
Automated Cross Layer Feature Selection for E�ective

Intrusion Detection in Networked Systems

Azeem Aqil

ú
, Ahmed Fathy Atya

ú
, Srikanth V. Krishnamurthy

ú
,

Paul Yu

†
, Ananthram Swami

†
, Je� Rowe

+
, Karl Levitt

+
,

Alexander Poylisher‡, Constantin Serban‡ and Ritu Chadha‡
úUC Riverside, †U.S. Army Research Laboratory +UC Davis ‡Applied Communication Sciences

{aaqil001, afath001, krish}@cs.ucr.edu, {paul.l.yu.civ, ananthram.swami.civ}@mail.mil {rowe, levitt }@cs.ucdavis.edu,

{apoylisher, cserban, rchadha}@appcomsci.com

Abstract—Traditionally, anomaly detection mecha-
nisms have relied on the inspection of certain man-
ually (by domain experts) chosen features in order
to determine if a networked system is under attack
or not. Unfortunately, the approach, while somewhat
e�ective in flagging known attacks, yields either low
true positive rates or high false positive rates when the
attacks are mutated slightly or in the presence of zero
day attacks. One can traditionally gather a lot of data
at di�erent layers (packet contents, application logs, OS
behaviors, etc.) as evidence that could be used for in-
trusion detection. However, it is not easy to determine
which of these evidence vectors or features are useful in
facilitating highly accurate intrusion detection. In this
paper, we undertake an in-depth experimental study
to determine whether appropriately trained search al-
gorithms can help us find the right set of features for
detecting a class of attacks (e.g., denial of service).
The output of such algorithms yields a set of features
that should potentially improve detection accuracy.
Towards this we monitor 365 features across system
layers and compare the detection performance of 3
popular feature selection algorithms to reduce the state
space of the feature set for two classes of attacks. We
find that the approach can yield significantly improved
detection accuracy in comparison to statically chosen
single features, sub or super sets of features of what the
algorithms yield.

I. Introduction

There has been a recent increase in both the frequency
and impact of cyber threats [1]. With network based at-
tacks expected to rise [2], it is critical that highly e�cient
evidence collection and intrusion detection techniques be
designed and deployed. Anomaly detection and signa-
ture based detection are the two most popular detection
approaches (e.g., [3] [4]). The e�ectiveness of these ap-
proaches however, is tightly dependent on the underlying
features (feature set of evidence) that are chosen.

There are multiple distinct sources of data that one can
use to collect evidence. Features can be selected from the
network, operating system, hardware or network layers.
However, selecting the optimal subset of features to enable
highly accurate intrusion detection is not easy. The quality
of the eventual feature set is dependent both on the
actual features, and the number of features. A set that
is too small lacks the information to correctly reason
about mutated or unknown attacks, while a set that is too
large contains frivolous features that introduce noise and
increase misclassification. Features are typically selected
by studying the behavior of known attacks. This further
complicates the problem for unknown or unseen attacks.
Most detection approaches use features that have been
carefully selected by domain experts. Such approaches, by

definition, require precise knowledge about network threat
semantics while also being prone to human judgment
errors. Modern detection approaches also generally only
use features from the network layer. Recent work has
demonstrated the utility in considering features across
di�erent layers [5].

In this paper, we seek to design a unified systematic
framework to collect meaningful cross-layer features that
are applicable to multiple classes of network attacks. Our
framework must automate and sequentialize the process of
feature selection and thereby enable the e�ective handling
of high-volume data for highly accurate intrusion detec-
tion. Futher, we want our evidence collection to be general,
in that the approach does not require deep knowledge
about network behavior.

A high level depiction of our framework is shown in
Figure 1. First, the system consists of an o�ine phase
wherein it is trained with attack and normal behaviors. A
large volume of evidence is collected o�ine from multiple
layers and for each case (di�erent attacks, normal), an
appropriate feature selection algorithm is then used to
downselect the number of features. During runtime, only
these downselected set of features are actively monitored.
These are then fed to an inference engine which then
provides an assessment of whether or not the networked
system is under attack.

Challenges: There are a number of challenges that
we need to address while building our framework. First,
while some features are readily available, the networked
system must be instrumented to collect other forms of
evidence that are not exposed (e.g., create hooks in the
OS). Second, one has to choose the right feature selection
algorithm to achieve the right trade-o� between accuracy
and complexity. Towards understanding this trade-o� we
compare and contrast three algorithms, namely Linear
Forward Selection (LFS), Sequential Backward Selection
(SBS) and Simple Genetic Algorithm (SGA) on a large
feature set that is collected. While one can expect the
genetic algorithm to yield the highest accuracy it also is
complex and takes a long time to run even on powerful
servers; the others could potentially yield lower accuracy
but run faster and on desktop computers. We seek to
understand the tradeo�s between accuracy, complexity,
and computation time for these three classes of algorithms.

To evaluate the e�ectiveness of automated cross-layer
feature selection, we use the features selected with two de-
tection (inference) engines viz., Dempster-Shafer Theory
based inference and K-Means classification. The former
outputs measures of likelihood (referred to as belief and

Collect All
Possible
Evidence

Run Feature
Selection

Algorithms

Downsized
Subset

Run
Inference
Engine

Classification

Offline:

Monitor
Downsized

SubsetRuntime: Features

Fig. 1: Overview of our approach

plausibility) with respect to normal and di�erent attack
behaviors and is thus able to better di�erentiate between
attacks and properly classify mutated attacks. The latter
is arguably the most popular classification approach and
allows us to reason about the presence or absence of an
attack, in more traditional terms. We point out here that
the automated feature selection process is independent of
the inference engine (i.e., any inference engine can be used
to classify behaviors).

Our work in perspective: There have not been many
attempts at addressing the problem we seek to solve. At-
tempts at applying feature selection algorithms to detect
network based threats ([6], [7], [8] [9]) have considered
only relatively small feature sets (less than 50) which are
often chosen manually themselves. They are also specific
to one particular kind of network attack. We consider
feature sets that are much larger (> 300), and could reveal
features that are better suited for specific attacks while
covering large classes of attacks. We also seek to automate
the entire feature selection process with little or no need
for domain expertise about network threats. Virtually all
attempts at detecting network threats, along with any
attempts at feature selection, only consider network layer
features. This is a problem because as new threats emerge,
experts are forced to come up with increasingly novel ways
to use network based features. We argue that contempo-
rary approaches fail to capitalize on information that is
present in features captured at other layers (OS, hardware,
application). Further, prior approaches do not address the
inherent uncertainty and noise that any selected features
are bound to have. We point out that our work seeks to
determine ”what features to consider” while making an
inference with regards to whether or not the networked
system is under attack. It is agnostic to how those features
are used in a detection engine. In our evaluations we show
the e�ectiveness of our features with two di�erent types
of inference engines.

Contributions: To the best of our knowledge, this
work is the first attempt at a unified approach (from
collecting the initial set of features to downselecting to the
eventual subset) at extensive cross layer feature selection
for intrusion detection. Specifically, we make the following
contributions:

• We design a framework that sequentializes and auto-
mates the process of cross layer feature collection and
downselection and eventual use of the downselected
features for intrusion detection.

• Our framework incorporates a novel, evidence collec-
tion module that captures a relevant set of initial fea-
tures by placing numerous monitors that are spread
across the hardware, network, OS and application
layers. We demonstrate this via a set of monitors
that collect extensive cross-layer features for 3 DoS

System Layer Source of Evidence

Hardware Hardware Counters, Perf Events
Network Raw Stream Data, Packet Headers, Socket Statistics
Operating System /proc Filesystem
Application Log Files

TABLE I: Source of Evidence

attacks, 2 SQL injection attacks, and normal behav-
ior.

• Via extensive experiments, we test the feature selec-
tion capabilities of three popular search algorithms
(LFS, SBS, SGA) and provide an analysis of their
respective accuracy versus cost trade-o�s. We find
that LFS and SGA have similar results, in terms
of detection accuracy, for DoS attacks. This is very
surprising since SGA performs a much more exhaus-
tive search; LFS finishes in a fraction of the time it
takes SGA to complete. SGA produces slightly better
results (detection accuracy) for SQL injection and
SBS selection lags behind the other two for both kinds
of attacks. Given the significantly higher runtime
associated with SGA, one has to carefully assess if
the slightly increased accuracy (< 10 %) warrants the
significant increase in complexity

• We build a complete system and show that feature
selection algorithms lead to good detection accu-
racy not only in detecting known attacks but also
a previously unseen attack that we construct. Our
system decouples the feature selection process from
the inference engine of an intrusion detection system,
and is thus readily deployable.

• We show that selecting too few or too many features
can actually hurt detection accuracy.

Scope: Our evidence collection approach is generic and
we expect it to be applicable to other network based
threats where features manifest at di�erent layers. For
tractability, we only test two di�erent kinds of attacks.
While our initial set of features is large (365 features), it
is by no means an exhaustive set. However, other sources
of evidence, when available, can be added to the initial set
and our approach would still be applicable.

II. Evidence Collection

The first step in our framework is to collect a very
large set of of features that is potentially relevant for
intrusion detection. Evidence collection is generally a hard
problem. Modern systems are so complex that they present
a seemingly limitless supply of features. This is one of
the primary reasons why traditional anomaly detection
systems rely so heavily on features selected by domain
experts. However, not only is it hard to do this for all
types of attacks, this may result in some key evidence
features being left out from consideration. Our approach is
to place monitors or sensors at multiple system layers. This
is because the e�ects of attacks on networked systems are
not felt in isolation at a single layer; their e�ects manifest
themselves at di�erent system layers. Some system based
diagnostics are readily available (e.g., application logs),
while for others we place hooks (e.g., in the OS) to
collect the evidence. The rest of this section describes our
monitoring of four system layers.

Hardware Layer: Typical Unix based systems export
hardware statistics via hardware counters. These counters

are intended for diagnostics purposes since they are indi-
cators of the overall system health. They are extremely
optimized with little sampling overhead. The values in
these counters can be easily accessed via system API
calls. We use all available hardware counters (on our test
system) as features that can be sampled as a function of
time. Examples of such features include CPU operating
frequency, CPU utilization, memory consumption, cache
hits, cache misses, core temperature, etc. The actual set
of hardware level features that can be used is ultimately
a function of the system under consideration.

OS Layer: The OS layer is the source of a wealth of
information, not all of which, unlike hardware counters,
can be easily accessible. However, the OS can be instru-
mented to provide information. We use the linux /proc
file system as our primary source of OS level features in
this work. The /proc is a virtual file system that exports
information about OS state in the form of parsable text
files (the files usually take the form Variable: Value). It
is important to realize however, that the /proc file system
contains thousands of files (each process has its own set of
files cataloging behaviors) the active monitoring of which,
together can typically overwhelm a single server. For now,
we only consider files in the top level directory and even
this results in a large volume of evidence; in heavy duty
custom systems, the sub-directories can be parsed also.
We developed a file parser that periodically pings all top
level files and records the value of each variable. We use
a sampling frequency of one lookup per second so as to
not overwhelm the server. Examples of features that can
be obtained using this methodology include the number
of system calls, the kernel load, the number of filesystem
lookups and the number of system interrupts.

Application Layer: Primary sources of application
layer information are log files. To detect DoS attacks we
look at all log files produced by the Apache web server and
to detect SQL injection attacks we look at all available
MySQL and Wordpress logs. The methodology is similar
to the one we described above but instead of /proc files
we parse application layer log files. We have developed a
log file parser that checks log files periodically and records
the value of each variable that is present. Examples of
features that are extracted from log files include web server
accesses, the number of requests that are being served,
number of requests queued, database lookups and SQL
errors.

Network Layer: At the network layer, examine the
raw packet stream plus raw network statistics exported
by the OS. We only consider packet header information as
features. Packet analysis allows us to collect information
such as the number of packets plus the kind of packet
(TCP SYNs, TCP ACKs, etc). We primarily use the
netstat tool which gives various network layer diagnostic
information that we use as features. Examples include
SYN packets, Sockets in ESTABLISHED state, sockets in
CLOSED state and network bandwidth.

Table I summarizes the sources of the features we col-
lect.The methodology outlined above allows us to collect
a set of 365 features. This list is by no means exhaustive.
For example, one potential source of evidence for SQL
injection might be obtained by looking at the SQL queries
themselves. This requires deep packet inspection, which we

do not consider due to its computational overhead. Other
evidence sources, however, can be added to our framework
as desired.

In essence, the relevant features are selected by launch-
ing normal behavior and attacks. A large set of features
is collected, and passed on to the feature selection algo-
rithms. The algorithms each output a subset of features
that they think are optimal. During runtime, these can
then be sampled with higher frequencies to facilitate
highly accurate detection.

III. Feature Selection

Our evidence collection module yields a large number
of features (in our prototype we collect 365 features in
total). The features are collected to classify each attack
and normal behaviors. Feature Selection (or choosing the
best subset of features from a large set) involves two com-
ponents. The first is an objective function and the second
is a search algorithm. The objective function evaluates
candidate subsets and returns a quantification of their
“usefulness”. This is then used by the search algorithms to
select new candidate subsets. We want to select features
that have high correlation with attacks and low cross-
correlation across features (the latter identifies redundant
and therefore unnecessary features.) We consider three
search algorithms, viz., Linear Forward Selection (LFS),
Sequential Backward Selection (SBS) and a Simple Ge-
netic Algorithm (SGA).

Objective Function: We use the correlation based
subset evaluator detailed in [10] as our objective function.
This evaluation function has been shown to have good
performance and it also ties in nicely with our search
goal. It evaluates the usefulness of a subset by computing
the correlation between the features and the classification
classes (attacks and normal behavior.) It also tries to min-
imize the redundancy between features. Two features that
are highly correlated (regardless of the labeled classes) are
considered redundant and only one is selected. In simple
terms, subsets of features that have low cross correlation
and high correlation with the labeled classes (attacks and
normal behavior) are preferred.

Linear Forward Selection: Linear Forward Selection
[11] is an optimization of the popular search algorithm,
Sequential Forward Selection [12] (SFS). In its simplest
form, SFS starts with an empty set and sequentially adds
features (i) such that at each step, F (Y, i) is maximized,
where Y is the set of previously selected features and F
is a function that calculates the usefulness of a subset
of fearures. SFS is essentially a simple hill-climb search;
it evaluates all possible single feature expansions of the
current set. The feature that results in the highest score
is added permanently and the algorithm terminates when
no single feature expansion improves the current score.
The problem with SFS is that the number of subset
evaluations that must be performed grow quadratically
with the number of features. This is not a big problem
when the search space is small but becomes a concern for
large sets. LFS improves on SFS by limiting the number
of features that must be considered at each step to 1. This
means that LFS has an upper bound on the running time
given by N(N+1)

2 where N is the total number of features
under consideration.

A forward selection algorithm however, cannot remove
a priori added features that become redundant with the
addition of new features. However, forward selection al-
gorithms in general are known to perform well when the
optimal subset of features is small. In addition, LFS has
low computational overhead.

Sequential Backward Selection: Sequential Back-
ward Selection [12] is the logical reverse of SFS. It starts
with the full set of features and sequentially eliminates
the feature i that “least” reduces the total value of the
set under consideration (as measured by the objective
function).

The main weakness of SBS is that it cannot re-examine
the usefulness of a feature after it has been eliminated.
SBS works best (in terms of the usefulness of its output)
when the optimal feature subset is large because SBS, due
to the fact that it starts with the full set, spends most of
its time evaluating larger subsets.

Genetic Algorithm: Genetic Algorithms [13] are a
class of search algorithm that try to emulate the process of
Darwinian natural selection. A more detailed description
can be found in [13]. All genetic algorithms can be thought
of as 5 stage processes. Initial population selection, fitness
function application, selection, crossover and mutation.
Genetic algorithms have been shown to produce very good
results in a variety of domains [13]. However, they are also
known to be computationally expensive.

A genetic algorithm begins with an initial population
that consists of random subsets of solutions (which cor-
respond to features in our context). The fitness function
(synonymous with previously discussed objective function)
evaluates the fitness of each member of this population.
The genetic algorithm ranks each subset according to its
fitness. Then, some of the fittest subsets are chosen to
’reproduce’ to create a new generation of subsets. This
process continues until a terminating condition is met.
The question then is how this reproduction takes place.
The reproduction of two pairs involves randomly selecting
crossover points in the two pairs and combining them.
As an example, consider two feature subsets that have
been chosen to reproduce. The crossover process involves
splitting both subsets at random points and combining
the split of one subset with that of the other subset to
come up with two new subsets. Each set of features is then
subjected to a random mutation where elements in the set
can randomly change (this probability is usually very low).
The steps from selection to mutation are then repeated
until a terminating condition is met or the algorithm is
stopped. We use the Simple Genetic Algorithm [14] in our
experiments.

The feature selection algorithms are given as input, the
initial labeled set of features and they output subsets
that they think are optimal. In Section VI, we provide a
detailed comparison of how the three algorithms described
here perform with an evidence feature set for detecting
DoS and SQL injection attacks.

IV. Inference Engines

In this section we will describe the two inference engines
we consider for detection viz, Dempster-Shafer Theory
of evidence, and K-Means classification. In terms of tra-
ditional detection engines, DST is closest to supervised
learning. However, it provides some advantages discussed

later. K-means, on the other hand, is an unsupervised
learning algorithm for classification. Our expectation is
that the optimal set of features should be usable with
any inference engine to accurately detect the presence or
absence of attacks.
A. Dempster-Shafer Theory of Evidence

The Dempster-Shafer theory of evidence (DST) [15]
is a theory for combining evidence and reasoning about
uncertainty. We use it in our framework to reason about
the quality of the feature subsets that are output by the
feature selection algorithms in terms of detection accuracy.
Every hypothesis is assigned a belief ranging from 0 to
1 where 0 means that there is no evidence to support a
hypothesis and 1 means absolute certainty with regards
to the hypothesis. DST is fundamentally di�erent from
Bayesian reasoning because belief in a hypotheiss and its
negation need not sum to 1; in fact, both values can be
0 (meaning that there is no evidence either for or against
the hypothesis).

Let � = {◊1, ◊2, ..◊n} be the set of possible conclusions
to be drawn, then the ◊is are mutually exclusive and
� is exhaustive. The goal of DST in our context is to
predict the state of the system as a function of time.
More precisely, let the set of known system states, for a
particular class of attacks (e.g., DoS or SQL injection), be
SS = {sa1, sa2, sa3...san, sn} where the state sai, 1 Æ i Æ
n represents the state of the system when it is under attack
ai and state sn represents the state of system when it is
operating normally. DST assumes that the current state of
the system at time t , CS(t), is unknown but must be one
of the values from the Frame of Discernment, SS. Note
that each state in SS is observable.

CS(t) is determined by providing and combining Basic
Belief Assignments (BBAs). If SS is the frame of discern-
ment then a function m : 2SS æ [0, 1] is called basic belief
assignment if the following conditions hold:

m(ÿ) = 0,
ÿ

Aµ2SS
m(A) = 1.

The term m(A) is called A’s BBA and is a measure of
the belief that is committed to exactly A. In DST, the
notions of belief and plausibility are used to reason about
the certainty (or lack of) in the system being in a particular
state. The belief function, Bel, is a mapping Bel : 2SS æ
[0, 1] and is given by:

Bel(A) =
ÿ

BµA

m(B).

The Plausibility Pl is a mapping Pl : 2SS æ [0, 1] and is
given by:

Pl(A) =
ÿ

BflA ”=0
m(B).

As should be evident, the belief and plausibility with DST
serve as upper and lower bounds on the degree of certainty
of the system being in a particular state. The rest of this
section will describe how we use system wide features (or
observables) and DST to compute belief and plausibility
about system states.

Observables: An observable in our context is simply
anything that can be sampled or monitored to produce
a time series. Relevant examples of observables are the

number of total bytes received over a network interface
and CPU consumption expressed as a percentage. We
use the terms observables and features interchangeably.
The observables might be important indicators of the
presence or the absence of an attack. For example, one
might expect the total number of bytes received over a
network interface to be very high when the system is under
a flooding based DoS attack. More specifically, the set
O = {o1, o2, o3...on} is the set of observables (or features)
used to detect attacks. A better O will result in higher
detection rates.

An observable, depending on its current value, provides
a belief over SS that provides a hypothesis on the CS. As
an example, consider the number of SYN packets received
in a given time window, denoted by A. As is well estab-
lished, a large number of TCP SYN packets in a small time
frame is highly indicative of a SYN flood attack[16]. When
the value of A crosses a predefined threshold, it provides a
belief in a SYN flood attack denoted by BA(SY N) = 0.8
(say). The remainder of A’s belief is always allocated to
the frame of discernment specified as BA(SS) = 0.2.

Combining Evidence from di�erent sources: A
core feature of DST is combining beliefs from independent
sources of evidence. In our particular context, this can be
thought of as observing two di�erent features (or observ-
ables), say A and B. When A and B exceed their pre-
defined thresholds they provide beliefs in attack x given
by BA(x) and BB(x) respectively. Combining di�erent
features results in a unified belief over a particular state
in SS. Because we have evidence from multiple sources,
our case is not as simple as using a single fusion operator
(fusion operators are designed to work on exclusively
dependent or exclusively independent beliefs). Thus, we
use the averaging and the cumulative fusion operators
(details in [17] and [18], respectively). The averaging
operator is intended to be used with dependent beliefs
and the cumulative operator is intended to be used with
independent beliefs. We first use the averaging operator
to combine subsets of dependent beliefs and then use the
cumulative operator to combine the resulting independent
beliefs. (dependent beliefs can be thought of as those
belonging to the same sensor).

The Averaging function is given by:

AV G(x) = BA(x)BB(SS) + BB(x)BA(SS)
BA(ss) + BB(SS)

AV G(SS) = 2BA(SS)BB(SS)
BA(SS) + BB(SS)

(1)

The cumulative function is given by:

CUM(x) = BA(x)BB(SS) + BB(x)BA(SS)
BA(SS) + BB(SS) ≠ BA(SS)BB(SS)

CUM(SS) = 2BA(SS)BB(SS)
BA(SS) + BB(SS) ≠ BA(SS)BB(SS)

(2)
Belief and Plausibility: The application of the

Dempster-Shafer framework results in belief and plausibil-
ity values for each attack. These allow us to reason about
the usefulness of a particular subset of features in terms
of providing high detection accuracy.

B. Clustering Algorithm
Clustering algorithms are one of the most popular

classes of machine learning (ML) algorithms that are
used for anomaly detection [19] [3]. Generally speaking,
clustering is a technique for finding patterns in unlabeled
data. We use the K-Means clustering algorithm because it
is one of the simplest and relatively e�cient of clustering
algorithms which has been successfully used for anomaly
detection.

It works by grouping similar objects into K disjoint clus-
ters. We will only provide a high level overview of how the
algorithm works here. Details can be found in [20] which
demonstrates how to apply the algorithm for intrusion
detection. Fundamentally however, the algorithm is built
around the notion of a centroid.The centroid of a cluster
is a point in the feature space that can be thought of
as the most representative point for that cluster. Once
the centroid for each of the K clusters is known, the
algorithm simply compares each new instance to each of
the K centroids to determine which one it is closest to. The
algorithm has two phases, an o�ine clustering (training)
phase, and an online classification phase.

Clustering: During clustering the goal is to train the
system. Put another way, the goal is to determine the
optimal centroids. The algorithm is fed a set of instances
(which in our case are defined by the output of the feature
selection algorithms). Clustering then is a five step process.

1) Initiate the number of clusters, K to some user de-
fined value. In our case, K is the number of elements
in SS, which corresponds to the number of attacks
and normal behavior.

2) Initiate the K cluster centroids. This is typically
done by arbitrarily choosing K data points from the
set of training data.

3) Iterate over all training objects and compute the
distance of each object to the centroids. Assign each
object to the cluster with the nearest centroid.

4) recalculate centroids (ensuring that a previously cho-
sen point is not chosen again)

5) Repeat step 3 until assignment of objects is static.
i.e, between two di�erent iteration with di�erent cen-
troids, the assignment of objects to clusters remains
the same

For the distance measure, we use the Euclidean distance.
Its e�ectiveness was demonstrated in[20]. At the end of the
clustering phase we get K centroids that will be used as
future references.

Classification: During classification (done online) each
new data point is simply compared against all the previ-
ously computed K centroids and assigned to the one it is
closest to. As in the case of our DST approach„ we perform
this entire process seperately for DoS and SQL injection.

V. Experimental Setup

Testbed: We perform our experiments on the The
Cyber Virtual Assured Network (CyberVAN) testbed [21].
The CyberVAN is a state of the art cyber security testbed
that was designed to support experimentation in a virtual
cyberspace. CyberVAN models hosts as full fledged virtual
machines and models the underlying network using dis-
crete event network simulation. The testbed can be used
to model a realistic cyber network environment with high

fidelity. Virtual machines that act as end hosts are time
synchronized with the discrete event network simulator.
This enables CyberVAN to slow down VM time if the
simulated network cannot keep up with real time such as
in the case of high volume tra�c.

Network Topology: Our network topology consists
of one server machine, client machines from 50 di�erent
subnets with IP addresses widely distributed across the
public Internet, and one attacker machine. The server has
CentOS server version 6.6 and Apache version 2.2. The
server hosts 20 di�erent websites, each with a complex
navigational structure. The client machines are all running
Ubuntu version 14.04. Each client machine has a synthetic
user that interacts with the server using a FireFox web
browser. The clients run in one of two di�erent modes,
web-only or database-only.

The normal tra�c (which keeps flowing regardless of
whether or not an attack is under way) is generated based
on the patterns of real users on the Internet as discussed
in [22]. The synthetic users are emulated to use actual
applications. For web-only applications the users interact
with static web content using a Firefox web browser and
for database-only, they interact with a Wordpress blog.
The eventual tra�c contains realistic short and long term
HTTP and TCP connections.

Methodology: We consider two classes of attacks to
validate our framework, viz.. Denial of Service (DoS)
and SQL injection. Since we expect these two classes of
attacks to manifest di�erent (and often disjoint) kinds of
symptoms, we experiment with only one class of attack
at a time. Specifically, we first collect features explicitly
for DoS attacks via the data collection approach outlined
above. We test out three di�erent TCP based DoS attacks.
SYN Floods [16], Sockstress [23] and Slowloris [24].

For SQL injection we test two di�erent attacks. The
first attack exploits a Wordpress vulnerability wherein a
specially crafted SQL query results in the entire database
being returned as the response. The second attacks ex-
ploits another vulnerability wherein a specially crafted
string opens up a shell and gives the attacker root access.
SYN flooding is one of the oldest forms of DoS attacks
and operates by flooding a victim with TCP SYN packets.
Sockstress, is more complicated in that it actually com-
pletes the TCP handshake in an attempt to exhaust all
sockets. Slowloris is an HTTP attack that opens numerous
HTTP connections within a time and then periodically
sends keep alive messages to hold them.

To test our approach against a previously unobserved
attack, we build such an attack. Specifically, we employ
the methodology described in [5] to intelligently combine
a SYN Flood and Slowloris attack. Each component of
the attack, by itself, does no discernible damage and thus,
cannot be detected by traditional detection approaches;
but together the components consume ports and thus,
constitute a powerful but stealthy DoS attack.

We monitor a total of 365 features for each state in
SS. Each state is monitored for a minute after which
we are left with a time series of each feature. This data
is then labeled according to the state it belongs to and
is then fed into our feature selection engine. Figure 1
depicts how the entire process works to produce a set of
features. Once those features are selected they are fed into

DoS SQL Injection

LFS Context Switches, Sys
calls, Free Memory,
HTTP Connections

Established Connections,
DB Errors, Bytes Sent

SGE Sys Interrupts, Sys Calls,
Used Memory, HTTP
Connections

DB Errors, Bytes Sent,
DB lookups

SBS Page Faults, CPU1
Utilization, Established
TCP connections, Swap
Space

CPU1 Utilization, Bytes
Sent, Page Faults

TABLE II: A subset of features selected by each algorithm

each inference engine seperately. For DST, we examine
the generated time series and assign thresholds which,
when triggered, output a pre-assigned belief in an attack.
Taken as such these observables are just binary belief
functions. For example, one obvious feature for detecting
SYN floods is the number of SYN packets received. We
assign equal beliefs to all features regardless of perceived
importance. A better assignment of these beliefs can yield
better detection accuracy but is out of the scope of this
paper. For K-Means, we train the system as described
above setting the value of K to the cardinality of SS (the
number of clusters is equal to the number of attacks plus
one for normal behavior)

During runtime, the set of features that were output
by the di�erent algorithms (via o�ine training) are mon-
itored. The attacks that were previously described are
launched in real time. For DST, the observations (of the
features monitored) are input into equations (1) and (2),
and we obtain measures of the belief and the plausibility
for each candidate scenario (di�erent attacks and normal
behavior). For K-means we simply monitor whether each
attack (or normal behavior) is correctly classified.

VI. Experimental Evaluations

In this section we discuss the results from our experi-
ments. For each algorithm, we are interested in evaluating
how well the features that it selects are able to di�eren-
tiate between the di�erent kinds of attacks and normal
behavior. Table II lists a small subset of the features
(due to space constraints) that were selected by each
algorithm. The selected features, due to the nature of
modern systems, will be highly dependent on the execution
environment. The table highlights the fact that LFS and
SGE tend to select similar features while SBS does not. We
will first present results using the DST inference engine,
and later using the K-Means inference engine.

Detection using DST: Figures 2, 3, and 4 show
how well the features chosen by LFS, SBS, and SGA,
respectively, perform when a Sockstress attack is initiated.
The figures shows how the belief and the plausibility
vary over the time period of the attack. The attack is
initiated at time 6 seconds. Figures 2a, 3a and 4a show how
both the plausibility and the belief increase, indicating a
strong conviction in the present state (sockstress). The
other figures show that there are low values of belief and
plausibility with respect to the other possible scenarios
(e.g., normal behavior) indicating that DST has very little
conviction that the current state corresponds to one of
these. Figures 2d, 3d and 4d show how the belief and the
plausibility in the current state being ”normal” plummets
once the attack is launched. The slight increase in belief
and plausibility exhibited in Figures 2b, 3b, and 4b is

Belief
Plausibility

0.5

1.0

Time (S)
0 10 20 30 40 50 60

CS = sockstress / Pluasibility = sockstress

(a) sockstress

Belief
Plausibility

0.5

1.0

Time (S)
0 10 20 30 40 50 60

CS = Sockstress / Plausibility = SYN Flood

(b) Syn Flood

belief
Plausibility

0.5

1.0

Time (S)
0 10 20 30 40 50 60

CS = Sockstress / Plausibility = Slowloris

(c) Slowloris

Belief
Plausability

0.5

1.0

Time (s)
0 10 20 30 40 50 60

CS = Sockstress / Plausibility = Normal

(d) Normal Tra�c
Fig. 2: Belief and plausibility during a Sockstress attack with features selected by LFS

Belief
Plausability

0.5

1.0

Time (s)
0 10 20 30 40 50 60

CS = Sockstress / Plausibility = Sockstress

(a) sockstress

Belief
Plausability

0.5

1.0

Time (s)
0 10 20 30 40 50 60

CS = Sockstress / Plausibility = SYN Flood

(b) Syn Flood

Belief
Plausability

0.5

1.0

Time (s)
0 10 20 30 40 50 60

CS = Sockstress / Plausibility = Slowloris

(c) Slowloris

Belief
Plausability

0.5

1.0

Time (s)
0 10 20 30 40 50 60

CS = Sockstress / Plausibility = Normal

(d) Normal Tra�c
Fig. 3: Belief and plausibility during a Sockstress Attack with features selected by SBS

Belief
Plausability

0.5

1.0

Time (s)
0 10 20 30 40 50 60

CS = Sockstress/ Plausibility = Sockstress

(a) sockstress

Belief
Plausability

0.5

1.0

Time (s)
0 10 20 30 40 50 60

CS = Sockstress / Plausibility = SYN Flood

(b) Syn Flood

Belief
Plausability

0.5

1.0

Time (s)
0 10 20 30 40 50 60

CS = Sockstress / Plausibility = Slowloris

(c) Slowloris

Belief
Plausability

0.5

1.0

Time (s)
0 10 20 30 40 50 60

CS = Sockstress / Plausibility = Normal

(d) Normal Tra�c
Fig. 4: Belief and plausibility during a Sockstress Attack with features selected by SGA

Plausibility Belief

0.6

0.8

1.0

LFS SBS SGE

(a) DoS: Current State
is the correct one

Plausibility Belief

0.2

0.3

0.4

0.5

LFS SBS SGE

(b) DoS: Current State
is the wrong one

Plausibility Belief

0.4

0.6

0.8

LFS SBS SGE

(c) SQL Injection: Cur-
rent State is the correct
one

Plausibility Belief

0.3

0.4

0.5

LFS SBS SGE

(d) SQL Injection: Cur-
rent State is the wrong
one

Fig. 5: Average Belief and plausibility for DoS and SQL Injection

due to the fact that SYN Flood and sockstress are similar
kinds of attacks. For example, both involve large volumes
of tra�c and thus, sometimes trigger the same sensors.
The interesting observation from these figures is that the
detection accuracy (belief and plausibility) with LFS is
comparable to that of SBS (they are within 2% of each
other); however, SBS lags visibly. The belief and the
plausibility results with all the algorithms, for each state,
exhibit the same behaviors observed in Fig 2. For the
current “true” state these metrics increase and generally
decrease otherwise. We omit the results for the SYN flood
attack due to space limitations but they exhibit similar
patterns of results.

In Figures 5a and 5b, we summarize the plausibility
and belief results for DoS with the di�erent algorithms.
Specifically, we show the average value of these metrics
observed (over all cases) with regards to the true or “cor-
rect” state (e.g., the belief and plausibility with Sockstress
when it is actually in e�ect) and the “wrong” state (e.g.,
the belief and plausibility with Sockstress when Slowloris
is in e�ect). We see that the values of these metrics are
much higher with the correct case (low values are exhibited
for wrong cases).

SQL injection results for the database dump attack, are

detailed in Figures 6, 7 and 8. They exhibit behaviors
similar to what was observed with DoS. However, across
all the three algorithms, the di�erence is that the belief
and the plausibility results are not as high (compared to
DoS) in the “correct” state, and not as low with the wrong
“state”. We believe this is because a lot of good features for
SQL injection are in fact embedded in SQL queries which
we do not consider in this work (this is left for the future).

The results with SQL injection are summarized in Fig-
ures 5c and 5d. Again, we see that the performance with
SGA and that with LFS are still close (always within 10 %
of each other). However, here SGA gives an approximately
6 % performance improvement over LFS consistently, thus
demonstrating that higher complexity could yield better
accuracy. Both LFS and SGE outperform SBS again.

Detection using K-Means clustering:
To evaluate the features when K-Means is used for

inference we use accuracy (percentage of samples that
are correctly classified) as our metric. Tables III and IV
detail the results. For both SQL injection and DoS we
see that the performance of LFS is comparable to SGE.
As with DST we observe that we get better accuracy
in detecting DoS attacks. This is due to the fact that a
lot of good features for SQL injection are in the actual

Belief
Plausability

0.5

1.0

Time (s)
0 10 20 30 40 50 60

CS = DB Dump / Plausibility = DB Dump

(a) Database Dump

Belief
Plausability

0.5

1.0

Time (s)
0 10 20 30 40 50 60

CS = DB Dump / Plausibility = Root Access

(b) Root Access

Belief
Plausability

0.5

1.0

Time (s)
0 10 20 30 40 50 60

CS = DB Dump / Plausibility = Normal

(c) Normal Tra�c
Fig. 6: Belief and plausibility during a Database Dump Attack with features selected by LFS

Belief
Plausability

0.5

1.0

Time (s)
0 10 20 30 40 50 60

CS = DB Dump/ Plausibility = DB Dump

(a) Database Dump

Belief
Plausability

0.5

1.0

Time (s)
0 10 20 30 40 50 60

CS = DB Dump / Plausibility = Root Access

(b) Root Access

Belief
Plausability

0.5

1.0

Time (s)
0 10 20 30 40 50 60

CS = DB Dump / Plausibility = Normal

(c) Normal Tra�c
Fig. 7: Belief and plausibility during a Database Dump Attack with features selected by LBS

Belief
Plausability

0.5

1.0

Time (s)
0 10 20 30 40 50 60

CS = DB Dump / Plausibility = DB Dump

(a) Database Dump

Belief
Plausability

0.5

1.0

Time (s)
0 10 20 30 40 50 60

CS = DB Dump / Plausibility = Root Access

(b) Root Access

Belief
Plausability

0.5

1.0

Time (s)
0 10 20 30 40 50 60

CS = DB Access / Plausibility = Normal

(c) Normal Tra�c
Fig. 8: Belief and plausibility during a Database Dump Attack with features selected by SGA

SBS
LFS
SGA

0.4

0.6

0.8

Time (s)
0 10 20 30 40 50 60

Plausibility - Mixed Attack

Fig. 9: Plausibility for a
mixed attack

0.5

1.0

Number of Features
0 5 10 15 20 25 30 35 40 45

Fig. 10: Change in plau-
sibility for DoS (DST)

20

40

60

80

Number of Features
0 5 10 15 20 25 30 35 40 45

Fig. 11: Change in accu-
racy for DoS (K-means)

query accessible via DPI which we do not consider. We
also observe that the performance of SBS lags similarly to
the other two. However with K-Means, the discrepancy is
much greater. This is greater testament to how completely
SBS is outperformed. Some of the weaknesses inherent in
SBS (for e.g. it cannot reexamine features that have been
eliminated) are masked by DST because DST deals very
well with noisy features.

Comparing algorithms: A comparison of perfor-
mance across the di�erent algorithms yields some inter-
esting insights. First both LFS and SGE yield consistently
better results than SBS. The fact that LFS outperforms
SBS so consistently indicates that the ideal subset of
features is small. SBS is known to underperform in such
cases. LFS is also much quicker than SBS.

As mentioned previously, we expect SGA to perform
well because of its resistance to getting caught in local
maxima and minima. It also takes the most time to
finish. However, in some cases we find that LFS does
slightly better than SGA (e.g., see Figures 2a and 4a).
The di�erence however, is always small (results are always
within 6 % of each other) . These results suggest that local
maxima and minima are unlikely and the use of LFS (much
faster) can su�ce for highly accurate detection.

Using more or less features than what is recom-
mended by the algorithms: Using too few or too many
features can hurt detection performance. To demonstrate

this, we configured LFS to output multiple sized feature
subsets. (i.e., the best 2, the best 4 the best 6 and so
on). We then tested these feature sets with all the three
DoS attacks considered and computed the average plau-
sibility of predicting the correct state with DST and the
average classification accuracy with K-means. The results
are shown in Figures 10 and 11. We see that with DoS,
the optimal number of features is somewhere between 15-
20 for DST and between 11-16 for K-means. A higher set
could lead to wrong conclusions; a smaller set could reduce
detection accuracy.

Mutated attack: Finally, we are interested in evaluat-
ing how well the chosen features hold up to an unknown
attack. To do this, we launch the mixed attack that was
described previously in Section V. Figure 9 shows how the
plausibility that the current state is normal drops in the
presence of a mixed attack (signifying a high likelihood of
an attack). LFS again outperforms the other two (SGA
is still very close). K-means classifies the mixed attack as
either one of the two mixes (depending on the dominant
attack)

VII. Related Work

There has been a lot of work done on feature selection
in the domain of anomaly detection. However, most prior
e�orts (unlike ours) are tied to specific classification ap-
proaches [6], [7], [8]) They are also typically only concerned

SYN Sock Slowloris Normal

LFS 86 88 83 85
SGE 86 87 85 83
SBS 75 72 70 77

TABLE III: Accuracy of k-means
classifier under DoS attacks

Root DB Dump Normal

LFS 74 77 75
SGE 75 78 74
SBS 62 65 66

TABLE IV: Accuracy of k-means
classifier under SQL injection attack

LFS SBS SGA

2.9 10.8 65

TABLE V: Average
completion time in
minutes

with network layer features. In [25], the authors evaluate
various selection techniques, including genetic algorithms
in the context of intrusion detection. However they are
only concerned with features that originate from the
network layer. Their approach is limited because their
initial feature set (on which they apply feature selection)
is itself manually selected. In [26] the authors develop a
decision tree based genetic algorithm. They use decision
trees to guage the performance of their algorithm which is
not immune to noise or uncertainty. In [27] the authors
compare and contrast two well known feature selection
algorithms. They employ the DARPA intrusion detection
data set [28] which only contains network; cross layer
features are not considered. [29], [30] and [8] are other
examples which only consider network layer features for
intrusion detection.

Other approaches such as [29] are concerned with ex-
tracting features so that classification accuracy is not hurt.
This is fundamentally di�erent from what we are trying
to do because we are concerned with large data sets with
potentially frivolous features.

VIII. Conclusion

In lieu of manually choosing features as done tradi-
tionally, we develop a framework that automates and
sequentializes the process of feature selection for highly
accurate intrusion detection. In building our framework,
we design and implement a comprehensive evidence col-
lection framework, and undertake an in-depth study to
gain an understanding of which search algorithms to use
for feature reduction. Our approach is agnostic to the
engine that uses these features to perform inference. We
demonstrate the e�cacy of our framework with DoS and
SQL injection attacks. We demonstrate that the features
(which are automatically chosen) work very well in terms
of providing high detection accuracy with respect to the
true states (attack and normal scenarios) the networked
system is in.

Acknowledgment: The e�ort described in this arti-
cle was partially sponsored by the U.S. Army Research
Laboratory Cyber Security Collaborative Research Al-
liance under Cooperative Agreement W911NF-13-2-0045.
The views and conclusions contained in this document
are those of the authors, and should not be interpreted
as representing the o�cial policies, either expressed or
implied, of the Army Research Laboratory or the U.S.
Government. The U.S. Government is authorized to re-
produce and distribute reprints for Government purposes,
notwithstanding any copyright notation hereon.

References

[1] “Akamai releases q2 2015 state of the internet - security report,”
http://akamai.me/1qN434s.

[2] “Cyber attacks likely to increase,” http://pewrsr.ch/1qN4agg.
[3] S. Axelsson, “Intrusion detection systems: A survey and tax-

onomy,” Technical report Chalmers University of Technology,
Goteborg, Sweden, Tech. Rep., 2000.

[4] V. Chandola, A. Banerjee, and V. Kumar, “Anomaly detection:
A survey,” ACM computing surveys (CSUR), vol. 41, no. 3,
p. 15, 2009.

[5] A. Aqil, A. O. Atya, T. Jaeger, S. V. Krishnamurthy, K. Levitt,
P. D. McDaniel, J. Rowe, and A. Swami, “Detection of stealthy
tcp-based dos attacks,” in MILCOM. IEEE, 2015.

[6] M. Kloft, U. Brefeld, P. Düessel, C. Gehl, and P. Laskov, “Au-
tomatic feature selection for anomaly detection,” in Proceedings
of the 1st ACM Workshop on AISec. ACM, 2008.

[7] W. Ng, R. Chang, and D. Yeung, “Dimensionality reduction for
denial of service detection problems using rbfnn output sensitiv-
ity,” in Int’l Conf on Machine Learning and Cybernetics,, 2003.

[8] A. H. Sung and S. Mukkamala, “The feature selection and in-
trusion detection problems,” in Advances in Computer Science-
ASIAN 2004. Higher-Level Decision Making. Springer, 2005,
pp. 468–482.

[9] F. Iglesias and T. Zseby, “Analysis of network tra�c features
for anomaly detection,” Machine Learning, 2015.

[10] M. A. Hall, “Correlation-based feature selection for machine
learning,” Ph.D. dissertation, The University of Waikato, 1999.

[11] M. Gütlein, E. Frank, M. Hall, and A. Karwath, “Large-scale
attribute selection using wrappers,” in IEEE CIDM, 2009.

[12] J. Han, M. Kamber, and J. Pei, Data mining: concepts and
techniques: concepts and techniques. Elsevier, 2011.

[13] T. Bäck, Evolutionary algorithms in theory and practice: evolu-
tion strategies, evolutionary programming, genetic algorithms.
OUP, 1996.

[14] D. Goldberg and J. Holland, “Genetic algorithms and machine
learning,” Machine Learning, vol. 3, pp. 95–99, 1988.

[15] G. Shafer et al., A mathematical theory of evidence. Princeton
University Press, 1976.

[16] W. Eddy, “TCP SYN flooding attacks and common mitiga-
tions,” in RFC 4987, Aug 2007.

[17] A. Josang, J. Diaz, and M. Rifqi, “Cumulative and averaging
fusion of beliefs,” Inf. Fusion, vol. 11, no. 2, pp. 192–200, 2010.

[18] K. Sentz and S. Ferson, Combination of evidence in Dempster-
Shafer theory. Sandia National Laboratories, 2002.

[19] M. Ektefa, S. Memar, F. Sidi, and L. S. A�endey, “Intrusion de-
tection using data mining techniques,” in Information Retrieval
& Knowledge Management,(CAMP), 2010. IEEE.

[20] G. Münz, S. Li, and G. Carle, “Tra�c anomaly detection using
k-means clustering,” in GI/ITG Workshop MMBnet, 2007.

[21] A. Poylisher, Y. M. Gottlieb, C. Serban, J. Lee, F. Sultan,
R. Chadha, C. J. Chiang, K. Whittaker, J. Nguyen, and
C. Scilla, “Building an operation support system for a fast
reconfigurable network experimentation testbed,” in MILCOM.
IEEE, 2012.

[22] W. Dumouchel and M. Schonlau, “A comparison of test statis-
tics for computer intrusion detection based on principal compo-
nents regression of transition probabilities,” in 30th Symposium
on the Interface: Computing Science and Statistics, 1998.

[23] “Sockstress tools & source code,” http://bit.ly/1SgI9Qd.
[24] “Slowloris HTTP DoS,” http://ha.ckers.org/slowloris/.
[25] C.-H. Tsang, S. Kwong, and H. Wang, “Genetic-fuzzy rule

mining approach and evaluation of feature selection techniques
for anomaly intrusion detection,” Pattern Recognition, vol. 40,
no. 9, pp. 2373–2391, 2007.

[26] G. Stein, B. Chen, A. S. Wu, and K. A. Hua, “Decision tree
classifier for network intrusion detection with ga-based feature
selection,” in Proceedings of the 43rd annual Southeast regional
conference-Volume 2. ACM, 2005, pp. 136–141.

[27] S. Chebrolu, A. Abraham, and J. P. Thomas, “Feature de-
duction and ensemble design of intrusion detection systems,”
Computers & Security, vol. 24, no. 4, pp. 295–307, 2005.

[28] “DARPA intrusion detection evaluation,”
http://bit.ly/1NtBr50.

[29] S. Mukkamala and A. Sung, “Feature selection for intrusion
detection with neural networks and support vector machines,”
Transportation Research Record: Journal of the Transportation
Research Board, no. 1822, pp. 33–39, 2003.

[30] J. Platt et al., “Sequential minimal optimization: A fast algo-
rithm for training support vector machines,” 1998.

