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Abstract—Wireless cameras can be used to gather situation
awareness information (e.g., humans in distress) in disaster
recovery scenarios. However, blindly sending raw video streams
from such cameras, to an operations center or controller can be
prohibitive in terms of bandwidth. Further, these raw streams
could contain either redundant or irrelevant information. Thus,
we ask “how do we extract accurate situation awareness infor-
mation from such camera nodes and send it in a timely manner,
back to the operations center?” Towards this, we design ACTION,
a framework that (a) detects objects of interest (e.g., humans)
from the video streams, (b) combines these streams intelligently
to eliminate redundancies and (c) transmits only parts of the
feeds that are sufficient in achieving a desired detection accuracy
to the controller. ACTION uses small amounts of metadata to
determine if the objects from different camera feeds are the same.
A resource-aware greedy algorithm is used to select a subset of
video feeds that are associated with the same object, so as to
provide a desired accuracy, for being sent to the operations center.
Our evaluations show that ACTION helps reduce the network
usage up to threefold, and yet achieves a high detection accuracy
of ≈ 90%.

I. INTRODUCTION
Natural disasters usually have a high associated human

cost; for example, the recent Nepal earthquake resulted in the
death of more than 8,000 people, injury to more than 14,000,
and over 300 people are still missing [1]. Today, advanced
technologies can help in significantly enhancing search and
rescue missions; sensors, often with camera capabilities can
be deployed in the field, to provide situation awareness back
to a central operations center or controller. Specifically, this is
information with regards to particular objects of interest (e.g.,
distressed or injured humans, or animals) that would be critical
in aiding search and rescue. In other situations (e.g., Boston
marathon bombing), being able to quickly detect unattended
objects such as luggage or backpacks using such cameras could
help prevent tragic disasters from happening.

Unfortunately, in many such scenarios, in the aftermath of
disasters the bandwidth is likely to be limited1. Blindly sending
the video feeds from camera nodes in the field is likely to be
infeasible because of bandwidth limitations. As information
collected from multiple cameras with overlapping views tends
to contain content with a high level of redundancy, transferring
all raw video content from all of the cameras is also likely
to be wasteful. Doing so may also delay the transfer of key
information with regards to some of the objects of interest.
Finally, having to look at large volumes of video may cause an
inherent information overload on humans who man the central
controller.

1Natural disasters come with at least some destruction of physical network
infrastructure and this impacts communications [2].

In this work, “we seek to extract accurate situation aware-
ness information from the camera feeds from a set of wireless
cameras, and deliver it in a timely way to an operations
center that handles search and rescue, when presented with
bandwidth constraints.” Before we describe the challenges in
addressing this overarching objective and our contributions, we
first formally define our view of how the situation awareness
information is gathered and sent to the operations center. We
envision that multiple autonomous camera-equipped sensors
with possibly overlapping views, are deployed in the field and
are used towards searching for particular objects of interest.
The camera nodes possess processing capabilities and can
locally extract situational information about the objects of
interest from captured video feeds. They can then report
information extracted from the videos (e.g., frames or parts
of a frame) to a central controller via a wireless network
with limited available bandwidth. The controller sends queries
which seek for example, to determine whether there was an
object of interest (e.g., a human, a vehicle, or a backpack)
present at a specified location at a specified time.

Challenges: In order to achieve our overarching goal, we
need to tackle some key challenges. First, we need to identify
those videos that contain the “same” object of interest (at a
given location and at a given time) in an automated way; in
essence an object needs to be re-identified across the cameras.
This is critical in elimination of redundant content (only if
the camera views are capturing the same object can they be
considered redundant). Depending on the location of the object
relative to the camera, today’s vision algorithms might not be
able to categorically determine if there is a real object in view.
They can only provide an assessment of the accuracy of their
detection. Thus, a challenge we need to address is “how to
effectively aggregate information sent from multiple cameras
to improve the quality of object detection?” Finally, the transfer
of all of the raw data with respect to all the detected objects
may still be beyond the network capacity. Thus, how can we
identify redundant content, and choose only the most relevant
sub-set of this content and transfer this information back to
the central node?

Our framework in brief: Towards addressing the above
challenges and providing accurate and timely situational
awareness with regards to objects of interest in the field, we
design and implement a framework that we call ACTION.
ACTION has the following component modules: (i) each
individual camera has a module that aids lightweight object
detection from the video collected; here we leverage state of
the art computer vision algorithms (ii) a novel module that
facilitates coordination across multiple cameras to aggregate
information towards (a) re-identification of an object across



multiple cameras and (b) using the joint camera views of the
object to improve the quality of detection, and finally, (iii)
a module that, based on the previous step, selects a sub-set
of the video feeds for transfer to the central controller, that
provide the highest accuracy given a bandwidth constraint. In
what follows, we briefly describe the functions of each of the
three modules. To keep the narrative clean, we focus on human
detection; with minor modifications, ACTION is applicable
for the detection of other types of objects (e.g., animals or
luggage).

ACTION in action: To facilitate effective object detection
at each camera node locally, we leverage state-of-the-art detec-
tion algorithms from the computer vision community. In brief,
a sliding window (covering a block of pixels) is used on key
frames to detect whether or not an object of interest is present
in that block. Unfortunately, even these algorithms may suffer
from false positives or false negatives due to occluded views
where the objects are partially covered by other objects. Thus,
as discussed below ACTION combines the information from
multiple camera views to significantly enhance accuracy.

Object reidentification across cameras: The first challenge
ACTION resolves is to determine if what is classified as
an object of interest by one camera is also perceived to be
the same object by another camera (or cameras) with an
overlapping view. This is referred to as the re-identification
problem (objects are re-identified across cameras). ACTION
uses a novel method that maps the 2D view to a 3D location.
This 3D location as perceived by the different cameras, is used
jointly with the color features of the object to perform the re-
identification.

Maximizing accuracy using multiple camera views given
bandwidth constraints: Given the bandwidth constraints, AC-
TION does not exchange raw videos among the cameras.
Instead, all nodes with overlapping views extract metadata
with respect to detected objects, and send this metadata to a
common node (called the fusion node). The fusion node jointly
examines the metadata and first resolves the aforementioned
re-identification problem. Next, the ACTION software at the
fusion node identifies the combination of camera views of
a particular object that yield the highest associated detection
accuracy (lower false positive and false negative rates) while
adhering to a timeliness constraint (that is determined by
the bandwidth available for transferring the information). It
essentially models the network as a knapsack, and the gain
associated with each frame is dictated by the probability that
an object is correctly detected in that frame. It then uses a
greedy approach to select and send those frames that either
satisfy the detection criterion, or fill the knapsack (sends all the
frames that the bandwidth permits). It relays this information
back to the cameras which transfer the actual frames.

Evaluations: We consider human detection (i.e., humans
are the objects of interest) and evaluate ACTION’s perfor-
mance. Specifically, we emulate our scenario by implementing
ACTION on Android devices preloaded with a dataset that
consists of video sequences captured from 4 different cam-
eras [3]. Our evaluations show that by considering views from
multiple cameras, ACTION can detect ≈ 20% more humans
than when using the video from a single camera. Further, it
achieves a very high accuracy rate of ≈ 90%, if an object is
detected by at least 2 cameras (with a single camera it can be at
most ≈ 72 %). In terms of resource usage, ACTION can reduce
the bandwidth usage threefold, compared to uploading all the

detected frames directly to the central controller. In addition,
with ACTION, even though information from 4 cameras is
used, the amount of transferred data is only ≈ 1.4 times higher
than the amount of data transferred when one camera is used,
while providing a significant higher detection accuracy.

II. RELATED WORK
We divide relevant related work into 4 main categories:
Object detection: We leverage state-of-the-art human

detection algorithms from the computer vision community.
These algorithms can be easily applied to detect other types
of objects (e.g., vehicle, animals) with appropriate datasets.
For human detection, different features [4][5] and machine
learning techniques for building the detection model [6][7]
have been proposed. We leverage the technique described in
[7] to effectively detect humans in videos at individual camera
nodes, in ACTION. Details on how we do so will be provided
in Section III-B.

Object association across camera views: Object asso-
ciation refers to the identification of the same objects (e.g.,
humans) captured from overlapping camera views. In [8],
people are assumed to stand on the ground; human positions
are then computed by projecting the detected positions onto the
ground-plane. Positions that are within a distance threshold
on this plane, are considered as being associated with the
same human. Implicitly they assume that the ground co-
ordinate is known. However, we do not assume that this will
be the case in ACTION; humans can stand on objects or on
uneven ground. We provide a novel association mechanism (we
call it re-identification) in such cases. In [9] and [10], color
features of detected regions are leveraged (compared across
cameras) to identify images of the same human. In ACTION,
we jointly consider such color information with the 3D position
information (obtained using our approach), relating to each
human detected from different camera views, to achieve a high
association or re-identification accuracy.

Detecting and tracking objects in multi-camera net-
works: In [11], multiple cameras collaborate to detect hu-
man heads; for each detected head position in an image,
the associated 3D position of the head is estimated. Nearby
head locations are identified and combined by comparing
their Euclidean distances. Other efforts on object tracking
[3][12] build complicated 2D to 3D mapping models which
require high computational overheads. Since we seek to ensure
low resource consumption, these cannot be applied in our
framework. Further, data communications between the nodes
is not a concern in these designs; in ACTION we seek to limit
the amount of data transferred to a central controller.

Redundancy reduction in video transfers over net-
works: Recent related work considers the reduction of re-
dundancy of content transferred over networks [13], [14]. In
these efforts, metadata (or the entire video/image content) is
exchanged between nodes and the controller to detect and
suppress redundant content. However, they do not eliminate
unnecessary content (e.g., views that do not contain relevant
objects). They are also unconcerned about the accuracy of
detection of such objects (as is the case with ACTION); in
fact, some redundant content may be transferred in ACTION
to improve the accuracy of object detection.

Zhang et al. [15] build a multi-camera surveillance system.
In their system, if an object is detected by multiple cameras,
only a single view containing the object is uploaded; all other
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Fig. 1: Architecture of ACTION

views that contain the same object are treated as redundant
and suppressed. They only consider sufficiently high resolution
input video feeds; and thus, all objects are considered correctly
detected. In ACTION, information from overlapped cameras
is “aggregated” to improve the detection accuracy and views
are chosen depending on the bandwidth constraints.

III. THE ACTION FRAMEWORK

In this section, we describe our framework, ACTION,
for extracting and reporting situational-awareness information
in bandwidth constrained multi-camera networks. To aid the
narrative, we use human detection as a specific use case. In
some parts of ACTION, therefore, we leverage state-of-the-
art techniques in human detection from the computer vision
community to identify the presence of humans from the video
feeds. However, the same or very similar techniques can be
used to detect other types of objects (e.g., vehicles, suitcases,
animals)2. We begin with an overview and then, describe
each of ACTION’s modules in detail. Figure 1 depicts the
architecture of ACTION.
A. Overview

The ACTION software is housed on three main compo-
nents: camera nodes, a fusion node and a central controller.
The camera nodes are deployed in the field. They may have
overlapping views, i.e., a location on the field could be
covered by multiple camera nodes. We assume that the camera
nodes communicate with the central controller using either a
cellular (i.e., 4G/LTE) connection, or a WiFi connection. The
communications between individual camera nodes, and one of
these chosen to be a fusion node is via a wireless channel
(using 802.11 ad hoc connection temporarily set up at the
scene).

We assume that a user who mans the central controller
sends queries to the camera nodes. The queries seek the
images of humans (the objects of interest in our use case)
who appeared in the field of view within a specified period
of time. Each camera node extracts features from the video
sequences that it has captured towards detecting the presence
of humans. When a human is found, metadata associated
with the position of the human (we call this the detection
window), is computed and sent to a fusion node. The content

2This is because these techniques are based on machine learning and are
trained using appropriate datasets collected in such settings; if an appropriate
dataset with regard to the different types of objects are used to train the system,
the algorithms can be used in these other cases.

in the metadata includes information such as the timestamp,
the probability (or confidence) that the detected object is a
human, and location of the human in the snapshot image, etc.;
more details are provided later in the section.

Upon receiving all the metadata from the camera nodes
sharing overlapping views, the fusion node first performs re-
identification of the human object across the cameras (to
determine which camera views correspond to the same hu-
man). We simply assume that the fusion node is one of the
camera nodes which share overlapping views (this set can be
determined by transmission of beacons). We arbitrarily select
one of these nodes for collecting and aggregating the metadata;
more intelligent algorithms can be used to choose the fusion
node [16], but that is not the focus of this work.

After re-identification, the fusion node runs a greedy al-
gorithm to identify the “most relevant” detection windows
from the plurality of camera views. In brief, we formulate the
problem as a variant of the classical Knapsack problem [17]
and design an efficient greedy algorithm to solve it. The avail-
able bandwidth is equally shared among all detected humans.
Thus, for each human, the bandwidth allocated dictates the
size of the knapsack and the accuracy requirements determines
which video frames are inserted into the knapsack (chosen for
transfer). The fusion node notifies all the cameras about the
windows that are selected for transfer by the greedy algorithm.
Upon receiving this notification, the chosen camera nodes send
the relevant windows directly to the central controller. We wish
to point out that the fusion node only receives the lightweight
metadata information; we avoid transferring the actual video
data between nodes.
B. Object detection at individual cameras

Upon receiving a query from the central controller, the
camera nodes process their locally stored media source
(videos/ images) to locate images of humans to respond to
the query. If the media source is a video sequence, in order
to reduce the processing overhead, only the key frames or
video frames at pre-specified intervals are processed for human
detection. This interval typically should be chosen based on the
dynamics of the setting.

We do not design new computer vision algorithms for
object detection in ACTION. Rather, we leverage a state-of-
the-art human detection technique proposed by Dollar et al. [7].
With this technique, a detection window of size 128x64 pixels
is slid across the input image to check for the presence of
humans (at different positions within the image). A detection
model based on such a fixed size detection window, is only
effective in detecting humans whose sizes are similar to that
window size. However, humans that appear in a frame could
vary in size depending on the distance between the camera and
each such human. To overcome this problem, each input frame
is scaled to different sizes (so that humans in the view are also
scaled up and down by different factors) to try to match the
size of the detection window. The sliding detection window is
then applied to all sizes of the input image. A detection hit
on a “resized” version of the image will be mapped onto the
corresponding position in the original sized frame.

When the sliding window is moved to a new position,
the pixel values inside the window are computed and used
as features for the human detection process. Specifically, the
image is transformed into 10 different representations (called
image channels). These include 3 color channels in the LUV



Algorithm 1 Adaboost learning process
Inputs:
• Training samples {x1, y1}, ..., {xn, yn} where yi = {−1, 1} indicates a

negative and a positive sample, respectively
• T: number of learning steps
• N , N ′: number of positive and negative training samples, respectively
Initialize: For each item xi, set weight w0,i= 1

2N
, 1

2N′ for positive and
negative samples respectively
1: for t = 1 to T do
2: Normalize weights: For each item xi, set wt,i =

wt,i∑
i wt,i

3: for each feature fj do
4: Train a weak classifier hj as in Eq (1)
5: Compute the error rate ξj =

∑
i wt,iI(hj(xi) 6= yi), where I is

the identity function
6: end for
7: Choose the weak classifier which has the lowest error rate ξt
8: Set βt = ξt

1−ξt
, and αt = −logβt

9: for each learning sample xi do
10: Update its weight: wt+1,i = wt,iβ

1−ei
t ; where ei = 0 if sample

xi is classified correctly, otherwise ei = 1
11: end for
12: end for
Output: The final strong classifier H(x) =

∑T
t=1 αtht(x)

color space, 1 gradient magnitude channel and 6 gradient
orientation channels (for more details refer to [5]). Each pixel
in each channel is used as a feature associated with the
detection window; therefore there is a total of 128x64x10
features (corresponding to the window size chosen). To reduce
this high number of features, the Adaboost algorithm [18] is
used (discussed below).

First, a training set which includes “positive” image win-
dows (those with humans) and negative image windows (non-
human images) is built offline. All the samples in this training
set are resized to 128x64 pixels and have the same number of
features. Subsequently, the Adaboost algorithm is applied to
learn the classification rule as briefly captured in Alg. 1. The
number of learning steps T is pre-defined. In each step t, a
weak classifier h is learnt. Thus, at the end of T steps, we have
T weak classifiers. The final strong classifier H is constructed
as a linear combination of these T weak classifiers.

In its simplest form, a weak classifier hj is a classification
rule (for a detection window x) defined based on a single
feature fj . It is defined based on whether or not fj (a positive
value) is higher or lower than an associated (prespecified)
threshold τj and a polarity (θj = ±1, chosen to reflect the
correct inequality), as:

hj(x) =

{
1 fj(x).θj ≤ τj .θj
−1 otherwise

(1)

where, hi(x) = 1 indicates that x is a positive window
and a negative window otherwise. The polarity θi is used
to determine the correct inequality i.e., whether the value of
fi ≤ τi indicates a positive window, or otherwise.

Let N ′ and N be the number of negative (no human) and
positive (with human) learning samples, respectively. Initially,
all the positive samples x, are assigned the same weight, 1

2N .
The weights of the negative samples, x′ are set to 1

2N ′ . At
each step t, the feature which produces the lowest error rate
ξt (discussed below) is chosen as the weak classifier.

For each feature, the error rate is the sum of the weights of
all the samples x for which hi(x) 6= y(x), where y(x) = ±1

Pc
(xc,yc,zc)

PI
(xI,yI)

O

Image plane

center of 
projection

f

D

h
H

Fig. 2: Camera intrinsic information

is the label of training sample x. At each learning step, the key
idea of Adaboost is to decrease the weights of those samples
that are correctly classified. Specifically, the weight of sample
xi is kept unchanged if it is incorrectly classified. If xi is
correctly classified, its weight is reduced (adjusted down) by
a factor of βt that is a function of the error (line 8 in Alg. 1).
Thus, the weights of incorrectly classified samples are higher
than those samples that are correctly classified.

The strong classifier H will be distributed to the camera
nodes to detect humans in their captured videos/images.
C. Putting things together: Jointly considering overlapping
views

When an individual camera believes that it has detected a
human, it extracts metadata pertaining to the detection window
in which the human is detected. It then sends this metadata to
a fusion node. The fusion node is simply one of the camera
nodes which share the overlapping views as described earlier.
The metadata associated with each detection window includes
(i) A timestamp which indicates when the human appears in
the field of view, (ii) The location (a rectangular bounding box)
of the detected human in a 2D image coordinate system (as
discussed later, this location is converted to a location in the
real 3D world using a novel approach), (iii) The probability
that the human is actually captured in that window Pi; we refer
to this as the detection probability. Pi is computed from the
value of the strong classifier H (described in section III-B), (iv)
a compact color feature of the detection window, and finally,
(v) the size of the detection window.

At the fusion node, the goal is to combine the informa-
tion from the detection windows obtained from the different
cameras that are associated with the same human. In order
to do so, the fusion node converts the 2D locations from the
detection windows in the image coordinate system to a location
in the 3D real world coordinate system. These locations with
respect to the plurality of cameras are then compared towards
re-identifying the human in different camera views. If the
locations of two windows are within a threshold Tp, we
consider that the two windows are most probably associated
with the same human.

In many cases, there could be several people standing close
to each other; in order to verify and reduce the false matches
in such situations, we also compare the color features from
the detected windows. If the distance associated with their
color features are also within a threshold (Tc), the fusion node
concludes that the two windows depict the same human.

In the following, we provide details on how ACTION
computes the 3D location in the real world and uses the color
features in association.

Estimation of the 3D location of the detected human:
We use the camera calibration information of an individual
camera to estimate a 3D location Pw(xw, yw, zw) of a human
in the real world coordinate system (with a pre-defined origin



and axes agreed upon by all cameras) from its 2D location
PI(xI , yI) in the image coordinate system. The camera cali-
bration information consists of the intrinsic information K, the
rotation information R and the translation information T of
the camera [19]. R provides information with regards to the
angle the camera is tilted with respect to the three axes in the
real world coordinate system. T provides information about
the location of the camera itself in the real world coordinate
system. R and T form the extrinsic information of the camera.

The R and the T matrices are used to convert the 3D loca-
tion Pw(xw, yw, zw) of a human in the real world coordinate
system to a 3D location PC(xC , yC , zC) (of the same human)
in the camera coordinate system where, the camera itself is the
origin and the axes are tilted or rotated in conjunction with the
camera. This is captured in Eq 2:

PC = R ∗ Pw +T (2)

where, “∗” represents the product operation (of the matrices).
The intrinsic matrix K, which contains information about

the camera “projection point” and the focal length, helps
convert the 3D location PC into a 2D location PI in the image
plane, as shown in Fig. 2. In essence, it is simply a projection
of the 3D object onto the 2D plane in the camera’s view.

The task of converting the position of the detected human
in the image plane to a position in the real world coordinate
system consists of the following steps: (i) convert the 2D
location PI in the image plane to a 3D location PC in the
camera coordinate system, and (ii) convert the 3D location PC

to the 3D location Pw in the real world coordinate system.
It is a challenge to accurately compute PC because of the
lack of the third dimensional information when converting a
point from a 2D world to one in a 3D world. As evident from
Fig. 2, multiple 3D objects can project to the same 2D object
in the image coordinate system (e.g., any point along the line
connecting PI and PC is projected onto the same point PI in
the image plane). Note here that the distance D between the
detected human and the camera is not known.

In ACTION, we estimate the value of PC by considering a
plurality of human or object heights and determining whether
or not two camera views converge in their 3D location esti-
mates for any of these heights. In more detail, let h be the
height of the detected human in the image coordinate system
(the height of the detection window). Let H be the height of
the human in real world. D is computed as:

D

f
=
H

h
(3)

where f is the distance between the center of projection
(see Fig.2) of the camera to the image plane (this is the
camera’s focal length and is provided in the camera’s intrinsic
information K). Once D is known, PC can be computed from
PI easily.

We assume a set of possible values of the height of the
detected human, H = {H1, H2, ...Hn} (e.g., from 3ft to 6ft,
etc.)3, and come up with the corresponding values of Dj using
Eq 3 (for each Hj , j ∈ {1, n}). The values of PI (the 2D
location) and each Dj (distance to the camera) are then used
to compute the possible values of PC = {PC1, PC2, ..., PCn},

3If ACTION is used to detect other types of objects, appropriate heights of
the objects (e.g., 4ft to 6ft for sedan cars) should be used.

as depicted in Fig. 2. Finally, the corresponding values of Pw

are computed for each PCj , using Eq 2.
Each camera node sends its intrinsic information (including

the focal length), location and orientation computed based
on the reference world coordinate system (which are used
to calculate R and T [19]) to the fusion node4. The camera
nodes update the fusion node if the positions or orientations of
the cameras change. With respect to each detection window,
its size and the coordinates PI of the center point of the
rectangular window are also included as metadata. This allows
the fusion node to compute Pw, with respect to the window
for each considered Hj , j ∈ {1, n}. Subsequently, the fusion
node groups the “nearby” windows (if the Euclidean distance
between the Pw values, for any j, is less than a pre-defined
threshold Tp) from multiple cameras, together into candidate
sets. Note that this requires a pairwise comparison of the Pws
from each camera for all values of j.

Using color and texture features: Unfortunately, humans
in the field can stand close to the others and this can lead
to false matches, i.e., wrong inferences can be made with re-
spect to re-identification, if only the Euclidean distances were
considered (as computed in the above discussion). Therefore,
ACTION also compares the color and texture features in the
detected windows of the candidate sets to reduce the number
of false matches.

We use the “Mean Color” feature proposed by Hirzer et
al. [21], which is extracted from each detection window in
the above step. Each detection window is resized to 64 ×
128 pixels to ensure that the sizes of the color features of
all windows are the same, regardless of the original sizes of
the windows (which reflect the sizes of the objects captured
in the frames). After this step, the mean color feature of a
detection window is a 55,000-dimensional vector. Given this
large dimension, Euclidean distance is not an effective measure
for comparing the feature vectors between detection windows.
First, we use principal component analysis (PCA) to reduce
the dimensionality of the color features. Subsequently, we use
the Mahalanobis distance (proposed in [22]) to compare the
features. The Mahalanobis distance between two vectors xi
and xj is defined as:

d(xi, xj) =
√
(xi − xj)TA(xi − xj) (4)

where (xi − xj)
T is a transposed matrix, and A is called

the Mahalanobis matrix and is learnt from a training set.
Our training set consists of two subsets. The first subset
S, contains images of the same humans (with the same
timestamp) collected from different cameras; the second subset
D contains images of different humans (with the same times-
tamp) collected from different cameras. Matrix A is trained
to minimize the distances between the elements in S while
maximizing the distances between the elements in D. The
problem is formulated as a constrained optimization problem,
and an iterative framework based on a binary search is used
to find an optimal matrix A (see [22]). If the Mahalanobis
distance between the color features of two detection windows
(which have been already matched up with respect to position)
is less than or equal Tc, we assume that the humans in the two
windows are the same.

4Camera calibration information for distributed fixed camera networks can
be effectively obtained using prior approaches on computer vision (e.g.,[20]).



Algorithm 2 Greedy algorithm for choosing detection win-
dows for a detected human
Inputs:
τ : Transfer time for this human

1: Remove detection windows Wi whose size(Wi)
Bi

> τ
2: Sort remaining detection windows (in descending order) by “profit densi-

ties” PDi =
| logFi|Bi
size(Wi)

3: Compute k=min{j∈1,...,n}:
∑j
i=1

size(Wi)
Bi

> τ

4: Compute V k−1
1 =

∑k−1
i=1 | logFi| and Vk = | logFk|

5: if V k−1
1 > Vk then

6: Choose {W1, ...,Wk−1}
7: else
8: Choose Wk

9: end if

D. Transferring the most relevant information given bandwidth
constraints

We assume that the bandwidth from each camera node to
the central controller is known (Tools such as iPerf can be
used for short durations for determining this [23]). We assume
that the bandwidth information is also conveyed to the fusion
node as part of the metadata. For each detected human, we
seek to select and transfer the most relevant camera views
sufficient to achieve a desired detection probability P (e.g.,
P = 0.9), within a pre-specified delay. However, achieving
the detection probability and this delay simultaneously may
be impossible depending on the available bandwidth. Thus, we
modify our objective to maximizing the detection probability
(of humans), subject to an available bandwidth constraint,
which is formalized in Eq 5.

maximizePi∈{0,1} P = 1−
∏
i

(1− Pi) = 1−
∏
i

Fi (5)

subject to
∑
i

size(Wi)

Bi
≤ τ.

In Eq (5), Pi, Fi = 1 − Pi, and size(Wi) are the detection
probability, false detection probability and size of a detection
window Wi (in bytes) from each detected human, respectively;
the index i varies over all views of that human. τ is the
delay requirement specified in seconds and Bi bytes/second
is the bandwidth from camera i to the central controller (note
that the channel conditions and contention would dictate this
bandwidth). The value of P is computed based on detection
probabilities associated with the windows considered for trans-
fer. Specifically, if multiple detection windows Wi agree on a
human presence at a given place, at the query specified time,
the probability of a false detection at that location (when all
cameras yield incorrect results) is F =

∏
i(1 − Pi) =

∏
i Fi;

thus, P = (1 − F ). Thus, those windows which maximize
P , are chosen for transfer, while adhering to the bandwidth
allocated.

The objective in Eq (5) is equivalent to the minimization
of
∏

i Fi, Fi ∈ (0, 1] which in turn, is equivalent to the
minimization of

∑
i logFi, for all Fi ∈ (0, 1], with the

same bandwidth constraint as before. Since logFi ≤ 0 for
all possible values of Fi (Fi values are less than 1 since
they represent probabilities), the minimization of

∑
i logFi

is equivalent to the maximization of
∑

i | logFi| (since logFi

is negative and monotonic). Thus, the optimization problem in
Eq (5) is equivalent to the following problem in Eq 6.

maximize V =
∑
i

| logFi| (6)

Algorithm 3 Algorithm for sending best relevant detection
information to the central controller
Inputs:
N : Number of humans present in the field
Bj : Available bandwidth of each camera j
P : Desired detection probability for each human
τ : Delay requirement //for all detected humans

Initialize: Remaining humans, n = N

for each human Hi, i = 1 to N do
2: Available transmission time τi = τ

n
False detection rate FHi = 1

4: Select detection windows using the Greedy algorithm (Al. 2) with
corresponding τi
for each selected windows Wij do

6: Send Wij //view j for human i
τi = τi −

size(Wij)

Bj

8: FHi = FHi(1− Pij) //update false detection rate
if FHi ≤ (1− P ) then

10: break; move to next human;
end if

12: end for
τ = τ − ( τ

n
− τi) //share leftover time for other humans

14: n = n− 1 //number of humans need to send data
end for

subject to
∑
i

size(Wi)

Bi
≤ τ

The above problem can be mapped onto a Knapsack
problem [17]. The maximum tolerable delay (specified) for
transferring the information pertaining to each user, to the
central controller, corresponds to the knapsack size. The goal
of the fusion node then, is to choose the views that maximize
the sum of the utilities (| logFi|) of the objects (camera views)
that are placed into the knapsack. Unfortunately, the problem
as defined above is known to be NP hard [17]. Therefore,
ACTION uses a well known greedy algorithm (detailed in
[24]) to fill the knapsack. As the name suggests, the algorithm
greedily chooses the most relevant windows from the multiple
cameras for being sent back to the central controller in
response to its query, while adhering to the delay constraint
given the bandwidth.

With the greedy algorithm, the detection windows are
sorted (in descending order) at the fusion node, in terms of
their “profit densities” which are defined as PDi =

| logFi|Bi

size(Wi)
.

Here, note that in the general case, the detection windows from
the different camera nodes vary in terms of the number of
bytes. The knapsack is filled from this sorted list; the view with
the highest profit density is inserted first and so on. Let Wk be
the first window (as the list is traversed) that causes a violation
to the bandwidth constraint; here, k=min{j∈1,...,n} such that∑j

i=1
size(Wi)

Bi
> τ . The greedy algorithm then chooses either

the set of windows {Wi, ..., Wk−1} or the single window Wk,
depending on whether the value V k−1

1 =
∑k−1

i=1 | logFi| is
higher or lower than Vk = | logFk|, respectively. It is shown
in [24] that the profit VG obtained using the greedy algorithm
(VG = max{V k−1

1 =
∑k−1

i=1 | logFi|, Vk = | logFk|}) is
guaranteed to be ≥ 1

2VOPT , where VOPT is value of the
Knapsack when filled optimally [24]. The pseudocode for the
greedy algorithm is shown in Algorithm 2.

Operations in Practice: The pseudocode of our bandwidth-
aware data selection process at the fusion node is presented in
Algorithm 3. Specifically, we divide the available time equally



among all of the humans that are detected5. For example, if a 1
second period is available to transfer the information and there
are 3 humans detected, we allocate 0.33 seconds to transfer
the detection windows associated with each human. For each
human Hi, we apply the greedy algorithm (Algorithm 2) with
available transfer time τi of that human to select best relevant
windows to fill the knapsack. The relevant detection windows
are transferred in order (we assume that the fusion node tells
each camera node when and what frames to transmit) until one
of two conditions is met (i) the duration for sending data with
respect to that human expires, or (ii) the required detection
accuracy with respect to this human has been met.

We modify the Knapsack problem to ensure that we do
not waste bandwidth if the detection probability is higher than
a sufficient (desired) value. In other words, if a desired P
is achieved (i.e., the detection accuracy is met) but there is
leftover bandwidth (time) after the associated, “sufficient” set
of detection windows relating to the human are transferred, the
residual time (bandwidth) is equally shared for the transfer of
windows with respect to the other humans, as shown on line
13 of the algorithm.

IV. IMPLEMENTATION

In this section, we describe the implementation of AC-
TION. Our implementation consists of a fusion application,
a detection application and a server application. The fusion
application runs on a pre-specified Android phone and receives
metadata relating to the detection windows, from multiple
instances of the detection application that are in turn running
on Android smartphones. The detection applications interact
with the fusion application, receive fusion decisions from the
fusion node and finally upload chosen detection windows to a
server application which represents the central controller.

The detection application: We implement our detection
application on Asus ZenFone II smartphones with Android 5.0
OS. These are used as the camera nodes in our prototype. The
application was written in both Java and native C++ (JNI). We
partly use the source code provided by the authors of [7], to
convert the input image into different channels and to extract
its features for human detection (as described in III-B). We
use the OpenCV library for all other image processing tasks.

Note here that we use smartphones, as they are popularly
used for video capture today [25], to emulate camera nodes
with local processing capabilities. In a real scenario, one could
envision static, programmable cameras (e.g., Pixy [26]) that are
mounted on ceilings or walls are used. Such cameras could
capture higher resolution videos; however, we believe that
today’s smartphones already offer very high resolutions and
devices that are similar architecturally can be used for this
purpose. However, we acknowledge that with other platforms,
the results could differ from those that we present in Sec-
tion V. For example, other platforms may have more powerful
batteries and processing capabilities.

An input image is scaled into 23 different sizes for human
detection. In order to reduce the computational overheads, we
only compute image features at 3 specific base scales; image

5In ACTION, a record with respect to a human is put into a queue when
all the information related to that human is available at the fusion node.
Information relating to the human whose associated record has the earliest time
stamp is considered first for transfer. Other policies are possible (prioritization
of records as per other criteria) but we do not consider this.

features at other sizes are estimated based on the features
determined at the base scales, as described in [27].

Camera node operations: Upon receiving a query from the
server application, our detection application reads the input
video sequence and checks for humans in every 10th frame
(once every 0.5 seconds). In practice, this parameter should
be chosen based on the area of the monitored field, number of
deployed cameras and the moving speed of tracked humans.
The value 0.5s chosen in our implementation is based on the
availability of the ground truth information in our data set
[3], which is described later in section V. When a human is
found, the application extracts the metadata associated with the
detection window as described in section III-C and uploads this
information to the fusion node.

The output of the human detection algorithm is a detection
score of the window. The higher the score, the higher the
probability that the window contains an image of a human.
We convert the detection score to a corresponding detection
probability using the training data as follows. The detection
scores are quantized into 20 bins. For each bin value x, the
probability is given by the ratio of the number of correct
detection windows (based on the ground truth information)
to all the detection windows that have a detection score of at
least x.

To extract the color features from the detection windows,
we first resize all the windows into 64x128 pixels. This ensures
that the color features of all detection windows will have the
same length. The extracted mean color feature of each window
is a 55,000 dimensional vector. To reduce the communication
overhead, we apply PCA to reduce this size to 40 dimensions,
as in [21], before uploading the information to the fusion node.
Further, we compress the detection window (using the jpeg
format) and use the compressed version for transfer.

The fusion application: The fusion application is written
in Java and can be executed on any Android smartphone.
Currently, we statically assign one of the camera nodes to act
as the fusion node; however, in practice, nearby camera nodes
can be grouped into clusters, and for each cluster, the fusion
node can be chosen based on which of the nodes has highest
computational power or residual energy.

Fusion node operations: The fusion node will receive
metadata with regards to detection windows from multiple
surrounding cameras. For each detection window, the fusion
considers a set of 17 possible heights of common humans
(from 120 cm to 200 cm) and converts the 2D location in
the image to a set of 17 possible 3D locations of the detected
human. Locations and color features of the detection windows
are used to detect and associate windows that capture the same
human. Specifically, we use the threshold Tp = 1.2m for
location, and Tc = 18, 000 for color (Mahalanobis) distance to
group detection windows. We show the effectiveness of using
these values in Section V.

When the metadata with regards to a new detection window
arrives, the fusion node checks to see if it can be correlated
with the metadata from that of another camera node. If it can-
not find a correlation with any previously received metadata,
the fusion node considers the window to be the first window of
a newly detected human and creates a new group for it. When
metadata associated with other windows corresponding to the
same human arrive, they will be grouped together. Locations
of individual windows in a group are averaged to compute the



location of the centroid position, which is used to represent the
whole group. For each group, there are multiple positions Pw

of the centroid corresponding to the considered heights, Hj ; in
order to be considered to belong to a group, the newly received
metadata must reflect a position that is within the threshold Tp
with respect to one of the n, Pw values (i.e., corresponding
to each of the heights Hj). Further, the distance between the
color feature of the window and that of at least one of the
windows in the group must be within Tc.

In cases when one detection window can be grouped into
different groups, the fusion nodes includes the new window in
the group which has the minimum Mahalanobis color distance
to the window, since “color distance” is more distinctive than
“position distance” if people are close to each other (these
are the primary reasons for errors in reidentification based on
position alone).

After partitioning the detection windows into groups, the
fusion node chooses the most relevant windows from each
group based on the greedy algorithm described in section III-D,
and notifies the camera nodes if they have the chosen windows.
Subsequently, the camera nodes transfer image data directly to
the central controller.

The server application: The server application runs on
a Linux server; its only duty is to send queries with specific
time-stamps, and receive content (parts of frames with detected
humans) from the camera nodes after being instructed to do
so by the fusion node.

V. EVALUATIONS

In this section, we evaluate both the accuracy as well as
the efficiency (in terms of resource consumption) of ACTION.
We begin with a description of the datasets we use and how
we determine the ground truth. Later, we provide our results.
A. Training and test datasets

1) Data set
We use the “Multi-camera multi-object tracking” data set,

made available by the Computer Graphics and Vision group
at Graz University of Technology [3]. The dataset contains
6 indoor video scenarios. Each scenario has 4 different syn-
chronized video sequences, captured by 4 different cameras.
In each video, there are about 4 to 6 people walking around in
the same room. At different times in the videos, the people can
be separated spatially or could be closely clustered together.
We use the first video sequence as the training set to calibrate
ACTION, and the other sequences as the test data.

The human detection model is built using the Inria pedes-
trian dataset [4]. This contains thousands of images of humans
in different poses. Thus, the detection model is not calibrated
by the small set of humans that appear in our first data set,
and can be used to detect humans in general cases.

2) Obtaining ground-truth information
The data set that we consider is annotated with information

that provides ground truth at a coarse-grained level. Specifi-
cally, once every 10 frames, the 3-D, real world coordinates
of the “foot” of each person in the frame, is provided. As
discussed earlier, we can convert these co-ordinates to the 2-
D coordinates in the image coordinate system of each camera
(using Eq (2)). The data set also provides the identifier of the
human the foot belongs to (human ID).

Each detection window is a rectangular area within the
frame as discussed earlier. We check if the aforementioned 2D

coordinates (of the “foot”) fall within each detection window.
Each detection window which contains such coordinates, is
associated with a human ID. In cases where there is more
than one human in the detection window, we may have false
positives. To eliminate these, we mark those windows and
manually check the ground truth information (to determine
which human is in the detection window).
B. Improving detection accuracy with overlapped camera
views

1) Setting thresholds for accurate detection
Below, we first describe how we determine the thresholds

Tp (the Euclidean distance between the plausible 3D locations
of a detected human, from the perspective of multiple cameras)
and Tc (the Mahalanobis distance between the color features
that correspond to the same human, from different cameras).

From the training video sequence, we create two different
sets: (a) set S contains pairs of detection windows that show
the same human, captured at the same time by different
cameras, and (b) set D contains pairs of windows that show
different humans captured by different cameras. For each
detection window, we compute the possible positions of the
human (based on a set of considered heights) as described in
section III-C, and compute the minimum Euclidean distance
(with respect to all considered heights) between each pair of
windows in set S and in set D. We show the CDF of the
distances in Fig. 3. Based on the results, we set threshold
Tp = 1.2m; from the figure we see that this results in the
detection of more than 80% of the windows of the same human
with about ≈ 30% false matches. An increase in this threshold
would result in a higher false positive rate; a decrease would
reduce the number of correct detections (true positives). This
seems like a reasonable compromise. Next, we compute the
Mahalanobis distance between the color features of each pair
in set S, and in set D. We show the CDF of this distance in
Fig. 4. Based on the results, we set threshold Tc = 18, 000.
With this threshold, we are able to detect more than 90% of
windows with the same human, with an expense of ≈25%
false matches (false positives).

We point out that it is important to achieve a high true
positive rate while keeping the false positive rate low. The
former would reduce bandwidth usage as fewer windows of
the same human need to be transferred; however, incorrect
matching of different humans might cause the missing of the
transfer of data associated with a particular person. When both
the position and color are combined, we are able to achieve
a true positive rate of ≈ 91% and a false positive rate (when
windows containing different humans are incorrectly grouped)
of ≈ 9 %. ACTION classifies a group of detection windows as
“correctly matched,” based on a majority rule. If at least half of
the detection windows correspond to the same human (based
on the ground truth information), the matching is considered
correct; otherwise it is considered incorrect.

2) Does the use of more cameras yield better performance?
Next, we perform experiments to determine the benefits of

using a plurality of cameras in ACTION. One of the metrics we
use is what we call the recall value. This value is the number
of times that a human is correctly identified from among
all the times she appears in the captured videos (transferred
to the central controller). It is expressed as a percentage. If
multiple cameras are used, at least one of the cameras needs
to correctly detect the human. We measure how the recall
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value changes, when different numbers of cameras are used
for human detection.

When only one camera is used, all its detection windows
that reflect the presence of a human are transferred. If multiple
cameras are used, we posit a requirement of 0.9 on the detec-
tion probability P . In other words, the fusion node requires
the transfer of detection windows until this requirement is met
or the time constraint imposed (by the bandwidth requirement)
does not allow any additional transfers. In these experiments,
that time constraint is set to 0.5 seconds.

In Fig. 5, we show the results from both of our data sets.
As one might expect, the use of a higher number of cameras
results in a higher recall value. However, the improvements
depend on the extent to which humans are occluded from
camera views. In the first data set, humans are separated with
little occlusion. Thus, the increase is only modest as seen in
the figure. However, in the second dataset, the people are close
to each other and typically there is higher occlusion. Here,
the use of a plurality of cameras with ACTION results in a
significant performance improvement. Specifically, with only
one camera, the recall value is ≈ 64 %. It increases to more
than 85 % with four cameras.

We next evaluate ACTION in terms of the precision of
detection (aka the accuracy rate). Specifically, from among all
the detection windows reported to detect humans, the accuracy
rate represents the fraction that are correct reports. In the case
of multiple cameras, we require that at least two of them
correctly identify the (same) human (majority rule is applied
as discussed earlier). We again observe that the use of multiple
cameras significantly improves the accuracy rate. With dataset
1, the improvement is about 15 % while with dataset 2, the
improvement is about 20 %.

3) Impact of bandwidth constraints
In our next experiment, we illustrate how the greedy algo-

rithm for transferring relevant detection windows in ACTION,
performs as we vary the available bandwidth. The individual
nodes process the video sequences and upload metadata to the
fusion node once every 10 frames. The fusion node determines

the set of detection windows to be uploaded (as described
in Section III-D). The corresponding cameras are required to
transfer the selected information in 0.5 seconds. For ease of
disposition, we assume that the system is homogeneous i.e.,
the bandwidth between the controller and each camera node is
identical (we set this in our implementation). However, the
results can easily carry over to heterogeneous settings. We
again posit a requirement of 0.9 on the detection probability.

The results, presented in Fig. 8, show that under strict
bandwidth constraints only a small fraction of the detection
windows associated with each human is transferred. Thus the
detection probability requirement is not met; the achieved
detection probabilities are really low. However, as more band-
width is available, a higher number of detection windows
associated with each human can be transferred. The detection
probability increases gradually. However, there is a “saturation
point,” (available bandwidth = 2048 kbps) after which there is
sufficient bandwidth to transmit enough windows for achieving
the required detection probability P ; beyond this point there
is a negligible improvement in P (if at all), even with a
bandwidth increase.
C. Resource usage

In this section, we seek to evaluate ACTION in terms of
quantifying the bandwidth savings that it provides and the
processing overhead.

Bandwidth usage: Fig. 9 shows the bandwidth usage in
three different scenarios: (i) when images of all detection
windows from a single camera, are transferred directly to the
command node, (ii) when all 4 cameras transfer images of
all detection windows directly to the command node, and (iii)
ACTION is used and a target detection probability of ≈ 90%
is required with regards to each detected human. In the former
two scenarios, ACTION is not used. We show the results for
the case where the input video is processed every (i) 0.5s
and (ii) 2s, as in the previous experiment. Without ACTION,
the volume of data transferred by the 4 cameras is around 3
times as compared to when ACTION is used. With ACTION,
typically, only data from the best 1 or 2 cameras need to
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be transferred; thus a significant amount of unnecessary data
transfers is avoided. Note here that if more than 4 (overlapping)
cameras are available, one could conceivably achieve even
a higher reduction in bandwidth usage. Further, note that
with ACTION (since only the most relevant information is
transferred), the total amount of transferred data (from 4
cameras) is only ≈ 1.4 times the data transferred by 1 camera.

Processing times on individual nodes: Fig 7 shows the
distribution of the time taken to process 1 frame towards
detecting a human on our Android smartphone. The resolution
of our test data is 1024x768 pixels. With this setup, the
maximum processing time is 600ms; in other words the
local algorithm for human detection on our smartphone-based
individual camera nodes in ACTION, achieves a processing
rate of ≈ 1.7frames/sec. This in turn suggests that a platform
such as a smartphone is sufficiently powerful to process the
video in near real-time. Since video frames can be processed
well in advance of a query, we believe that the system is
sufficiently responsive and deployable in real contexts.

VI. CONCLUSIONS

In this paper, we consider the problem of retrieving sit-
uation awareness information from a multi-camera network
in scenarios such as natural disasters where the bandwidth is
limited due to compromised infrastructure. In such scenarios,
the cameras cannot all transfer their content to a central
controller handling search and rescue operations. Thus, we
seek to only transfer those camera feeds that can provide highly
accurate input to the controller while ensuring the timeliness of
the transferred content. Towards this, we design and implement
a framework, ACTION. ACTION (i) uses state of the art
computer vision algorithms to detect objects of interest (e.g.,
humans or animals), (ii) uses novel approaches to jointly
consider views from multiple cameras and determine the views
that yield the best accuracy with respect to an object of interest,
and (iii) only transfers the best views to a controller while
adhering to bandwidth constraints. We implement ACTION on
a smartphone based testbed and show that it achieves a high
accuracy of ≈ 90 % in terms of detecting humans who are
considered as objects of interest, while reducing the bandwidth
consumption threefold.
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