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Abstract—Recently, there have been proposals to evade censors by
using steganography to embed secret messages in images shared on
public photo-sharing sites. However, establishing a covert channel in
this manner is not straightforward. First, photo-sharing sites often
process uploaded images, thus destroying any embedded message.
Second, prior work assumes the existence of an out-of-band channel,
using which the communicating users can exchange metadata or
secret keys a priori; establishing such out-of-band channels, not
monitored by censors, is difficult.

In this paper, we address these issues to facilitate private commu-
nications on photo-sharing sites. In doing so, first, we conduct an
in-depth measurement study of the feasibility of hiding data on four
popular photo-sharing sites. Second, based on the understanding
derived, we propose a novel approach for embedding secret messages
in uploaded photos while preserving the integrity of such messages.
We demonstrate that, despite the processing on photo-sharing
sites, our approach ensures reliable covert communication, without
increasing the likelihood of being detected via steganalysis. Lastly,
we design and implement a scheme for bootstrapping private
communications without an out-of-band channel, i.e., by exchanging
keys via uploaded images.

I. Introduction
The idea of hiding messages, using steganography, in user-

generated content on photo-sharing sites has recently received
increased attention; for example, Burnett et al. [19] suggest that
the approach can be used to “chip away” at censorship firewalls.
However, while the idea is conceptually attractive, there exist
several challenges in creating a viable covert channel of this
type. First, photo-sharing sites often process uploaded images
[6]. While some of the processing functions are clearly specified
on the photo-sharing sites [8], [5] (e.g., any photo exceeding a
pre-specified size limit will be re-sized), not all such functions are
publicly known. These (possibly unknown) processing functions
often interfere with the use of steganography. Second, it is well
known that steganography does not offer perfect secrecy. Censors
can try to read the embedded message by applying a variety
of extraction algorithms on a carrier image. Thus, to prevent
exposure in the rare cases of interception, one will have to encrypt
the secret information embedded in the shared photographs.
Encryption requires the establishment of secret keys between
communicating entities, for which prior work often assumes
the existence of an out-of-band channel. However, in cases
where people are trying to hide information from government-
controlled censors, the creation of such an out-of-band channel
is difficult because phone calls, e-mail exchanges, and Internet
communication may be monitored [29].

Our goal is to address the above challenges and build a
framework for private communication on public photo-sharing
sites. Towards this, we make three key contributions.

First, to understand how secretly embedded messages are
affected by processing done on photo-sharing sites, we perform
an in-depth measurement study. We analyze photos uploaded
on four popular sharing sites—Google+, Facebook, Twitter, and
Flickr. We consider both photos wherein secret information is
embedded and photos without any such embedding. We observe

that, while the integrity of hidden messages is preserved on
some sites (e.g., Google+), other sites (e.g., Facebook and Flickr)
perform various processing functions on uploaded images and
hence the extraction of secret messages from downloaded images
fails. Our study sheds light on the processing performed on
different sites and provides an understanding of why secret
content is affected.

Second, based on the understanding obtained above, we pro-
pose simple changes to the steganographic encoding process
which ensure that, unlike prior approaches, the embedded secret
messages survive the image processing performed by photo-
sharing sites. Though simple, our approach is not apparent with-
out the detailed study on the different photo-sharing sites. Impor-
tantly, this improved reliability does not come at the expense of
greater likelihood of detection of hidden messages. We evaluate
our approach by applying two state-of-the-art steganalysis tools
and observe that, for a fixed amount of secret data, the likelihood
of detecting secret information embedded with our approach
is similar (or even lower in some cases) to the probability of
detection when prior approaches for steganographic embedding
are applied (while surviving the processing done on the site).

Finally, as discussed above, encrypting the secretly embedded
messages is a must. Therefore, to enable recipients of the shared
photo to extract the raw data, a key exchange between the sender
and recipients is essential. Towards this, we propose a protocol
for bootstrapping the private communication without any out-of-
band channel (unlike what is assumed in prior work [19]). Our
bootstrapping phase uses the very same channel, i.e., uploaded
images, to exchange keys.

II. Background and Related Work
In this section, we first present relevant background and

subsequently discuss related prior work.
JPEG image steganography: Steganographic techniques are

typically developed to exploit the structure of JPEG (the most
common image format used on photo-sharing sites), and hence,
we focus on this format here. The image in which the message
is hidden is called the cover or the carrier. The JPEG encod-
ing process consists of several steps including applying lossy
compression, the division of the image into blocks, application
of the Discrete Consine Transform (DCT) on each block, and
the quantization of the DCT coefficients. More details on JPEG
encoding and decoding are found in [24].

Structure-based steganography exploits certain, usually op-
tional, markers in the JPEG format to embed secret data. Ex-
amples include embedding the message using the Exchangeable
Image File (EXIF) (e.g., as in [18]) or the Comment markers
(e.g., as in [1], [11]). The decoder tool simply examines marker
locations to extract the message.

Spatial domain techniques typically modify the Least Sig-
nificant Bit (LSB) of the pixel values to embed the secret
information [31]. These techniques exploit the fact that human
perception is not sensitive to subtle changes in pixels. Information



Tool Details on approach Facebook Twitter Flickr Google+
GhostHost [43] Embedding after the EOI marker × × ×

√

Steghide [15] Changing Pixel values ×
√

×
√

OutGuess [13] Changing DCT coefficients (pseudo-random) ×
√

×
√

F5 [4] Changing DCT coefficients (non-zero) ×
√

×
√

YASS [41] Changing DCT coefficients (error correcting)
√∗ √ √∗ √

TABLE I
EVALUATION OF STEGO TOOLS (× = FAILURE;

√
= SUCCESS;

√∗ = CONDITIONAL SUCCESS)

hiding in pixel values is however not reliable, especially when
used with lossy image compression schemes such as JPEG.
Steghide [15] is a stego implementation in this category.

Frequency domain based methods replace the LSBs in the
quantized discrete cosine transform (DCT) coefficients [22]. To
avoid visual distortion, embedding of secret messages is avoided
for DCT coefficients whose value is zero; these coefficients
typically correspond to high frequency components. JSteg [12],
OutGuess [13] (which uses a pseudo-random number generator
to select DCT coefficients), and F5 [4] (which decreases the
absolute value of non-zero DCT coefficients by one) are examples
in this category.

Distortion-resistant schemes are more robust to image pro-
cessing. To lower the bit error rate (BER), these schemes perform
transformations in other domains (like with the Discrete Wavelet
Transform) or use redundancy and/or masking techniques. For
example, YASS [41] uses a redundancy parameter to control the
number of times an information bit is repeated inside an image.

Use of steganography on images shared online: Photos
upoloaded onto online sites provide a means of sharing secret
messages. However, it is known that photo-sharing sites process
such uploaded images [28], [17], [8], [16]; while these sites
explicitly indicate that they process images, the specifics are not
made known (no documentation is readily available). There have
been studies on whether messages are hidden in images posted
on the Internet [39]. However, Provos et al. [39] analyzed two
million images downloaded from eBay for hidden messages but
not a single such message was found. Because of the specific
detection approach applied, and their source for the images, the
insights gained from their attempt are limited.

The use of social media and steganography to build a covert
channel is recognized as promising in [23]. Zeljko et al. [42]
implement SecretTwit, a Twitter client that hides secrets in
tweets and images. An anti-censorship system proposed in [19] is
based on two parties exchanging messages in images on Flickr.
While the idea of a botnet performing private communication
using images on Facebook is suggested in [35], the authors do
not examine issues relating to image processing or detection
likelihood of hidden messages as we do here.

Despite this attention, the feasibility of private communication
on OSNs or photo-sharing sites has not been fully explored in
prior work. From their first hand experience, some Internet users
have already realized that certain steganography techniques do
not work with images uploaded on Facebook [30]. However, the
reasons for this are not well understood. Three characteristics of
images published on some OSNs, namely image format, metadata
and pixel resolutions of digital images have been analyzed by
Castiglione et al. [20]. However, the use of steganography has not
been examined. Realizing that user images are usually processed
on OSNs, Castiglione et al. [21] propose the use of the name and
tags of the images as an alternative means of hiding information
and thereby establishing a secret communication channel.

Redundancy 2 6 10 14 18
Facebook 0.3442 0.1498 0.0411 0.0000 0.0000
Flickr 0.3491 0.1592 0.0456 0.0000 0.0000

TABLE II
AVERAGE BER WITH YASS WITH DIFFERENT REDUNDANCY LEVELS

In summary, thus far there is no thorough investigation on
how the processing of images on public photo-sharing sites
impacts different information hiding techniques. To the best of
our knowledge, our work is the first to fill this gap. We also
believe that we are the first to propose an approach to ensure
that secret messages can indeed be reliably communicated via
the photos uploaded onto these sites.

III. Secret Embedding Feasibility
In this section, we present our in-depth measurement study

on understanding the feasibility of embedding secrets in images
uploaded on online photo sharing sites.

A. Hiding information on different photo-sharing sites

We use multiple representative steganography tools from each
category described in Section II to hide messages in images.
We upload these images on to various sites and then attempt to
retrieve the hidden messages from the downloaded images. We
use 100 images from a database made available by CMU [25].
We believe that this diverse set of images is representative of
the kinds of photos that people share online. The sizes of these
images range from a few KB to thousands of KB. The minimum
pixel resolution from among all the images is 192 x 261 and the
maximum is 4288 x 2848.

Steganography tools: The steganography tools used are listed
in Table I. These tools are chosen as they are widely used and are
publicly accessible. GhostHost simply appends the hidden mes-
sage after the End-of-Image marker. Steghide, F5, and OutGuess
are the most widely used tools for benchmarking in academia.
Yet Another Steganographic Scheme (YASS) embeds data at
randomized locations within an image and repeats an information
bit multiple times inside the image. The redundancy (the number
of times that a bit is repeated) is a tunable parameter. Table I
shows, for each site, whether we were able to retrieve the hidden
messages embedded with each tool.

Definition of terms: For ease of discussion, we define the
following terms. (a) Success implies that the extracted message
is equivalent to the hidden message. (b) Failure means that
the retrieval effort does not yield a meaningful output. For
example, a failure causes the output of Steghide to be: “extracting
data...could not extract any data”. A failure is experienced even if
only a part of the message is corrupted; a checksum may fail or
metadata could yield mismatches. In all of such cases, one cannot
retrieve the original hidden message. (c) Conditional success only
applies to YASS which uses redundancy to control the decoding
BER. The decoding BER (the ratio of message bits in error to the
total number of message bits in an image) of YASS depends on
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(a) First dimension
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(b) Second dimension
Fig. 1. Distribution of the differences in the pixel values in two color dimensions
between original images and after they are uploaded on Facebook.

70 75 80 85 90 95 100
0

0.5

1

Quality factor

C
D

F

 

 

Original Luminance

After FB Luminance

Original Chrominance

After FB Chrominance

(a) Quality factor

−20 −10 0 10 20
0

0.5

1

Changes in quality factor

C
D

F

 

 

Luminance

Chrominance
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Fig. 2. CDF of quality factor and the change before and after upload

the redundancy parameter in use. We experiment with different
redundancy parameters and the results are presented in Table II.
We observe that when the redundancy parameter is larger than 10,
the BERs significantly decrease and approach 0. Similar results
are reported in [35]. We observe that the BERs experienced for
a given redundancy are similar on Facebook and Flickr.

Summary of the results: At first glance, we see that most of
the tools (except YASS) fail on Facebook and Flickr but succeed
on Google+ and Twitter. Google+ is the most generous platform
and accommodates all the steganography tools. Twitter is the
next best; GhostHost fails on Twitter but the other tools are able
to successfully exchange hidden content. Facebook and Flickr
show the least compatibility with steganography in that all the
tools except YASS (with high redundancy) fail in successfully
exchanging secret content.

To understand the above results, we next examine the pro-
cessing changes at the bitstream level done at each site on the
uploaded images.

B. Impact of processing on hidden messages

Google+: Image integrity is preserved. Experimenting with
our sample data set, we observe that Google+ preserves the
original images, when their sizes are within 2048 pixels by 2048
pixels (Table I). Since the integrity of an image is preserved
as long as the image adheres to the permitted resolution, any
steganographic tool will work on Google+.

Twitter: Metadata fields are cleaned up. Some of the fields
for storing metadata within the JPEG image, (e.g., the COM and
the APP fields [24]), are rewritten by Twitter with its own data.
In addition, anything that appears after the EOI (End-of-Image)
marker is stripped off. The consequence is that tools that exploit
metadata markers for embedding messages (e.g., GhostHost) will
not work. Except for this ‘clean up’ of the metadata fields, Twitter
preserves the image integrity as long as the image size is no larger
than 1024 pixels by 768 pixels. Exceeding this limit will cause a
loss of integrity. Hence, as seen in Table I, Twitter accommodates
most steganographic tools as long as the image size is within the
limit.

Facebook: Similar to Twitter, Facebook removes the content
in some of the metadata fields. In addition, we find that Facebook
applies the following processing functions.

Changes in pixel values. We find that, for a fraction of pixels,
the RGB (∈ [0, 255]) values are changed on Facebook after image
upload. Across the examined set of images, Fig. 1 shows the
distribution (probability density function) of the deviation of
the pixel values from the original values for two color (RGB)
dimensions. The distribution for the third dimension is similar

and is not shown. We see that, while most pixels (> 60%)
remain unchanged, some are modified. The maximum deviation
of the pixel value from the original value can be up to 30.
The distribution of the deviation in general, seems to follow a
Gaussian distribution.

Pixel value changes can be due to JPEG’s lossy compression
(adopted by Facebook) and/or other manipulations (discussed
later). In either case, the steganography tools that rely on em-
bedding the messages into the pixel values (e.g., StegHide) do
not work. Images larger than 2048 pixels in either the length or
width dimensions get resized on Facebook. Resizing causes the
pixels to shift from their original locations or even to be lost,
thus destroying the integrity of embedded messages.

Changes in compression ratio. From the quantization tables
for luminance and chrominance associated with the original
images and the downloaded ones, we note that Facebook adjusts
the compression ratios for many images.

For color JPEG images, distinct luminance and chrominance
quantization tables are part of the JPEG structure and are stored
in the JPEG file. With the utility JPEGsnoop [27], we can access
these quantization tables. By comparing the quantization tables
of an image before and after upload, with the tables from the
International JPEG Group standard (libjpeg [10]), we get the
approximate quality factors before and after upload. Note that,
though the quality factor of a JPEG image is usually represented
by an integer in [0, 100], the calculated values are not necessarily
so due to the fact that custom tables may be used for each
particular image. We round each calculated number to the nearest
integer. The results are shown in Fig. III-A.

We observe that while the quality factors for both the lumi-
nance and chrominance of the original images vary from 70 to
95, Facebook adjusts them to 75 in about 70% of all cases.
This matches the observation in [35] that the quality factor of
Facebook compression is approximately 75. Fig. III-A shows
the cumulative distribution function (CDF) of the quality factor
change for all images. We observe that, for about half of the
images, Facebook uses a higher compression ratio (resulting in
lower quality factors) than the original.

When a lower quality factor is used, it is likely that the pixel
values will change due to compression. Interestingly, we observe
that even for those images whose quality factors are unchanged,
the pixel values are modified. We conjecture that it may be the
case that Facebook applies other image processing besides just
compression. There is no official statement about what the exact
processing is, but some online discussions suggest that a low pass
filter is used (e.g., see bit.ly/UBlbI5).

Changes in DCT coefficients. We access the DCT coefficients
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(a) Facebook DCT changes
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(b) Flickr DCT changes

Fig. 3. Variations in DCT coefficients with Facebook and Flickr

Method BER FEC Detection likelihood Detection likelihood
overhead (ensemble classifier) (StegAlyzerAS)

LSB 0.15239 0.0 0.44 0.69
LSB + 2-LSB 0.08144 0.0 0.47 0.68
2-LSB 0.00968 0.0 0.50 0.63
LSB+FEC [15,13] 0.09375 0.1333 0.45 0.69
LSB+FEC [15,11] 0.01125 0.2667 0.48 0.69
LSB+FEC [7,3] 0.0 0.5714 0.53 0.72
LSB+2-LSB+FEC [15,13] 0.02993 0.1333 0.50 0.68
LSB+2-LSB+FEC [15,11] 0.0 0.2667 0.51 0.69
2-LSB+FEC [15,13] 0.0 0.1333 0.51 0.63

TABLE III
COMPARISON BETWEEN LSB, 2-LSB AND MIXED LSB+2LSB STEGO METHODS

using a JPEG dump utility [9] based on the libjpeg library.
Fig. III-B shows the number of DCT coefficients having a specific
normalized change as compared to the original value. We notice
that, while the majority of coefficients remain the same (with no
difference from the original value), about 20% are decreased or
increased by one. It seems that the change is small (only one)
and appears to occur in the least significant bits (LSBs); as one
might recall, the least significant bits of the DCTs are exactly
where the bits corresponding to the hidden message reside when
many of the stego embedding tools are employed. A careful
examination reveals that DCT coefficient changes are evenly
(uniform) distributed all over the image (result not plotted due
to space constraints).

A careful inspection suggests that there are two potential
reasons for the above changes in the DCT coefficients. First,
Facebook uses a different set of quantization tables from that
in the standard JPEG libraries. Second, it also changes the
pixel values themselves, thereby compounding the effect. We
were unsuccessful in preserving the DCT coefficients even when
uploading images with the same quality factors seen in the
images downloaded from Facebook. It is also possible that
Facebook applies a watermark to the uploaded images; however,
we were unable to verify this.

The above findings indicate that embedding messages in the
DCT coefficients (e.g., with F5 and Outguess) runs the risk of
extraction failures when the images are uploaded on to Face-
book and subsequently downloaded. Tools with error correcting
capabilities (e.g., YASS) can lower the decoding BER and even
eliminate errors in some cases. However, the BER depends on the
message itself and where it is encoded within the image. Thus,
it may not be possible to extract the message in all cases.

Finally, we wish to point out that the default DCT encoding in
JPEG images is done with baseline encoding; however, Facebook
uses progressive encoding (which enables the user to see a
blurred version of the image while it is being downloaded).
However, we verified that this does not affect the values of DCT
coefficients. The encoding scheme only determines if a specified
band (i.e., a lower or higher part of the frequency spectrum) is
encoded first, and if the most significant (and the number of) bits
of the coefficients are encoded first. This results in changes in
the way that the coefficients are represented in the JPEG format,
but not in their values. We verified this by changing the encoding
scheme on the original JPEG images.

Flickr: Flickr cleans up the metadata fields as other sites do.
Unlike Facebook, it uses a constant quality ratio of 96 for both the
luminance and the chrominance while re-compressing images.
We have done extensive experiments that show that the changes

in the pixel and DCT coefficients in Flickr is almost identical to
that with Facebook for the set of images considered. Specifically,
the majority of the DCT coefficients remain unchanged and less
than 15 % are either increased or decreased by one (Fig III-B).
The fact that the processing on Facebook and Flickr are almost
identical suggests that the modifications to DCT coefficients
are not site specific. We speculate that they are mostly likely
due to watermarks inserted by the sites and only affect the
LSB of the DCT coefficients. Typically, watermarks are inserted
by modifying the LSBs to ensure that the image quality does
not degrade significantly. Thus, one might expect that these
processing functions on Facebook and Flickr are unlikely to
change (if at all) over time.

Summary: (a) Some sites (Google+, Twitter) preserve the
integrity of images to a large extent. Common steganography
tools can be used directly on images uploaded on these sites.
(b) Other sites (Facebook, Flickr) process uploaded images,
thus making it difficult to use these tools directly. Specifically,
metadata fields, pixels or DCT coefficients are exposed to the
manipulation by these sites. Our key observation is that the
modifications to the DCT coefficients are most likely due to
watermarks and affect only the LSBs of these coefficients.

IV. Reliable Embedding on Facebook and Flickr
While secret content can be reliably exchanged via images on

Google+ and Twitter, Facebook is today the most popular OSN.
Similarly, today, Flickr is considered as the top photo-sharing
site [38]. Thus, we ask the question: in spite of the processing
that is performed on Facebook and Flickr, can we enable users
to secretly communicate on these sites while simultaneously
ensuring that the detection probabilities with steganalysis tools
remain similar to that with common steganographic embedding
approaches?

Our answer to this question is based on our observation that
the failures with common steganography tools are because the
messages are embedded in the LSBs of either the DCT coeffi-
cients or the pixel values (which are more prone to processing
changes). Thus, to preserve secret content embedded in the LSBs
one must use robust forward error correction (FEC) codes as with
YASS. However, since these bits are often subject to processing
changes, the overhead incurred will be high, thereby reducing the
secret carrying capacity (shown later). Furthermore, as we also
show later, the use of high degrees of redundancy is one factor
that increases the chances of detecting the presence of a secret
message via steganalysis.

Therefore, we ask the question: “Are there locations within
an image that remain relatively unaffected after processing on



Facebook or Flickr?” If there are, we could then embed secrets
in such locations, possibly with much weaker FEC.

Recall that the maximum change in the pixel values is about
30 for almost all images (Fig. 1), and the maximum change
observed in the DCT coefficients is 1 (Fig. 3). Intuitively this
suggests that embedding the message in the higher significant
bits of a DCT coefficient, as opposed to embedding it using
the LSB, could protect it during the processing operations on
the photo-sharing site. However, this approach poses a potential
pitfall. To evade the detection using steganalysis of a message
hidden within an image, there is an inherent tradeoff between
preserving integrity by changing higher-order values and keeping
the detection likelihood low.

Consider an example with a given color image, wherein a pixel
is represented by 3 bytes, one each for the RGB dimensions.
If two bytes only differ in the LSB, the represented colors
are virtually indistinguishable to the human eye. A variation at
the start of each byte causes more drastic color differences. In
addition, to detect hidden messages, a steganalysis tool could
examine the colors of adjacent “pixel pairs” and determine how
close they are to each other. It could examine the rare occurrences
of abrupt color changes within the image and flag the image if
such occurrences are observed. In general, changing the higher
order bits of pixels causes more drastic color changes resulting
in easier detection.

In fact, several sophisticated steganalysis tools have been
developed to detect steganographic embedding. As an example,
one modern image steganography detection tool [34] adopts a
machine learning approach trained to distinguish between the
original and “stego-ed” images. The algorithm is sensitive to
steganographic embedding changes, but is insensitive to the orig-
inal image content. It also captures many dependencies among
individual DCT coefficients; there is an increased likelihood that
at least some of these dependencies will be disturbed by embed-
ding. Because of this, common steganographic embedding tools
typically hide data using the LSBs. Needless to say, there is a
race between the development of new steganographic embedding
solutions, and steganalysis tools to combat such approaches.

Our approach: Given this, we propose the embedding of
secret information in the 2nd least significant bit (2-LSB) in
the DCT coefficients; this provides (as shown later) the best
tradeoff between detection evasion and preserving the hidden
messages on Facebook and Flickr 1. In order to decrease the
likelihood of detection via steganalysis, one can envision using
a combination of LSB and 2-LSB embedding. For example,
whether the changed bit of a DCT coefficient is its LSB or 2-
LSB can depend on whether the chosen coefficient index in the
image is an odd number or even. This mixed approach is referred
hereafter as the LSB+2-LSB method.

We modify the open source stego tool F5 [4], which embeds
the secret message bits in the LSBs of pseudo-randomly chosen
non-zero DCT coefficients. We embed the message bits in the
2-LSB of these coefficients instead. In typical images, with both
a length and width of about 1000 pixels, there are about 10,000
non-zero coefficients. The number of these usable coefficients
is called the “image capacity”. As an example, when the image
capacity is 10,000 bits, by using 10% of the capacity to embed

1We do not pursue embedding in 3-LSB and above because 2-LSB embedding
suffices for preserving secret messages with a low detection likelihood.

secret information, we can embed 125 bytes or characters.
This translates to approximately 25 words (based on published
statistics that show that there are about 4.5 characters per word
on average [37]).

We choose an arbitrary image and compare it with its stego-
ed version obtained with the LSB and 2-LSB methods, when
a reasonable amount of data is embedded (10% of the image
capacity). We use the peak signal to noise ratio or PSNR metric
(typically used to quantify the difference between an image
and its processed (noisy) version) to compare the stego-ed and
original images. A high PSNR indicates that the quality of the
original image is preserved well in the stego-ed image. The PSNR
of the image with LSB and 2-LSB embedding, with respect to
the original image, are 57.21dB and 56.82dB, respectively. The
differences in the PSNRs with LSB and 2-LSB embedding for
all other images in our candidate set were also very low (almost
insignificant). This demonstrates that there is not a significant hit
in the image quality with 2-LSB embedding as compared to LSB
embedding.

Using the above three methods (the message length is 10% of
the image capacity), we upload three sets of stego-ed images to
Facebook and then download the images. We calculate the bit
error rates (BER) from the retrieved messages.

BER behaviors: From Table III (see Column 1, Row 3),
we see that embedding information in the 2-LSB of the DCT
coefficients encounters much fewer bit errors (≈ 1%) as compared
to using the LSB (≈ 15%). This is because, when the DCT
coefficients are changed by 1 (recall Fig. 3), the LSBs are altered
and so are the embedded data bits (if the embedding is done in the
LSB). Note that, with a unit change in the LSB, the 2-LSB may
be sometimes altered due to a carrier overflow or a borrowing
from the LSB. While using the 2-LSB does not provide perfect
error-free decoding, it comes really close. Partially inheriting the
merits of 2-LSB, the mixed LSB+2-LSB method incurs a BER
of about 8%.

Applying forward error correcting codes (FEC): Next, we
seek to eliminate errors by applying FECs to the hidden message.
Considering the small BER induced by the 2-LSB method, we
expect the overhead to be minor. We experiment with Reed-
Solomon codes [40] with different error-correcting abilities. A
Reed-Solomon code is a linear block code represented in the
form [n, k]; n is the length of the code word and k is the length
of the message. The redundancy is (n - k) and, in general, up to
(n− k)/2 errors can be corrected.

We experiment with three settings—with [15,13], [15,11], and
[7,3] codes—with the LSB, 2-LSB, and the mixed LSB+2-LSB
methods. The results are in rows 4 to 9 in Table III. We note
that using the weakest code ([15,13]) protects the 2-LSB method
from bit errors, while the LSB method needs the strongest code of
all—[7,3]—to achieve the same result. The LSB+2-LSB method
needs the code with medium strength [15,11] to eliminate bit
errors. In terms of delivering the same amount of error-free secret
data, the FEC overhead is about 13% for the 2-LSB method,
about 58% for the LSB method, and about 27% for the LSB+2-
LSB method.

Summary: By comparing the BERs between the conventional
LSB stego method, the mixed LSB+2-LSB method, and our
2-LSB approach on Facebook, we find that embedding secret
information in the 2-LSB jointly with a weak FEC is sufficient.



It outperforms the LSB and LSB+2-LSB methods in terms of
FEC overhead for a given message length.

A. Evaluation with steganalysis
Next, we use state-of-the-art steganalysis techniques to eval-

uate the likelihood of detection with our 2-LSB and LSB+2-
LSB approaches. We compare this with the detection likelihood
in cases where traditional steganography tools, which embed
information in the LSBs of the DCT coefficients, are used. Our
goal here is to show that our approaches do not significantly
increase the detection likelihood when the same message capacity
is delivered.

Steganalysis techniques in use: Steganalysis seeks to detect
the presence of embedded data in an image (it does not attempt to
extract the embedded message itself). To date, the most advanced
steganalysis methods do supervised classification using machine
learning tools like SVM or ensemble classifiers [33]. We use
the ensemble classifier from [33], implemented in Matlab [3]
along with the 548-dimensional CC-PEV features [7] 2. As
to commercial steganalysis products, Steganography Analyzer
Artifact Scanner (StegAlyzerAS) developed by Steganography
Analysis and Research Center (SARC) [14] is probably the best
available steganalysis software in the market today. We use a
limited time trial version with full functionality from their site.

Methodology: When using the ensemble classifier, we use
a training set of 100 (each) normal and stego-ed images, re-
spectively. The stego-ed images are produced by the traditional
F5 tool which uses (i) the LSB method, (ii) our modified 2-
LSB method, and (iii) the mixed LSB+2-LSB method. An equal
number from both sources are considered. For both the normal
and stego-ed images, we uploaded and then downloaded the
images from Facebook.

Next, we apply the trained steganalysis tool on a test data set
consisting of 100 different normal and stego-ed images (each).
The false alarms on normal images contribute to the computed
false positive rate, and missed detections on stego-ed images
contribute to the computed false negative rates. When using
StegAlyzerAS, we simply scan the folders containing normal
and stego-ed images. We experiment on different sets of stego-
ed images with embedded message lengths that consume 10%–
50% of the image capacity. The embedded messages include the
secret data augmented by error correcting codes. The FECs are
[7,3] for LSB, [15,13] for 2-LSB and [15,11] for LSB+2-LSB
methods, respectively. These FECs are chosen to ensure that
the same BER (zero) is achieved with the three schemes. The
DCT coefficients to be modified are pseudo-randomly chosen,
and spread out evenly in the image.

Detection accuracy is defined to be the fraction of images that
are successfully flagged by the steganalysis tools in use from
among all the stego-ed images. We use terms detection accuracy
and detection likelihood interchangeably.

Results and interpretation: Tables IV and V present the
detection accuracy on stego-ed images produced by the academic
and commercial tools we use. From Table IV, we see that the
ensemble classifier can detect more stego-ed images constructed
with the 2-LSB method than with the LSB method; however,
the difference is insignificant. The detection rates with the mixed

2CC-PEV was first proposed in [36] and its analysis is based on the use of an
extensive set of DCT coefficients and other features.

Capacity used 0.1 0.2 0.3 0.4 0.5
LSB 0.44 0.62 0.75 0.87 1.00
LSB+2-LSB 0.47 0.66 0.81 0.92 1.00
2-LSB 0.50 0.66 0.81 0.94 1.00

TABLE IV
DETECTION RATE OF ENSEMBLE CLASSIFIER (FALSE POSITIVE RATE 0.24)

Capacity used 0.1 0.2 0.3 0.4 0.5
LSB 0.69 0.77 0.83 1.00 1.00
LSB +2-LSB 0.66 0.75 0.80 0.94 1.00
2-LSB 0.63 0.75 0.79 0.81 0.81

TABLE V
DETECTION RATE OF STEGALYZERAS (FALSE POSITIVE RATE 0.20)

LSB+2-LSB method are higher than those with the LSB method,
but lower than those with the 2-LSB method. This is to be
expected since the mixed method distributes the changes over
the LSBs and the 2-LSBs in images.

Thus, in typical regimes of interest (when the used image
capacity is 10% or so), steganalysis on the images created
with all methods exhibits very similar detection rates. As we
aggressively embed more data into the images, the detection
likelihood increases with all methods.

Surprisingly, the commercial tool StegAlyzerAS correctly cate-
gorizes a larger number of stego-ed images with the LSB method
than with the 2-LSB method (see Table V). This is probably
because the ensemble classifier uses machine learning while
StegAlyzerAS relies on known stego signatures and identifiable
patterns of specific steganography tools.

Most importantly, from columns 4 and 5 in Table III, we see
that when delivering the same amount of secret data,the 2-LSB
approach with a weak FEC (2LSB+FEC [15,13]) is less likely
to be detected by both steganalysis tools than the traditional
LSB approach with a strong FEC (LSB+FEC [7,3]) or the mixed
LSB+2-LSB approach with a medium strength FEC (LSB+2-
LSB+FEC [15,11]). While embedding secrets in the 2-LSB
can increase detection likelihood, so can increased redundancy;
the latter results in a higher number of changes to an image to
deliver the same amount of secret data. We observe here that,
due to the reduction in the level of redundancy needed, the 2-
LSB scheme can in fact out-perform the traditional embedding
method and the mixed LSB+2-LSB method when used on photo-
sharing sites. In fact, due to the low redundancy required by
2-LSB, the detection likelihood with StegAlyzerAS when using
this approach is practically identical with and without FEC.

Finally, we observe that the two steganalysis tools have a false-
negative rate of 40–50% in cases where only 10% of the image
capacity is used for secret embedding. Furthermore, as seen in
Tables IV and V, the false positive rates are also fairly high (≈
20%); given the millions of images uploaded on to Facebook and
Flickr daily, the number of false positives will far outweigh the
number of images correctly detected to have secret content. The
detection accuracy will be even lower if lesser image capacity
(say 5%) is used for secret embedding. Thus, if users take care to
not embed secret information in the majority of the photographs
that they upload, this suggests that the likelihood of detection is
very low.

Summary: In summary, 2-LSB embedding decreases the
observed BER in secret messages hidden in images uploaded to
Facebook. While embedding in a higher order bit inherently in-
creases the likelihood of detection with steganalysis, the reduced
BER with 2-LSB decreases the level of redundancy required



as compared to that required with LSB or mixed LSB+2-LSB
embedding; this in turn decreases the likelihood of detection
via steganalysis. Finally, the state-of-the art steganalysis tools
only offer 40%–50% likelihood of detection in the common case
wherein 10% of the image capacity is used for steganographic
embedding; moreover, the false positive rates are about 20%.
This suggests that 2-LSB embedding is a practical method for
embedding secret content on images uploaded onto Facebook.
We have done several experiments on Flickr that show similar
results showcasing the efficacy of 2-LSB embedding.

V. Enabling Private Communication
Besides enabling successful secret message recovery, there is

another fundamental requirement with regards to reliable private
communications: the secret messages must not be recoverable by
any party other than the legitimate recipients. Towards fulfilling
this, we use encryption in conjunction with steganography for the
pre-processing of the secret messages to avoid the exposure of the
secret. Encrypting secret messages requires the establishment of
secret keys between the communicating entities. In prior work,
the existence of an out-of-band channel is assumed [19], via
which such keys are established. However, in cases where censor
authorities have pervasive access to information, the availability
of such an out-of-band channel may be difficult (e.g., email, voice
calls and Internet-based communication may be monitored). In
this section, we first describe the censor’s capabilities as part of
our threat model; we then propose an approach for bootstrapping
the private communication without any out-of-band channel,
i.e., the covert channel is established by uploading images to
exchange keys. Subsequently, we discuss the security properties
provided by our approach.

A. Threat model
Censor abilities: A censor’s characteristics depend on factors

like motivation, resource and time in different contexts. The
capabilities of a government-sponsored censor are influenced by
the laws and policies. The threat model we present is similar
to that in [19] and is one that we believe is able to capture
the current capabilities of a censor. Nevertheless, censorship is
an arms race; thus, as the censor’s capabilities become more
advanced and sophisticated, efforts towards evading censorship
will also need to evolve in response.

We assume that the censor by default allows OSN access to
users, but can: a) monitor all network traffic, b) can inspect all
publicly available content on the OSN, and c) can access privately
shared content on the OSN (e.g., via subpoenas). We believe that
this assumption reflects the current state of censor behaviors.
If the censor blocks users from accessing a particular OSN,
users can communicate covertly on a different unblocked OSN.
Even if the censor is capable of altering OSN content, it will be
hard for it to determine what content to modify, since it cannot
reliably detect steganographic embedding in images. Given this,
we assume that the integrity of uploaded content is preserved
and is not manipulated by the censor; the only cause of integrity
loss is the processing on images done by the OSN for orthogonal
reasons (e.g., to save storage and bandwidth). We assume that the
OSN has no incentive to modify its image processing with the
sole aim of disrupting potential use of steganography. Beyond
these basic assumptions, the specific capabilities of a censor
depend on the effort it expends in capturing and analyzing

OSN content. We assume that the censor’s abilities in doing so
will ultimately be constrained by cost (given the scale of OSN
content). In other words, we expect that it will be infeasible for
a censor to analyze all uploaded images on OSNs.

We also assume that the censor has unlimited access to any
steganalysis tool that is available and may develop its own
tool targeting specific steganographic schemes, including our 2-
LSB method. Note that we have shown in Section IV that a
steganalysis technique trained to detect 2-LSB based embedding
could have higher detection accuracy than common tools, but the
increase is not significant.

Users and OSN accounts: We assume the users are who they
claim to be; Alice’s account indeed belongs to Alice and not to
some malicious third party posing as Alice. Protection against
fake accounts is beyond the scope of this paper.

Finally, we assume that users do not post large volumes of
secret content i.e., they do not embed messages in a majority
of the images that they upload; this is unlikely in practice and
in turn would make their data susceptible to batched or pooled
steganalysis. Limits on the extents of secret embedding without
being vulnerable to steganalysis is discussed in [32].

B. Covert channel to circumvent the censor
Next, we seek to build a covert channel which can be used

by users to send/receive secret messages such that a censor can
neither determine the existence of such messages nor intercept
their content. To achieve this goal, we use cryptography in
conjunction with our proposed 2-LSB steganographic scheme to
embed secret messages in images uploaded to OSNs. As shown
in Section IV, the stego-ed images using our 2-LSB scheme
are detected only with low probability by the state of the art
steganalysis tools; this offers users a certain level of deniability
in the face of a censor’s accusations. Encryption of the secret
messages ensures that no one, except those who have the requisite
key, can read the content. The communicating entities need to
establish the secret keys before exchanging the secret. In what
follows, we propose a protocol for bootstrapping the private
communication with an in-band channel (i.e., via the images
posted on OSNs).

C. Bootstrapping the covert channel
In order to establish covert communication channels via photo

sharing sites, we propose that a user first embed her public key
(using steganography) in her profile photograph (without loss
of generality, we assume an OSN such as Facebook for this
discussion). By uploading new profile photos, the public key can
be changed.

Now, let us consider a scenario wherein users Alice and Bob

are friends on Facebook and have embedded their public keys
on their profile pictures. Alice and Bob also install our common
bootstrapping software. Now let us assume that Bob wishes to
initiate the establishment of a covert channel with Alice. In what
follows, we first describe the protocol in brief and then describe
the steps in greater detail.

Protocol overview: Given that Alice’s public key may or may
not be embedded in her profile photo, and Alice may or may
not realize Bob’s intent to build the covert channel, a handshake
is necessary here. Consequently, our key establishment is an
interactive procedure. First, Bob will need to alert Alice of his
intent to communicate. Alice will need to send a response to



let Bob know that she received his message. A session key for
future communication can be exchanged at this time as well.
Bob will need to send another confirmation to let Alice know that
the session key is agreed upon. All of these communications are
carried out covertly by embedding messages in uploaded images.
Once established, a secret conversation can last as long as needed.

Protocol details: The bootstrapping phase consists of the
following steps.

1. First, the software on Bob’s device fetches Alice’s profile
photo and extracts the first Lk 2-LSB bits from the DCT
coefficients, where Lk corresponds to the length of the key
(the length is configured in the software). At this point,
Bob does not know if what he has is Alice’s public key or
is simply some arbitrary string, since Alice may not have
embedded a public key in her photo. The string of length
Lk that is extracted is called Kpu

A .
2. Bob next encrypts a signal (“request”) with Kpu

A and embeds
it in an uploaded image. The request also contains metadata
that indicates the length of the message (the 2-LSB bits it
consumes), and a nonce.

3. If Kpu
A is a random string, and not Alice’s public key as

assumed, Alice does not respond to Bob’s request. If Alice

has indeed embedded her public key in her profile photo,
she may extract the hidden message (depending on when
she views the image). At this point, she uses her private key
Kpr

A to decrypt the request in Bob’s image, thereby learning
of Bob’s intent to communicate.

4. If Alice trusts Bob (e.g., that he is not a user controlled
by the censor), Alice then retrieves Bob’s profile photo and
obtains his public key Kpu

B . Note that, since Bob sent her
a request, at this moment, Alice knows for certain that Bob

has included a valid key (Kpu
B ) in his profile image and

that she has not extracted a random string.
5. Alice then creates a signal (“ack”), attaches a symmetric

key ks and the nonce associated with Bob’s request. She
encrypts this content with Kpu

B . The (secret) encrypted
message is then embedded in an uploaded image.

6. Bob extracts the encrypted message from Alice’s image,
decrypts it using his private key Kpr

B , checks whether the
message is an ack, verifies the nonce, and extracts ks. Note
that a decryption failure at this stage indicates that Alice did
not respond to his request, and that this step together with
step 5 is necessary for Bob to confirm that Alice received
his message and is aware of his intention of establishing
the secret key.

7. Bob then encrypts a new signal (“ack2”) with ks and
embeds this in a new image, which he then uploads.

8. Alice extracts the secret from Bob’s image, decrypts the
message using ks, and obtains the signal “ack2”. At this
point, Alice has validated that Bob has the secret key ks,
and thus, the covert channel is established.

At the end of these steps, all the secret messages exchanged
between Alice and Bob are encrypted with ks. ks can also be
used as the seed to generate the pseudo-random series of DCT
coefficients chosen to carry the secret message. For instance, the
sequence of DCT coefficients that are changed, can be generated
by a pseudo-random number generator that uses a concatenation
of ks and the photo ID as the seed. This ensures that the
DCT coefficient sequence changed differs across photos; one can

expect this to lower the detection probability.
Key selection: Recall that Alice’s public key Kpu

A is embedded
in her profile photo. For some cryptographic schemes, the public
key is only divisible by large primes (small prime numbers such
as 2, 3 or 5 are not factors of the key). This may allow Bob,
or even an adversary, to suspect that a public key is embedded
in a profile photograph. However, with many state of the art
cryptographic techniques (such as Elliptic Curve Cryptography
(ECC) [2]), the keys are divisible by small prime numbers and
thus, this problem does not arise. Nevertheless, as identified
in prior work [26], one should avoid using bad public keys
generated by key generation implementations that do not use
sufficient randomness.

D. Security properties
A Man-in-the-middle (MIM) attack could occur during a

key exchange, wherein an eavesdropper, say Chloe, somehow
intercepts the communication between Alice and Bob. Chloe could
send her own public key and mislead Bob into believing that he
has Alice’s public key (and similarly deceive Alice into believing
she has Bob’s public key). However, since we assume that photo-
sharing sites preserve the integrity of uploaded content, the
censor can launch a MIM attack only in one of two ways: (i) it
can compromise a user’s account and replace the user’s profile
photo, or (ii) it can intercept a user’s network traffic when the
user is uploading/downloading photos from the photo-sharing site
and modify photos on the fly. Preventing compromises of user
accounts is beyond the scope of this paper. On the other hand,
users can prevent the second type of MIM attack by using HTTPS
to upload/download content to/from the photo-sharing sites. In
fact, Facebook, Twitter, and Google+ use HTTPS by default.
When users use HTTPS, the censor will have to subvert users’
lookup of SSL certificates in order to perform a MIM attack.
Again, making HTTPS resilient to such attacks is beyond the
scope of this paper.

Detection of the existence of embedded key: As discussed ear-
lier, steganalysis tools are far from perfect. As seen in Tables IV
and V, the likelihood of false positives and detection misses are
high. In fact, if only 10% of the image capacity is used for
embedding secret information, our study suggests that the tools
yield a detection miss rate of about 50%. This, combined with
the high false positive rate, makes steganalysis difficult, if not
impossible, if encrypted content is hidden.

Forward and backward secrecy: Since the key (ks) is per-
conversation rather than per-user (i.e., a fresh key is established
for each conversation), our protocol ensures that undesired users
(and censors) are unable to uncover any additional information
from past or future conversations with ks. In contrast, consider
a Diffie Hellman-style key exchange, where every user includes
her public key component in her profile photo, and either party
can derive a shared key without any interactions. In this case,
the shared key between a pair of users would be fixed across
all of their conversations, hence putting their past and future
communications at risk if the shared key is leaked. Also note
that any user A’s public and private keys (Kpu

A and Kpr
A ) can

be updated periodically by changing A’s profile photo. This will
limit the effectiveness of a brute force attack in discovering A’s
private key (Kpr

A ).
Access and sharing patterns. For step 3 to work reliably, Alice

needs to check for the request signal in a sizeable fraction of



photos shared with her, but not necessarily all; Bob can retry step
2 if he sees no response from Alice for a timeout period. When
Alice does access Bob’s photo containing the request signal, this
will not leak much information since Bob can share that photo
with all of his friends on the OSN, who will all also access the
photo. In response to receiving a request from Bob, Alice does
not need to immediately share a photo in order to respond; she
can embed an ack message whenever she uploads a photo next.

E. Increasing the efficiency of bootstrapping
Bootstrapping can be made more efficient as follows:
Key length: In our implementation of the above key exchange

process, we use a publicly available implementation of the RSA
algorithm to generate the public key (of length 1024 bits). It
is widely known that generating a public key component with
Elliptic Curve Cryptography (ECC) may be a better alternative to
RSA [2]; with ECC, the key length is much shorter for providing
similar security. For example, a 160 bit key generated with ECC
provides equivalent security as a 1024 bit RSA key. The reduction
in the key size directly translates to the embedding of a shorter
secret message in the profile picture. Since shorter messages are
harder to detect, this in turn will lead to a further decrease in the
detection likelihood with steganalysis tools.

Embedding multiple messages in the same image: If Bob wants
to send a “request” to other users besides Alice (step 2), he can
encrypt copies of the “request” using these users’ public keys
and embed all the ciphers back to back in the same image. For
instance, with a 160 bit key generated with ECC, if 10% of
the image capacity is to be used, 6 requests can be packed in
an image. Since the ciphers will have the same length, the entire
secret message is composed of segments of the same length. After
a recipient extracts the composite message (consisting of the
segments) from an image, he can decrypt each of these segments
using his private key. It does not matter that there are segments
which are not meant for him. As long as he sees the signal
“request” in one of these segments, he would know that he is
one of the intended recipients. In this way, Bob can bootstrap the
communication with multiple users at the same time. A similar
approach can be used for responding to a request or an ack (in
steps 5 and 7). We will consider this in future work.

VI. Conclusions
In this work, we build a covert communication channel using

uploaded photos on popular public photo-sharing sites. While
using steganography for this purpose had previously received
some attention, many nuances were ignored. Our in-depth mea-
surement study shows that the processing performed by online
sites on the uploaded photos destroys the secret message in many
cases. Our study also reveals the reasons for this loss. Based
on the understanding developed with our study, we propose a
new approach to ensure the integrity of a hidden message, while
at the same time maintaining a low likelihood of detection via
steganalysis. Finally, we also propose and implement a protocol
wherein users can establish keys to encrypt the messages, via an
in-band channel on the photo sharing site.
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