob and Jack. If CSMA/CA
is the MAC protocol in use, each node in the same Carrier
Sense range has the same probability of accessing the channel
in the long term. Since the input traffic for Jack is twice its
output rate, it starts accumulating packets in the queue. If Jack
uses network coding, it drains the queue faster. However, at
each instance that Jack loses a coding opportunity, it reduces
the rate at which its queue is drained and this contributes to
an accumulation of packets in its queue.

978-1-4673-1544-9/12/$31.00 ©2012 IEEE

Balancing the aforementioned virtual queues can avoid such
losses of coding opportunities. One solution could be to use
a perfect schedule wherein Alice and Bob send packets to
Jack’s queue at equal rates. Jack can explicitly tell Alice and
Bob when to transmit. However, Jack may be unaware of
whether or not Alice and Bob have packets to transmit; thus
a perfect schedule is difficult to implement. Moreover, today
most systems use the popular IEEE 802.11 MAC standard.
A second simple approach could be for Jack to delay the
transmission of a packet until a coding opportunity is created
(e.g., Alice’s packet is not forwarded unless there is also a
packet from Bob). However, this can result in the filling up of
Jack’s queue and can also cause unnecessary delays; in fact,
COPE is built on the underlying principle of never delaying
packets.

Our contributions: Based on these considerations, in this
paper we propose a queue management approach to increase
the probability of coding packets (coding opportunities) in a
multi-rate wireless network. Our proposed approach adaptively
prioritizes channel access of the transmitters to a relay, based
on the states of the virtual queues at the relay. Specifically, the
probability of these nodes accessing the channel is adaptively
varied by tuning the Contention Window (CW) size at the
MAC layer. Adjusting the CW size can be implemented via
minor modifications to the IEEE 802.11 standard and has also
been used in other contexts (e.g., in [4] and [5]). Based on how
many packets are in the virtual queues and the quality of the
links, the relay node (Jack) provides the sender nodes (Alice
and Bob) with suggested values of CWmin, towards balancing
its virtual queues. The value of CWmin is inserted in the
header of a COPE packet when such a packet is transmitted
by Jack.

The paper is organized as follows. In Section II we present
previous studies on network coding and queue management.
In Section III we propose our queue management approach.
In Section IV we evaluate the performance of our approach
via extensive simulations. Section V concludes our work.

II. RELATED WORK

In this section, we describe relevant related work. We first
discuss related work on network coding and later that on queue
management.

A. Related work on network coding

Most of the work on network coding in the literature is
related to multicast traffic. Network Coding was introduced
for the first time by Ahlswelde et al. [6], who showed that
routers can achieve multicast capacity by mixing information
in different messages. This work was followed by that of Li
et al. who showed that linear codes achieve the maximum
capacity bound [7]. They proposed linear network coding
where the output at a relay is obtained as a linear combination
of its input flows. However, this approach needs centralized
knowledge about the network topology. Koetter and Medard
proposed random network coding where the linear codes are
substituted with codes generated by a polynomial algorithm

[8]. Chou et al. proposed a distributed scheme for pratical
network coding which does not need centralized knowledge
of the network topology [9].

Katti et al. applied network coding to unicast traffic and
integrate network coding into the current network stack [1].
They proposed COPE, a distributed scheme for network
coding. With COPE each station is in promiscuous mode
to overhear packets which are then stored for a short time
T and used for decoding. A relay needs to know which
packets its neighbors have in order to be able to code. This
information can be sent in periodic reception reports or can
be estimated using a routing protocol based on the ETX/ETT
metric. COPE by default uses the lowest rate available (i.e.,
6 Mbps in IEEE 802.11g). It has been shown in [2] and
[3] that network coding aware rate adaptation algorithms can
further increase the capacity of wireless networks. None of
these efforts however, examine the loss of coding opportunities
due to a mismatch in the transmission rates of senders to a
common relay. Note that in our work we consider this problem
in a multi-rate setting.

B. Related work on queue management

Most of the queue management algorithms in the literature
are proposed to improve congestion control with TCP (e.g.,
[10], [11]). In the context of network coding, queue models for
both unicast [12] and multicast flows have been studied in [13],
[14]. Seferoglu et al. propose a queue management algorithm
for TCP flows with COPE in [15]. They observe that a
mismatch between flow rates can reduce coding opportunities.
This mismatch is due to the fluctuation of wireless channel
quality. They propose a change to the congestion control
mechanisms of TCP to deal with this issue. In particular,
when a node is congested, it chooses which packets to drop
and the source reduces its packet generation rate. However,
their solution does not consider that different flows may
have different data rates. In contrast, our approach considers
the use of multiple bit-rates in wireless networks; it is also
independent of the transport protocol, and thus can be used
with both UDP and TCP.

III. OUR PROPOSED QUEUE MANAGEMENT APPROACH

As discussed, ensuring balanced throughput from Alice and
Bob can increase Jack’s coding opportunities (Fig. 1). We
propose to tune the CWs at the senders towards achieving
this. We propose a queue management algorithm initiatied by
Jack towards estimating the proper CW sizes for Alice and
Bob. Jack then feeds back this information to Alice and Bob.

First, let us look at how the queue is managed at the relay
node Jack in the COPE architecture. With COPE, each packet
enqueued in the output queue at Jack is also enqueued in a
virtual queue to the packet’s next hop (Chloe or Dave). When
Jack senses the channel to be idle, it dequeues the first packet
in the output queue and searches the virtual queues to check
whether there is a packet with a different next hop, that can
be encoded with the dequeued packet (see Fig. 2). The use of
virtual queues speeds up the search.

Fig. 2. Output queue and Virtual queues at the relay node for different next
hop recipients. Qc and Qd are the sizes of the Virtual queues headed to Chloe
and to Dave respectively.

Fig. 3. Block representation of our queue management algorithm.

Having unbalanced virtual queues increases the probability
that some of these become empty and thus, cause Jack to
miss out on coding opportunities. With our queue management
algorithm we want to reduce the probability that a virtual
queue becomes empty. We achieve this by appropriately pri-
oritizing the channel access of either Alice or Bob. Based on
(i) information on the size of the virtual queues destined to
Chloe and Dave (Qc, Qd in Fig. 2), and (ii) the packet error
rates (PERs) on the four links aj, bj, jc, jd, (see Fig. 1), our
algorithm computes the appropriate CW sizes for Alice and
Bob, towards balancing their virtual queues at Jack. In other
words, our algorithm takes Qc, Qd, PERaj , PERbj , PERjc

and PERjd as input and outputs the values of CW a
min and

CW b
min, the contention window sizes for Alice and Bob (see

Fig. 3).1 Next, we describe the key design elements of our
algorithm, and then present the algorithmic details.

The effect of PER on the sizes of the virtual queues: The
imbalance in the virtual queues maintained at Jack is primarily
because of mismatches in the packet error rates (PER) on the
various links in the considered network. Specifically, we make
the following observations:

• For the links Alice → Jack and Bob → Jack, when the
medium access is fair as in CSMA/CA and PERaj >
PERbj , Alice has to transmit a packet more times than
Bob. Thus, at Jack the virtual queue that enqueues packets
from Alice will have fewer packets than that from Bob.

• For the receiver links Jack → Chloe and Jack → Dave,
when PERjc > PERjd, Jack accumulates more packets
headed to Chloe (due to a requirement for a higher
number of retransmissions).

Tuning CW a
min and CW b

min for balancing queues: By
considering the entire path along which packets are delivered
(Alice → Dave and Bob → Chloe), one can estimate which
virtual queue will tend to have fewer packets (at Jack). Based
on this, we propose to tune the congestion windows used for

1The algorithm does not use explicitly any information about the quality
of the overhearing links, but we simply assume that this quality is sufficient
not to make network coding infeasible.

MAC access by Alice and Bob, towards balancing the virtual
queues.

We consider the fraction of PERreceiver
PERsender

.Based on this frac-
tion, we define sendermin and sendermax to be the following:

sendermin|min
{

PERjd

PERaj
,
PERjc

PERbj

}
(1)

sendermax|max
{

PERjd

PERaj
,
PERjc

PERbj

}
, (2)

where, the notation | refers to the sender (Alice or Bob)
with the minimum (or maximum) value of the aforementioned
fraction. If the virtual queue gets drained faster than the rate
at which the packets come into the queue, the queue tends to
empty faster. In contrast, if packets arrive to the queue faster
than they are drained, the queue tends to fill up. sendermin

is the sender (between Alice and Bob) whose queue tends to
fill up (the fraction is typically < 1); sendermax refers to the
sender whose virtual queue tends to empty out (the fraction is
typically > 1). Thus, our goal is to appropriately increase the
probability of packet transmission of sendermin or decrease
that of sendermax so as to balance the virtual queues at Jack.

Consider a link with a packet error rate PERlink. Then,
the average number of successful packet transmissions on this
link is:

1
(1 − PERlink)

. (3)

The transmission probability (assuming a fixed contention
window W) is:

p =
2

(W + 1)
. (4)

To increase the rate at which the sender with the higher
queue imbalance sendermin sends packets to Jack, we de-
crease its Contention Window to:

CW i
min = K ∗ (CW j

min + 1) − 1 (5)

where i is the sendermin node and j is the other node. K is
a coefficient that depends on the PERs of the links on the
two paths (defined below). Suppose that Alice is sendermin

and we want to increase her transmission probability while
keeping the contention window of Bob (viz. CW b

min) fixed
at 31 (unchanged from default settings). We compute the
contention window of Alice to be:

CW a
min = K(CW b

min + 1) − 1 (6)

where K = (1−PERaj)(1−PERjc)
(1−PERbj)(1−PERjd) . Note here that K ≤ 1 since

A is sendermin, i.e., the contention window size is decreased.
This decrease balances the delivery probability of the packets
on the two paths Alice → Dave and Bob → Chloe and, in
turn, balances the virtual queues at Jack.

Alternatively, one can decrease the probability of transmis-
sion of Bob by increasing his contention window. We fix the
window of Alice to be CW a

min = 31; we compute CW b
min

using (6) except that in lieu of K we use a new coefficient
K ′ = K−1 ≥ 1.

The above solution is used in our queue management al-
gorithm. In particular, when the virtual queues become highly
unbalanced, we reduce or increase the contention window. The
details of the algorithm are presented later.

Communicating to the sender nodes the value of the
congestion window to use : We insert the value of CWmin

in the COPE header by adding a new field. Thus, whenever
Jack sends a packet to Chloe or Dave, nodes Alice and Bob
can overhear the packet by operating in promiscuous mode and
extract the suggested minimum CW values from the header.
The overhead for adding the field is negligible; only a few bits
per node are needed.

Fig. 4. FIFO output queue divided in three segments.

Details of the algorithm: Recall that our core objective
is to ensure that the output queues at the relay node (Jack)
have enough packets from both paths to prevent the loss
of coding opportunities. Furthermore, the relay node should
not have too many enqueued packets; if it does, packets
may be dropped resulting in a degradation of the end-to-
end throughput. Depending on the queue (buffer) capacity,
we propose to divide the output queue into three segments
as shown in Fig. 4. The example values (15 and 30) are for a
queue capacity of 50 packets.

• If the output queue size (Qc + Qd) ≤ 15 and the value
|Qc − Qd| < 2, we increase the transmission probability
of the sendermin node as per (6). If the virtual queues
become highly unbalanced (|Qc−Qd| ≥ 2) we divide by
2 the CWmin of the node with fewer packets.

• If the queue size is such that 15 < (Qc + Qd) ≤ 30 and
|Qc − Qd| < 4,we increase the transmission probability
of the sendermin node as per (6). Otherwise we decrease
the transmission probability of the sendermax node.

• If the queue size is (Qc + Qd) > 30, there is a risk that
the queue becomes full and begins to drop packets. In
this case, we reduce the transmission probability of the
node with the higher number of packets: the higher the
difference |Qc −Qd|, the higher the CWmin of the node
whose queue has more packets. We double the window
size until the virtual queue size decreases to below 30.

In the third case, note that when we reduce the transmission
probability of the sender node (Alice or Bob) with the higher
number of packets in the queue, Jack has higher probability
of accessing the channel and is able to drain his queue faster.

The pseudocode of our queue management algorithm, ap-
plied at Jack which is the relay node, is provided in Algo-
rithm 1. The notation [...] under each “else” in the algorithm
defines the same actions taken in the corresponding “if” part,
in which the roles of CW a

min and CW b
min have been swapped

and K is substituted with K−1.

Input : Qc, Qd, PERaj , PERbj , PERjc, PERjd

Output: CW a
min, CW b

min

CW default
min = 31;

find sendermin, sendermax and K;
if (Qc + Qd) ≤ 15 then

if |Qc − Qd| < 2 then
if A==sendermin then

CW a
min = K ∗ (CW default

min + 1) − 1;
CW b

min = CW default
min ;

else
[...]

else
if Qd > Qc then

CW a
min=CW default

min ; CW b
min= 1

2 ∗ CW default
min ;

else
[...]

if 15 < (Qc + Qd) ≤ 30 then
if |Qc − Qd| < 4 then

if A==sendermin then
CW a

min = K ∗ (CW default
min + 1) − 1;

CW b
min = CW default

min ;
else

[...]
else

if A==sendermax then
CW a

min = K ∗ (CW default
min + 1) − 1;

CW b
min = CW default

min ;
else

[...]

if (Qc + Qd) > 30 then
if |Qc − Qd| < 2 then

if A==sendermax then
CW a

min = K ∗ (CW default
min + 1) − 1;

CW b
min = CW default

min ;
else

[...]

if 2 ≤ |Qc − Qd| < 10 then
if Qd > Qc then

CW a
min=2 ∗ CW default

min ; CW b
min=CW default

min ;
else

[...]

if 10 ≤ |Qc − Qd| < 15 then
if Qd > Qc then

CW a
min=4 ∗ CW default

min ; CW b
min=CW default

min ;
else

[...]

if |Qc − Qd| ≥ 15 then
if Qd > Qc then

CW a
min=8 ∗ CW default

min ; CW b
min=CW default

min ;
else

[...]

Algorithm 1: Pseudo code of our queue management algo-
rithm.

0 10 20 30 40 50 60 70

0

20

40

60

80

100

120

140

Simulations

%
 T

hr
ou

gh
pu

t I
m

pr
ov

em
en

t

with COPE+QUEUE MGMT
with COPE
average with COPE+QUEUE MGMT
average with COPE

Fig. 5. Throughput gain over a typical IEEE 802.11 system in two cases:
with COPE and with COPE + QUEUE MGMT.

IV. SIMULATION RESULTS

In this section, we use NS 2.34 [16] simulations to evaluate
the proposed queue management algorithm. Since multi-rate
transmissions are not supported by NS 2 by default, we used
an external library [17]. For the implementation of COPE we
began with the Google project [18] and retained the basic
structure implemented in the project. We made some modi-
fications and, in particular, changed the coding and decoding
processes to exactly conform to the corresponding operations
of COPE.

We use IEEE 802.11g, which allows transmissions at 6, 9,
12, 18, 24, 36, 48 and 54 Mbps. Since we deal with static
networks, stable Signal-to-Noise Ratios (SNRs) are observed
at nodes. The SNR is measured from packets sent on the
wireless link; it depends on the distance between two nodes
and on the noise power. For the same SNR, transmitting at a
lower rate will result in a lower error rate. We use an SNR-
based rate adaptation algorithm where each node chooses the
highest rate so as to allow all of its neighbors to overhear
packets with PER ≤ 0.2.

We consider the five node topology in Fig. 1. Two saturated
UDP traffic flows are initiated from Alice to Dave and from
Bob to Chloe. Each node uses a transmission power of 20
dBm. The 2.4 GHz frequency band is used. The free-space
path loss channel model is assumed. The packet size is set
to 1500 Bytes. The positions of the nodes are generated
randomly and the noise power is randomly chosen from the
set N = {10−10, 2×10−10, 3×10−10, 4×10−10, 5×10−10};
these values are chosen to be close to the default settings in
NS 2. The combination of node positions and noise powers
allows us to vary the PER on each link. We consider 73
different combinations. The simulations last for 100 seconds
and the results shown are the average over three simulations;

0 20 40 60 80
0

20

40

60

80

100

Simulations

%
 C

od
ed

 P
ac

ke
ts

 a
t t

he
 R

el
ay

 N
od

e
J

% Coded Packets
Mean

(a)

0 20 40 60 80
0

20

40

60

80

100

Simulations

%
 C

od
ed

 P
ac

ke
ts

 a
t t

he
 R

el
ay

 N
od

e
J

% Coded Packets
Mean

(b)

Fig. 6. Fraction of coded packets over total number of sent packets at the
relay node with (a) COPE and (b) COPE + QUEUE MGMT . The average
increases from 70% to 85%.

0 20 40 60 80
0

10

20

30

40

50

Simulations
O

ut
pu

t Q
ue

ue
 a

t t
he

 R
el

ay
 N

od
e

J

Packets headed to C
Packets headed to D

(a)

0 20 40 60 80
0

10

20

30

40

50

Simulations

O
ut

pu
t Q

ue
ue

 a
t t

he
 R

el
ay

 N
od

e
J

Packets headed to C
Packets headed to D

(b)

Fig. 7. Size of the output queue with packets headed to C and D with
(a) COPE and (b) COPE + QUEUE MGMT. In the second case the virtual
queues are more balanced.

we check the results from the three runs and verify that we
have sufficient statistical confidence.

We compare the throughput of the system obtained without
COPE, with COPE and with COPE + QUEUE MGMT. Fig. 5
shows the throughput improvements of the system in the 73
different topologies (based on PERs) with COPE and with
COPE + QUEUE MGMT with respect to the throughput
without COPE. We notice that our algorithm enhances the
performance of COPE when COPE’s gain is low. On average
our algorithm increases COPE’s performance by 7.5%, with a
maximum improvement of 57%. Furthermore, the fraction of
encoded packets at the relay node increases from 70% with
COPE to 85% with COPE + QUEUE MGMT (Figs. 6 (a)
and (b)). Lastly, the average difference between the virtual
queues is 10 packets with COPE and 2.7 packets with COPE
+ QUEUE MGMT (Figs. 7 (a) and (b)). This shows that our
algorithm is able to balance the virtual queues at the relay
node and thereby improve coding opportunities.

A. The Best Improvement Case

First we consider the case where our algorithm provides
a system gain of 57%. This case is shown in Fig. 8. The
noise power is fixed to N = 4 × 10−10. We observe that the
receiver links have different values of PER (PERjc = 0.18
and PERjd = 0.009). Packets headed to Chloe, denoted by
C, will tend to accumulate at the relay node queue (as shown
in Fig. 10 (a)).

Fig. 8. SNR (in dB), data rate and PER for each link in the case where we
obtain the best throughput improvement with COPE + QUEUE MGMT.

2 4 6 8 10 12 14
1.5

2

2.5

3

3.5

4

4.5

5

5.5

Offered load [Mbps]

N
et

w
or

k
T

hr
ou

gh
pu

t [
M

bp
s]

Without COPE
With COPE
With COPE+QUEUE MGMT

(a)

2 4 6 8 10 12 14
0

10

20

30

40

50

60

70

80

90

100

Offered load [Mbps]

P
er

ce
nt

ag
e

C
od

ed

With COPE
With COPE+QUEUE MGMT

(b)

Fig. 9. (a) COPE+QUEUE MGMT provides 57% increase in UDP through-
put in the presence of saturated traffic. (b) Percentage of packets encoded at
the relay node Jack.

2 4 6 8 10 12 14
0

10

20

30

40

50

Offered load [Mbps]

O
ut

pu
t Q

ue
ue

 a
t t

he
 R

el
ay

 N
od

e
J

Packets headed to C
Packets headed to D

(a)

2 4 6 8 10 12 14
0

10

20

30

40

50

Offered load [Mbps]

O
ut

pu
t Q

ue
ue

 a
t t

he
 R

el
ay

 N
od

e
J

Packets headed to C
Packets headed to D

(b)

Fig. 10. Size of the output queue with packets headed to Chloe and Dave (a)
with COPE and (b) COPE + QUEUE MGMT. In case (b) the output queue
size is reduced and the virtual queues are more balanced.

We gradually increase the offered load in the considered
scenario. We see in Fig. 9(a) that the systems have the same
throughput as long as the offered traffic is low. At high
traffic loads, the performance degrades. However, COPE with
our algorithm is able to better cope with the performance
degradation by adaptively tuning the transmission probabilities
via contention window adjustments. We point out that the
fraction of encoded packets is higher with our algorithm (see
Fig. 9 (b)). If we look at the output queue at the relay node
with only COPE (Fig. 10(a)), we see that the relay node does
not accumulate packets in its output queue if the offered load
is less than 5 Mbps. After that, the average queue size quickly
becomes 45 packets. This means that packets have a high
probability of being dropped because the output queue often
reaches the maximum size of 50 packets. Moreover, the virtual
queues are highly unbalanced. Our algorithm (Fig. 10(b))
reduces the size of the output queue to 30 packets and balances
the number of packets headed to different next hop nodes,

Fig. 11. SNR (in dB), PHY rate and PER for each link in a case where we
obtain about a 7% throughput improvement with COPE+QUEUE MGMT.

8 10 12 14 16 18 20 22 24
5.5

6

6.5

7

7.5

8

8.5

9

9.5

10

10.5

Offered load [Mbps]

N
et

w
or

k
T

hr
ou

gh
pu

t [
M

bp
s]

Without COPE
With COPE
With COPE+QUEUE MGMT

(a)

8 10 12 14 16 18 20 22 24
0

10

20

30

40

50

60

70

80

90

Offered load [Mbps]

P
er

ce
nt

ag
e

C
od

ed

With COPE
With COPE+QUEUE MGMT

(b)

Fig. 12. (a) COPE+QUEUE MGMT provides 7% increase in UDP through-
put in the presence of saturated traffic. (b) Percentage of packets encoded at
the relay node Jack.

10 15 20 25
0

10

20

30

40

50

Offered load [Mbps]

O
ut

pu
t Q

ue
ue

 a
t t

he
 R

el
ay

 N
od

e
J

Packets headed to C
Packets headed to D

(a)

10 15 20 25
0

10

20

30

40

50

Offered load [Mbps]

O
ut

pu
t Q

ue
ue

 a
t t

he
 R

el
ay

 N
od

e
J

Packets headed to C
Packets headed to D

(b)

Fig. 13. Size of the output queue with packets headed to Chloe and Dave
with COPE (a) and COPE+QUEUE MGMT (b). In the second case the output
queue is reduced and the virtual queu es are more balanced.

thereby increasing coding opportunities at the relay.

B. The Average Improvement Case

In this case, COPE + QUEUE MGMT provides throughput
gains of about 7% over COPE as seen in Fig. 12(a). Here,
we see that there is a difference in the PERs on sender links
(PERbj = 0.144 and PERaj = 0.012 as in Fig. 11). In
addition, the receiver links have low values of PERs. As seen
from Fig. 13(a), without the queue management scheme the
relay node accumulates packets headed to Dave, denoted by
D. This is because of the fact that the relay node receives more
packets from Alice (denoted by A), since PERaj < PERbj ,
and thus is able to encode only 60% of the packets, losing
coding opportunities. Again, our algorithm reduces the size
of the output queue while making the virtual queues more
balanced (Fig. 13(b)).

V. CONCLUSIONS

In this paper we proposed a queue management algorithm
on top of the COPE architecture to increase the coding
opportunities and network throughput. Our algorithm balances
the virtual queues headed to different next hop recipients at
a relay node, by adaptively tuning the contention windows
of the sender nodes. We simulated our scheme considering
a five node topology and the IEEE 802.11g standard. We
compared the system without COPE, with COPE and with
COPE + QUEUE MGMT. Our algorithm achieves a best case
throughput gain of 57% over COPE, with an average gain of
7.5%. As a future work we plan to investigate the scalability
of our approach by implementing it and studying the behavior
of the relay nodes in a larger network.

ACKNOWLEDGMENTS

This work was partially supported by the US Army Re-
search Office under the Multi-University Research Initiative
(MURI) grant W911NF-07-1-0318, by the NSF NeTS grant
1017012 and by the European Commission under the FP7 EU
project SAPHYRE, grant agreement no. 248001.

REFERENCES

[1] S. Katti, H. Rahul, W. Hu, D. Katabi, M. Medard, and J. Crowcroft,
“XORs in the air: Practical wireless network coding,” IEEE/ACM Trans.
Netw., vol. 16, no. 3, pp. 497–510, Jun. 2008.

[2] T.-S. Kim, S. Vural, I. Broustis, D. Syrivelis, S. Krishnamurthy, and
T. La Porta, “A framework for joint network coding and transmission
rate control in wireless networks,” in Proceedings of INFOCOM, 2010,
Mar. 2010.

[3] R. Kumar, S. Tati, F. de Mello, S. Krishnamurthy, and T. La Porta,
“Network coding aware rate selection in multi-rate IEEE 802.11,” in
Proceedings of the 18th IEEE International Conference on Network
Protocols (ICNP), 2010, Oct. 2010, pp. 92–102.

[4] A. Nafaa, A. Ksentini, A. Mehaoua, B. lshibashi, Y. Iraqi, and
R. Boutaba, “Sliding contention window (SCW): towards backoff range-
based service differentiation over IEEE 802.11 wireless LAN networks,”
IEEE Netw., vol. 19, no. 4, pp. 45–51, Jul. 2005.

[5] L. Gannoune and S. Robert, “Dynamic tuning of the contention win-
dow minimum (CWmin) for enhanced service differentiation in IEEE
802.11 wireless ad-hoc networks,” in Proceedings of the 15th IEEE
International Symposium on Personal, Indoor and Mobile Radio Com-
munications, PIMRC 2004, vol. 1, Sep. 2004, pp. 311–317.

[6] R. Ahlswede, N. Cai, S.-Y. Li, and R. Yeung, “Network information
flow,” IEEE Trans. Inf. Theory, vol. 46, no. 4, pp. 1204–1216, Jul. 2000.

[7] S.-Y. Li, R. Yeung, and N. Cai, “Linear network coding,” IEEE Trans.
Inf. Theory, vol. 49, no. 2, pp. 371–381, Feb. 2003.

[8] R. Koetter and M. Medard, “An algebraic approach to network coding,”
IEEE/ACM Trans. Netw., vol. 11, no. 5, pp. 782–795, Oct. 2003.

[9] P. A. Chou, Y. Wu, and K. Jain, “Practical network coding,” in
Proceedings of Allerton Conference on Communication, Control, and
Computing, 2003.

[10] S. Athuraliya, S. Low, V. Li, and Q. Yin, “REM: Active Queue
Management,” IEEE Netw., vol. 15, no. 3, pp. 48–53, May 2001.

[11] F. W-C., K. Shin, D. Kandlur, and D. Saha, “The BLUE active queue
management algorithms,” IEEE/ACM Trans. Netw., vol. 10, no. 4, pp.
513–528, Aug. 2002.

[12] S. E. Tajbakhsh, M. Orang, M. H. Sohi, and A. Movaghar, “A queuing
model of opportunistic network coding in wireless medium,” in Interna-
tional Conference on the Latest Advances in Networks (ICLAN), 2008.

[13] B. Shrader and A. Ephremides, “A queueing model for random linear
coding,” in In the proceedings of the IEEE Military Communications
Conference, MILCOM 2007, Oct. 2007.

[14] M. Iraji, M. Amerimehr, and F. Ashtiani, “A queueing model for wireless
tandem network coding,” in In the proceedings of the IEEE Wireless
Communications and Networking Conferences. WCNC 2009, Apr. 2009.

[15] H. Seferoglu and A. Markopoulou, “Network coding-aware queue man-
agement for unicast flows over coded wireless networks,” in Proceedings
of the IEEE International Symposium on Network Coding (NetCod),
2010, Jun. 2010, pp. 1–6.

[16] The Network Simulator, “ns-2,” http://nsnam.isi.edu/nsnam/index.php/
Main Page.

[17] dei80211mr, “An improved 802.11 implementation for ns2 with en-
hanced interference model.” http://www.dei.unipd.it/wdyn/?IDsezione=
5090.

[18] COPE on ns2, “Google project by Uppsala University,” http://code.
google.com/p/uu-cope/.

