
Principled Unearthing of TCP Side Channel Vulnerabilities
Yue Cao

UC Riverside
Riverside, California
ycao009@cs.ucr.edu

Zhongjie Wang
UC Riverside

Riverside, California
zwang048@ucr.edu

Zhiyun Qian
UC Riverside
Riverside, USA

zhiyunq@cs.ucr.edu

Chengyu Song
UC Riverside
Riverside, USA

csong@cs.ucr.edu

Srikanth V. Krishnamurthy
UC Riverside
Riverside, USA
krish@cs.ucr.edu

Paul Yu
U.S. Army Combat Capabilities

Development Command
Army Research Laboratory

Adelphi, USA
paul.l.yu.civ@mail.mil

ABSTRACT
Recent work has showcased the presence of subtle TCP side chan-
nels in modern operating systems, that can be exploited by o�-path
adversaries to launch pernicious attacks such as hijacking a connec-
tion. Unfortunately, most work to date is on the manual discovery of
such side-channels, and patching them subsequently. In this work
we ask “Can we develop a principled approach that can lead to
the automated discovery of such hard-to-�nd TCP side-channels?”
We identify that the crux of why such side-channels exist is the
violation of the non-interference property between simultaneous
TCP connections i.e., there exist cases wherein a change in state
of one connection implicitly leaks some information to a di�erent
connection (controlled possibly by an attacker). To �nd such non-
interference property violations, we argue that model-checking is
a natural �t. However, because of limitations with regards to its
scalability, there exist many challenges in using model checking.
Speci�cally, these challenges relate to (a) making the TCP code base
self-contained and amenable to model checking and (b) limiting
the search space of model checking and yet achieving reasonable
levels of code coverage. We develop a tool that we call SCENT (for
Side Channel Excavation Tool) that addresses these challenges in
a mostly automated way. At the heart of SCENT is an automated
downscaling component that transforms the TCP code base in a
consistent way to achieve both a reduction in the state space com-
plexity encountered by the model checker and the number and
types of inputs needed for veri�cation. Our extensive evaluations
show that SCENT leads to the discovery of 12 new side channel
vulnerabilities in the Linux and FreeBSD kernels. In particular, a
real world validation with one class of vulnerabilities shows that
an o�-path attacker is able to infer whether two arbitrary hosts
are communicating with each other, within slightly more than 1
minute, on average.

ACMacknowledges that this contributionwas authored or co-authored by an employee,
contractor, or a�liate of the United States government. As such, the United States
government retains a nonexclusive, royalty-free right to publish or reproduce this
article, or to allow others to do so, for government purposes only.
CCS ’19, November 11–15, 2019, London, United Kingdom
© 2019 Association for Computing Machinery.
ACM ISBN 978-1-4503-6747-9/19/11. . . $15.00
https://doi.org/10.1145/3319535.3354250

KEYWORDS
TCP; side-channels; model-checking

ACM Reference Format:
Yue Cao, Zhongjie Wang, Zhiyun Qian, Chengyu Song, Srikanth V. Krish-
namurthy, and Paul Yu. 2019. Principled Unearthing of TCP Side Channel
Vulnerabilities. In 2019 ACM SIGSAC Conference on Computer and Commu-
nications Security (CCS ’19), November 11–15, 2019, London, UK. ACM, New
York, NY, USA, 14 pages. https://doi.org/10.1145/3319535.3354250

1 INTRODUCTION
TCP side-channels are critical vulnerabilities that can be exploited
by adversaries towards launching dangerous attacks. Prior studies
have demonstrated that TCP side-channels can be exploited by o�-
path attackers to perform idle port scans [16], to estimate the round
trip time (RTT) of a connection [1], or to infer how many packets
were exchanged over a connection [11]. They even allow attackers
to hijack connections between a client and a server [7, 11, 18, 37, 38],
These side-channels are an artifact of unforeseen code interactions,
can arise with the deployment of large code bases, and are subtle
and hard to �nd.

Most of the aforementioned side-channel vulnerabilities are dis-
covered manually by domain experts. While manual analysis has
been immensely useful in discovering and patching such subtle vul-
nerabilities, it requires a signi�cant e�ort, and is thus not scalable
and cannot guarantee the elimination of such vulnerabilities. In
this work our goal is to develop a principled approach to automate
the discovery of such hard-to-�nd TCP side-channel vulnerabilities.

In principle, TCP side-channel vulnerabilities are violations of
the non-interference property [21] between simultaneous TCP con-
nections, i.e., the existence of one connection can have an observ-
able e�ect on the other connection(s). Thus, o�-path attackers can
use their own connections to the server to infer the properties
(e.g., sequence number) of a targeted TCP connection between a
victim client and the same server. Speci�cally, an attacker can send
spoofed packets with guessed properties to the server. If the guess
is correct or close, the spoofed packet will cause a change in the
state at the server which in turn, causes changes pertaining to the
attacker’s own connection to the server.



Based on this observation, we design a tool SCENT, to �nd TCP
side-channels in a complex code base with very little manual inter-
vention. At a high level, SCENT detects TCP side-channel vulner-
abilities by detecting violations of the non-interference property
between connections. In particular, it uses two instances of the
same server (TCP stack), where the only di�erences are in the secu-
rity sensitive properties (e.g., sequence number, acknowledgement
number, or port) of an idle (victim) connection. It then sends a set
of packets (inputs) to the two servers. If the responses from the
servers are di�erent, then SCENT has detected a violation of the
non-interference property.

While this approach is intuitive, the challenging part is deter-
mining what kind of packets to send in order to induce such a
violation. Given the large search space of possible combinations
of TCP packets, popular dynamic testing techniques like symbolic
execution and fuzzing all face e�ciency problems. In this work, we
resort to bounded model checking [14, 29, 31] to drive an analysis
to answer this question. Compared to bounded testing [32, 42] (i.e.,
blindly enumerating all possible packets up to the bound), bounded
model checking enjoys the bene�t of state deduplication and is
thus, much more e�cient (see §8 for more details).

Unfortunately, applying model checking to a real-world TCP
stack implementation is non-trivial. First, we need to prepare a self-
contained model that is amenable for model checking (otherwise
the code base is simply too large). Previously, the work by Enas�
et al., [16] has adopted model checking to detect non-interference
property violations in the network stack. However, due to the com-
plexity of implementation level code, they had to manually craft a
much simpli�ed abstract model for the analysis. Such an approach,
while useful in their context of interest (discovering idle port scan
techniques), cannot guarantee that subtle TCP side-channels buried
in complex implementations like the Linux kernel, will not be (unin-
tentionally) removed during the abstraction. To avoid this problem
(high false negatives), we opt to use the unmodi�ed TCP stack
implementation for analysis and only abstract away code that is
outside the core TCP stack.

The second challenge is state explosion. TCP implementations
from real-world kernels contain many variables; if we blindly mark
all the variables as states, then any change to any variable will be
deemed as a new state. However, if a variable is never “shared” be-
tween two connections, it cannot leak any information and is thus,
not interesting to track. To solve this large state space challenge,
we develop a conservative static analysis within SCENT to safely
reduce the state space.

The last challenge is that bounded model checking has bounded
code/state coverage and hence, cannot detect all vulnerabilities.
For instance, the TCP side-channel discovered by Cao et al., [7]
requires sending 100 packets, which is way beyond the capability
of bounded model checking. To solve this problem, we developed a
program transformation technique to automatically simplify the
model as a way to improve the code coverage. In particular, we
observe that many uncovered cases relate to branches that compare
an attacker-controllable value with a �xed value (e.g., the global rate
limit exploited in [7]), and the problem is that the bounded input
space cannot drive the variable side of the branch to go beyond
the �xed threshold. Based on this observation, SCENT automatically
identi�es such branches and downscales the �xed threshold so

that both branches can be visited during a subsequent iteration of
bounded model checking.

To demonstrate the e�ectiveness of our approach, we have imple-
mented a prototype of SCENT and created two realistic TCP models,
one based on the Linux kernel (version 4.8.0) and the other one
based on the FreeBSD kernel (version 13.0)1 We applied SCENT on
these two models and found 12 new side-channel vulnerabilities.
A real world evaluation shows that in particular, with one of the
classes of vulnerabilities discovered, an o�-path attacker is able to
infer whether two arbitrary hosts are communicating with each
other, within slightly more than 1 minute on average. The evalu-
ation results also show that our transformation step is critical for
�nding these side-channels—none of them can be found without the
transformation. Besides, we also did not observe any false positives
during our evaluation.
Contributions. Our contributions can be summarized as follows:

• We design and implement SCENT, a system that �nds subtle TCP
side-channels by detecting violations of the non-interference
property between TCP connections, using model checking as a
basis.

• We developed several techniques to automate the process of
creating self-contained code amenable for use with an o�-the-
shelf model checker, from real-world kernels that keep the core
TCP implementation intact. We applied these techniques to the
Linux and the FreeBSD operating systems and open sourced the
extracted models at [41].

• We developed a code-transformation-based model simpli�ca-
tion technique that improves code coverage for bounded model
checking.

• We applied SCENT to the Linux and the FreeBSD TCP models and
found 12 new side-channel vulnerabilities. We open sourced our
system and released the complete details of �ndings at [41].

2 BACKGROUND
In this section, we brie�y describe the non-interference property
and why it is relevant to the problem of interest. Subsequently,
since we use model checking as a basic building block, we provide
relevant background in brief.
The non-interference property. In recent decades, the non-
interference property [21] has been widely used as a requirement
to prove that neither explicit nor implicit information leakage can
occur in a scenario of interest. Because side-channels are a con-
sequence of information leakage, the non-interference property
can be used as a veri�cation condition to ensure that they do not
exist. If the property is violated, it indicates the potential presence
of an information leak, which can in turn lead to an exploitable
side-channel vulnerability. With regards to the context of interest,
if this property holds, it implies that a state change on a given
connection does not (implicitly or explicitly) become observable in
another connection.

Ensa� et al. [16] applied model checking to verify the non-
interference property in the TCP/IP stack, towards �nding side

1SCENT can be applied to anyOS kernel as long as the source code is available. Therefore,
SCENT can be potentially applied on Windows in its internal environments.



Victim Connection

At
ta

ck
er

's 
Own 

Co
nn

ec
tio

n

Client

Off-path Attacker

Server

sp
oo

fed
 cl

ien
t p

ac
ke

t

spoofed server packet

norm
al packets

Figure 1: Threat model

channel vulnerabilities relating to idle port scans. While they �nd
two port scan vulnerabilities, we point out that they use model
checking more like a validation tool instead of a tool to discover
these; they heuristically specify the scope of the TCP code (to only
consider the speci�c shared resources across connections) and then
manually build the model.

In this work, we seek to perform non-interference analysis in
more general attack scenarios. Importantly, since a manually ab-
stracted model like that in [16] is very approximate and may miss
vulnerabilities that exist in real code, we explore applying model
checking to real TCP implementations from commodity kernels.
Software model checking. Model checking [13, 40] exhaustively
checks if a given model of a system satis�es a given formal prop-
erty. If violations are encountered, the model checker outputs
counter examples which enable the locatation of where a viola-
tion has occurred with relative ease. Model checking methods can
be broadly classi�ed into two categories viz., those that use abstrac-
tion (e.g., SLAM [3], BLAST [22], Event-Driven Software Veri�ca-
tion [25]) and those that are applied directly on implementations
(e.g., VeriSoft [20], CMC [34] [33], and Model-Driven Software Ver-
i�cation [24]). Since the former relies on extracting an abstraction
from the real code (and thus can result in signi�cant approxima-
tion), we use the second category to verify the non-interference
property in our work.

Speci�cally, the basis for our work is a TCP event-driven exe-
cution model that we build. Di�erent from previous work relating
to the use of model checking with an abstracted state machine
of either TCP or the network stack (e.g., [33, 34]), we check for
possible violations of the non-interference property in real TCP im-
plementations. Our model is much more complicated since we have
to look at verifying a property relating to connection interactions
(as discussed later our model contains 4 live TCP connections with
6 di�erent sockets). Furthermore, we need to address challenges
relating to making the model self-contained (to ensure that it can
be used with an o�-the-shelf model checker) and concise (without
which the complexity of the code will make it untenable to the
model checker). Unfortunately, even just the core TCP stack imple-
mentation is too complex for the model checker to exhaustively
check all possible states of the code. For this reason, we can only
perform bounded model checking and therefore the conclusions
(existence or absence of violations) are only applicable to a bounded
set of states instead of the entire code base.

Off-path	
a)ackerServer1 Client1

RST

Server2Client2
In-window seq Out-of-window seq

Challenge
ACK

100	RSTs

ACK	
count	
=	100

ACK	
count	
=	99

ACK	
count
=	0

ACK	
count		
=	100RST

100	RSTs

ACK	
count
=	0

Drop

100	
Challenge
ACKs

99	
Challenge
ACKs

Figure 2: An illustrative TCP Side-Channel Vulnerability.

3 THREAT MODEL
Our threat model is that of an o�-path TCP attacker as shown
in Figure 1. We consider 3 hosts viz., a victim client, a victim server,
and an o�-path attacker. The attacker can either send packets on
its own connection to the server, or send spoofed packets with the
victim client’s IP address or a victim server’s IP address. Di�erent
from a Man-in-the-Middle (MITM) attack, the o�-path attacker can
neither eavesdrop nor inject packets into the victim connection.
Instead, it attempts to exploit a side-channel vulnerability to infer
the state of the victim connection based on the packets sent/received
on its own connection. Speci�cally, it could target the inference of
(a) the port number of the victim client (the server’s port number
is usually known), (b) the sequence (SEQ) number from the client,
and/or (c) the acknowledgement (ACK) number expected by the
server. By inferring just the port number, the attacker can determine
if there is an established victim connection between the server and
the client. With the port number and the SEQ number expected by
the server inferred, the attacker can launch a DoS attack by sending
a packet with the reset (RST) �ag (and correct SEQ number) to
terminate the victim’s connection. If all the three attributes are
inferred, the attacker can hijack the victim connection and inject
malicious payloads as shown in [7]. Note that any machine around
the world can launch an o�-path attack, as long as it is able to send
spoofed packets with the victim client’s (or server’s) IP address.

Previous TCP inference attacks [7, 11, 37, 38] follow a “guess-
then-check” strategy. Speci�cally, during the guess phase, a spoofed
packet is sent with a guessed value (for either or a combination
of the port number, SEQ number and/or ACK number). A correct
guess will be “accepted” by the TCP state machine thus causing
it to transit into a state that is di�erent from that due to wrong
guesses. During the subsequent check phase, the attacker exploits
the side-channel vulnerability to leak the state transition of the
victim’s connection, which allows the attacker to tell whether the
guess is correct or not. Like in these e�orts, the focus of this work
is on identifying similar “software-induced”2 side-channels but by
using a more principled approach.
An illustrative TCP side-channel vulnerability. To illustrate
how an o�-path attacker can exploit a side channel vulnerability to
determine the state of a victim connection (in terms of port number,

2Other types of side channels, such as timing based ones [11], are out of the scope.



SEQ number or ACK number) consider the recent example from [7].
Figure 2 captures this example wherein the o�-path attacker infers
the expected SEQ number of the victim connection to the server.

To understand how the attack works, consider two cases. In the
�rst case, the SEQ number guessed by the attacker is within the
“receive window” (in-window) of the server while in the second case,
the SEQ number is out-of-window. The attacker sends a spoofed
RST packet with a guessed SEQ number. If the number is in-window,
the server responds to the victim with a “Challenge ACK” packet
to ask the client to con�rm the RST. Since the victim client did not
really send the RST packet, it will simply discard the Challenge ACK
packet. To control how many Challenge ACKs can be sent within
a time period, the Linux kernel maintains a global shared counter
(equal to 100 prior to the work in [7]). Thus, when the attacker
subsequently sends in-window RST packets on its own connection
(one after the other as shown in the bottom part of the �gure), it
gets back 99 Challenge ACKs; in contrast, if the spoofed RST packet
is out-of-window, the attacker will receive 100 Challenge ACKs.
This di�erence/side-channel can then be used to infer whether the
guess is correct or not.

What is evident in the above example is that, by observing the
number of Challenge ACK responses from the server on its own
connection, the attacker can distinguish between two cases with
regards to its spoofed packet viz., whether the SEQ number guessed
is within the server’s receive window or not. Thus, this is a viola-
tion of the non-interference property i.e., the state of the client’s
connection in�uences how many Challenge ACKs are received by
the o�-path attacker.

4 SCENT OVERVIEW
In this section, we provide an overview of our system SCENT and
its core innovation.

4.1 Work�ow
Figure 3 shows the overall work�ow of SCENT. Speci�cally,
• Taking the source code of a commodity OS kernel as input,
the Model Generator (§5) generates a self-contained model3
amenable for application of an o�-the-shelf model checker and
pushes this initial model into a queue.

• The Non-interference Checker (§6), at each step, takes one self-
contained TCP model from the queue, constructs an attack sce-
nario, and executes bounded model checking to verify the non-
interference property between connections.

• If violations are found by the model checker, validated counter-
examples are output as the proof-of-concepts for possible TCP
side-channel vulnerabilities inside the kernel’s TCP stack imple-
mentation.

• Finally, to mitigate the limited code coverage of bounded model
checking, the Model Transformer (§7) automatically generates
a new, downscaled model and pushes it into the queue for the
next round of analysis.

3Note that we only abstract code irrelavent to TCP stack; previous work abstracts the
TCP stack itself.

Figure 3: Overview of SCENT’s work�ow.

4.2 Automated downscaling
While applying bounded model checking to TCP implementation
as a way to �nd non-interference violations is not entirely new,
SCENT solves an important and non-trivial problem. In principle
one will need to send an extremely large sequence (⇡ 1) of packets
in order to excavate all possible violations of the non-interference
property. Unfortunately, we point out that due to the complexity of
commodity kernels’ TCP implementations, even a relatively small
sequence of TCP packets can lead to an explosion of the state space
that cannot be explored by the model checker with limited com-
putation resources (CPU time and/or memory). As a result, the
bound we can a�ord is considerably small (e.g., only 3 packets in
our evaluations); otherwise, the model checker will either exhaust
memory or take a prohibitively long time to �nish. This further
translates to limited code coverage and impacts the e�ectiveness
of SCENT (i.e., it cannot detect side-channel vulnerabilities in un-
covered code). For example, the vulnerability illustrated in Figure 2
cannot be detected as triggering it requires sending 100 RST packets.
In fact, side-channels are more likely than not, triggered by such
uncommon sequences of packets. SCENT copes with this scalability
issue via a novel technique we call automated downscaling.

Our observation is that the TCP code base contains many checks
(branches) that compare attacker-controlled variables against ei-
ther some constant values or variables that remain the same during
model checking. Due to the limited input bound, those attacker-
controlled variables have limited value ranges. When the attacker-
controlled value range does not overlap with the �xed value (cover
both sides), only one branch can be covered. However, such linear
relationships between an attacker value and a �xed value can be
satis�ed easily by downscaling the �xed value (i.e., moving it tor-
wards the attacker-controlled value range). More importantly, this
transformation will not change the fundamental behavior of the
TCP implementation: without downscaling, the relationship can
still be satis�ed, but simply takes signi�cantly longer inputs and
therefore times.

To further elucidate this observation, let us revisit the example
from Figure 2. The side-channel relies on the global Challenge
ACK rate limit (a variable with �xed value 100) and the attacker
has to send 100 packets in total (one spoofed and 99 on its own
connection in the example), to trigger the information leakage.
To �nd this vulnerability, intuitively, the model checker will have
to examine what happens when the TCP code base has received
di�erent numbers of packets which have the RST �ag set and are



in-window (it has to perform 100 such checks). Unfortunately, this
is not possible during our bounded model checking because we
can only increase the counter from 0 to 3. However, if we were to
simply (arti�cially) change this rate limit to say 2, then we will be
able to trigger this vulnerability and observe the di�erence.

Furthermore, the advantage of this approach is that it also inher-
ently reduces the required input space we need to enumerate. For
example, one can reduce the space of possible SEQ numbers (from
232 to a much smaller value) by downscaling other �xed constants
(e.g., the receive window size). This also contributes to a drastic
reduction in the time-complexity associated with our analysis.
Practical Realization. To practically realize automated downscal-
ing, we pursue an iterative approach (alluded to in the work�ow
described in § 4.1). This approach is driven by the key insight that
there is a tight coupling between the input space (i.e., length of our
input packet sequence and the space of the �elds in the TCP header
such as SEQ number space) and the values to which the limits in
the code are to be changed. In the example above, changing the
limit to 2 requires the attacker to send a sequence of two packets. If
on the other hand, we knew that the attacker had a packet sequence
of length 5, the limit could be anywhere from 2 to 5.

Given this, for ease of realization, to begin with, we �x the length
of the input packet sequence and the sizes of the header �elds in
each, but do not modify the TCP code that is input to the model
checker. During the model checking phase, we log information
relating to what parts of the code (what branches) are not covered
because of control statements relating to such limits. We then use
concolic execution to establish transformations of such constraints
(guided by the constraints imposed on the input packet sequence)
that maymake such coverage viable (using the program transformer
module shown in Fig. 3). The transformed model is then considered
for bounded model checking. We iterate the process until we either
(a) do not �nd any additional transformations that we can perform
or (b) we exceed a pre-speci�ed time limit.

5 MODEL GENERATOR
In this section, we describe in detail how we address the challenges
in constructing a standalone TCP code base that can be input to
the model checker and how we initialize variables to ensure that
the model begins with a valid and consistent TCP state.

In principle, one can apply the design principles from [24] to
construct a test model, which combines a test-harness and the real
kernel code with an initial state. Given this initial state, the test
harness would enumerate a sequence of packets as input, and calls
the TCP packet reception code to explore the set of reachable states.
Here, the state of the model is de�ned as the union of internal
states at a host, and is determined by the values of global variables
and heap objects that are reachable by the connection object (i.e.,
the socket). Unfortunately, applying model checking directly on a
kernel code in its entirety, is not practical. This is because model
checking has high associated time complexity, and using the entire
kernel code base as the model can make the analysis prohibitively
costly. More importantly, many of the paths explored by the model
checker will have no bearing on what we seek to analyze. Last
but not least, there is signi�cant non-determinism in real TCP
implementations which will interfere with the model checking.

Figure 4: Work�ow of the Model Generator.

Therefore, assembling a standalone TCP implementationwithout
any kernel dependencies becomes important for the feasibility of
our approach. However, extracting the TCP code from a kernel is
challenging given the fact that the TCP code interacts with the rest
of the kernel via complex interfaces. We solve this challenge by
identifying boundaries where the code can be pruned and manually
constructing stub implementations to close the boundaries.

In addition to generate a self-contained TCP code base for the
model checker, another challenge is how to properly initialize the
model. SCENT solves this challenge by automatically extracting
correct values from a memory snapshot.

5.1 Building a Standalone TCP Model
The high-level guideline for building a standalone TCP code base is
that we want to make sure that all the code related to the TCP stack
remains exactly the same as in the target kernel, while code not
related to the TCP stack should be minimized/abstracted. Following
this guideline, we use a simple worklist-based, semi-automated
approach to gradually grow the code base until the whole TCP
stack is included.
(1) We initialize the worklist with the entry function of the TCP

layer when a packet is received (e.g., tcp_v4_rcv in Linux and
tcp_input in FreeBSD).

(2) We try to remove one function from the worklist. If the worklist
is empty, we terminate the process; otherwise we move on to
the next step.

(3) We check if the current function belongs to the TCP layer (based
on our domain knowledge). If so, we copy the whole function to
the standalone mode and move on to the next step; otherwise
we manually write a stub function to abstract it and go back to
Step (2).

(4) We �nd all the callees of the current function and add them
into the worklist and go back to Step (2). For indirect calls, we
manually resolve the target based on domain knowledge.
Note that because in our attack scenario (§6.2) we keep the victim

connection idling, our current model excludes functions relating to
sending packets on that connection.

5.2 Initializing the Standalone TCP Model
Because our TCP model is built using partial kernel code starting at
an entry function, we need to initialize what we call environmental
variables at this entry point. This is to ensure that the initial state
provided to the model checker is correct and consistent with TCP



Figure 5: Using o�set chains to locate the target variables
during initialization.

executions. Such environmental variables include the entry func-
tion’s arguments, global variables, and heap objects that may be
accessed or reachable by the code extracted above. We point out
that there is no need to initialize local variables or heap objects that
are allocated (and initialized) during the execution of the model.

Manual identi�cation of all the variables that have to be ini-
tialized is not only an onerous task but is also error-prone. Thus,
we develop an automated procedure to initialize them based on a
memory snapshot from a running kernel, which is captured when
the entry function is invoked, Because our standalone model runs
in user-space, values from the snapshot cannot be directly used
as they could be pointers. So our method needs to (1) identify all
accessible variables and their types, (2) locate each target variable
in the snapshot (i.e., determine its address), (3) extract its value
according to its type and size. Finally, this will allow us recreate
the variables and initialize their values in the model checker.

We achieve these goals via a process that is similar to previous
work on recovery of kernel objects from memory snapshots [8].
First, starting from anchor variables (i.e., entry function’s argu-
ments and global variables explicitly referred to in the model), we
use static taint analysis to recursively identify all accessible/reach-
able heap and global objects by following pointers. Due to the exis-
tence of typecasting, we identify pointers in two ways: (1) based
on the variable/�eld’s declaration type and (2) based on the use of
the variable/�eld.

To locate variables inside the memory snapshot, we maintain the
point-to relationship between kernel objects in a data structure that
we call o�set chain, which tracks how each variable is derived from
an anchor variable and the used type associated with the variable.
The o�set chain allows us to traverse the snapshot and recover the
corresponding variables.

Once we locate a variable inside the snapshot, we extract its
“initialization” value based on whether it is a pointer or not. For non-
pointer variables, we will directly use its value from the snapshot;
for pointer variables, we will allocate the target variable statically
in the model checker and assign the target object’s address as the
initialization value. One particular challenge in this step is how to
decide the size of the variable if its type is an array with unknown
size. For example, in Linux, the packet header pointer skb->head is
a pointer to an unsigned char, which can be used to visit the packet
payload with a speci�c o�set (via a value of header �eld doff). As

associating size with a pointer is a hard program analysis problem,
currently we solve this challenge manually.

Figure 5 illustrates this process via an example. In the �gure, each
o�set depicted represents the address o�set between the beginning
of a heap object and the current �eld in the object. Given the base
address in the snapshot and offset:X, our method can obtain the
corresponding �eld value. If the �eld is a pointer, its value can be
further dereferenced in the snapshot to locate the next (new) heap
object. Given this new heap object’s base address and offset:Y, a
new �eld can be located and so forth.

6 NON-INTERFERENCE CHECKER
In this section, we describe how we detect violations of the non-
interference property between two TCP connections.

6.1 Constructing the attack scenario
To detect violations of the non-interference property between two
connections, we craft an attack scenario that is similar to what
was captured in the illustrative example (Figure 2). The scenario
consists of two servers (Server1 and Sever2), two clients (Client1
and Client2), and an attacker (Figure 6). Both servers and clients
use the same self-contained model from the Model Generator. A
connection between Server1 and Client1, and Server2 and Client2 is
initialized before testing. The two connections are identical except
a speci�c secret relating to the victim connection. We use the con-
nection between Client1 and Server1 to model the case when the
guessed secret is correct, and use the connection between Client2
and Server2 to model the case when the guessed secret is wrong.

Ideally, to �nd all possible side-channel vulnerabilities, the at-
tacker (test-harness) should exhaustively generate all possible in-
put packet sequences, including both spoofed packets (with the IP
address of the victim clients) and packets on its own legitimate con-
nection. Unfortunately, given the unbounded search space, this is
simply infeasible. So our test-harness only enumerates all possible
input packet sequences up to a bound (i.e., performs bounded model
checking). Once the test-harness generates a packet sequence, it
sends the same sequence to both servers. Because only the secret
attribute is di�erent for the two victim connections, if the packets
received from the two servers are di�erent (including the number
of packets, the pattern/order of received packets, the contents, etc.),
the non-interference property is violated and the secret is leaked.
The counter-example (packets being sent from the attacker) is then
reported as violations by the model checker.

To reduce the e�ort of the attacker and to make the model more
deterministic, we keep the victim connections “idle” during the
model checking (i.e., neither the victim client or the server will
actively send packets in our model). By doing so, we can be sure
that di�erences in the received packet sequence are indeed caused
by the spoofed packet sequence. If the server and client are ac-
tively exchanging packets, it becomes hard to identify a violation
(di�erences may simply be due to those exchanges).

6.2 Secrets of interest
Our focus in this work is on identifying side-channel vulnerabilities
that result in the leakage of three speci�c secret attributes of a
4We set the secret as whether the speci�c port is being used by the victim connection.



Server1Client1

Attacker

Server2
Client2

Scenario1

Scenario2

packet interactions in TCP connection
normal packet
spoofed packet

secret

secret

Figure 6: Our setup for the scenario relating to non-
interference property veri�cation.

Table 1: The 6 di�erent secret settings of interest (The initial
state captures the victim socket state at the server side)

Initial State SYN-RECEIVED ESTABLISHED
secret port no.4 SEQ ACK port no. SEQ ACK

connection viz., port number, SEQ number, and ACK number. While
there could be other sensitive information (e.g., that reveals the
socket state), we focus on these since they have been shown to
be exploitable for DoS or connection hijacking [7]; however, our
approach can be used to infer the leakage of other secrets.

To formalize, we require our model checker to verify the follow-
ing three properties with respect to non-interference. The sequence
of packets received by the attacker is identical with respect to the
two servers, regardless of :
• The port numbers used in the victim connection;
• The SEQ numbers used in the victim connection; and,
• The ACK numbers appearing in the victim connection.

While previous work only examines if and how these secrets
are leaked when the victim connection is in the ESTABLISHED
state of TCP, we extend the scope to include cases wherein the
victim is in the SYN-RECEIVED state (i.e., during the three way
handshake). This is because in this state, if the attacker can acquire
the information of interest, it can infer whether the client tried to
establish a connection with the server, or even potentially establish
a fake connection itself (by sending a spoofed SYN packet with the
client’s IP address – note that in this case, the SYN-ACK returned
by the server to the victim client is simply dropped). The latter
attack can be serious in practice, since the attacker if successful,
can subsequently inject malicious data on to the server pretending
that the data came from the spoofed client’s IP address. Thus we
have a total of 6 secrets (in the two states combined) listed in Table 1.

6.3 Bounding the input packet sequence
In this work, we focus on the control bits and the secret of interest
(port, SEQ, or ACK number) in the TCP header. All other �elds are
�xed, and are copied from snapshots from real connections. We
exclude the TCP header options in this work since not all systems

support these. Table 2 captures the bounded input space that the
attacker (test harness) in our scenario, generates. For �elds that
have small value ranges, such as the TCP �ags, we enumerate all
the possibilities, (except for FIN and congestion related ones). For
�elds that have larger value ranges, we determine the range as
described below.

Recall that in our attacker scenario (Figure 6), we use the con-
nection between Client1 and Server1 to model the case when the
guessed secret is correct (the guess will automatically be wrong for
the connection between Client2 and Server2 because the secrets
are di�erent). Therefore, for the �eld related to a secret of interest,
the value range is decided based on the concrete values from the
connection between Client1 and Server1. Assume that on Client1’s
side, the port number, SEQ number, and ACK number are P , S , and
A, respectively. We will always set the port number of all gener-
ated packets to P , because this allows us to exercise the scenario
where we made a correct guess of the port number of the connec-
tion between Client1 and Server1, and a wrong guess of the port
number of the connection between Client2 and Server2. For the
SEQ number and ACK number, because the TCP stack performs a
range check, we want to simulate cases where the guessed number
is close to, but not equal to the correct number. For this reason, we
enumerate the range [S � 2, S + 2] and [A � 2,A + 2]. Currently,
we limit these variables to this range, because with our automated
downscaling (of the receive window), the enumerated cases are
enough to explore all three of the following cases with respect to
those numbers: (a) outside the receive window, (b) exact match, and
(c) within the receive window.

We currently limit the range of the payload size to [0, 2]. This
range allows our model transformer to downscale packet size re-
lated checks; yet, it will not signi�cantly increase the input space
or the state space.

Finally, we determine the packet length through empirical exper-
iments, i.e., given that the ranges of each packet’s �elds are �xed,
we try to enumerate as many packets as possible until the model
checker either exhausts the memory or takes a prohibitively long
time to �nish. On our evaluation platform, we can only enumerate
a maximum packet sequence length of 3.

6.4 Deduplication
Since di�erent input sequences can trigger the same vulnerability,
the counter-examples can also be duplicated. To �nd distinct vul-
nerabilities, we follow a similar approach as semantic crash bucket-
ing [43]: given a counter-example, we use the branch trace recorded
for the model transformer (§7) to locate the key branch/constraint
that leads to the di�erent behavior and “patch” the branch so that
the counter-example will no longer yield the di�erent behavior. One
can consider this as the opposite process compared to our model
transformation process. Then, we run all the counter-examples
again. All the other counter-examples that no longer yield the dif-
ferent behavior will be considered to be duplicates.

7 MODEL TRANSFORMER
In this section, we describe how we practically realize the vision
of automated downscaling using an iterative approach. We begin
with a limited input space and execute bounded model checking.



Table 2: Packet �elds enumeration ranges. C1 means the corresponding value used by Client1 in our attack scenario. Packet
with IP equal to C1 is spoofed packet, while packet with IP equal to Attk is on attacker’s own connection.

Packet Fields Length of
Packet SequenceIP SEQ Num ACK Num SYN ACK RST PSH URG Payload Size

Original range [0, 2^32) [0, 2^32) [0, 2^32) 0/1 0/1 0/1 0/1 0/1 [0-1460) In�nite
Bounded range C1/Attk [C1-2, C1+2] [C1-2, C1+2] 0/1 0/1 0/1 0/1 0/1 [0-2] 3

During the process, we log information relating to the code that are
not covered but relate to �xed limits (discussed earlier). We then
apply concolic executions to determine how these limits must be
transformed (�ipped), to make the code coverage feasible while
adhering to the inherent constraints imposed by the chosen, limited
input space. The transformed model is then re-considered (in the
next iteration) and the process is repeated until we do not �nd any
new transformations that can be performed or when we exceed a
pre-speci�ed time limit. We describe these steps in detail below.

7.1 Identifying target branches
Given the above premise, our �rst challenge is to locate branches
we aim to �ip. To do so, we instrument our model so as to trace
all the branch instructions and dump their conditions during the
model checking phase. Then we parse the trace and look for branch
conditions (a relation operation like <,>) that have one operand
that varies (e.g., a stateful variable), while the other operand is
always a �xed value. Next, we check if both the true branch and
false branch are visited during model checking; if only one branch
is visited, we have found a target branch.

7.2 Determining expected values
After identifying the target branch, the next step is to determine
the expected value. Given that the other operand imposes a range
[l ,h], we have two general options: we can either move the �xed
value to the other side of the range (> h or < l) or move it to the
middle of the range. In this work, we choose to move the value
to the middle of the range for the following reason. The goal of
the non-interference checker is to �nd a behavior that di�ers be-
tween Server1 and Server2 when handling the same input sequence.
One reason such a di�erence can arise is Server1 and Server2 tak-
ing di�erent paths at the same branch. For a target branch, the
input sequences we enumerate can only go down one path, with
both servers; otherwise we would have observed these cases. So
if we move the �xed operand to the other side of the range, the
input sequence still can only go down only one path, which is not
particularly useful for revealing potential di�erent outputs.

7.3 Identifying targets for transformation
The goal of our model transformer is to rewrite the program so that
our limited input packet sequence can visit both the true and false
conditions of a branch. After identifying a target branch, there are
multiple ways to rewrite the program to achieve this goal. One way
is to replace the relational operation with one that compares the
variable operand with a smaller but �xed constant. However, this
simple approach could introduce inconsistencies when the operand
with the �xed value is derived from one or more program variables

that are also used in other constraints (e.g., branch conditions). To
avoid potential false positives or false negatives introduced by such
inconsistencies, we choose to modify the source variables during
initialization, instead of directly patching the branch.

There are two general approaches to identify the source vari-
able(s), data-�ow (taint) analysis and symbolic execution. Because
the source variable(s) could go through a series of operations before
being used in the target branch (e.g., limit+10), we choose sym-
bolic execution. This approach provides us with a symbolic formula
expressing the relationship between the source variable(s) and the
value used in the target branch. Therefore, given an expected value
to be used in the target branch, we can consult a SMT solver to
automatically determine the corresponding value(s) to which the
source variable(s) need to be set during initialization. Moreover,
symbolic execution also allows us to collect all path constraints
prior to reaching the target branch. By adding these constraints
while querying for suitable initialization value(s), we can ensure
that the new value(s) will not break path constraints leading to the
target branch.

In brief, SCENT uses concolic execution to determine (a) which
variable(s) should be modi�ed during initialization and (b) what
is the value(s) to which it must be initialized. Because we perform
concolic execution over a single trace (only to collect the symbolic
formula relating to a branch predicate), we point out that we do
not have a problem of path explosion. A sketch of the process is as
follows:
(1) SCENT conservatively symbolizes all variables that are related to

the system’s internal states. (i.e., all the global and heap objects
found in §5).

(2) SCENT applies concolic execution wherein one path recorded
during model checking is followed to reach a target branch
constraint.

(3) SCENT checks if the operand with a �xed value is symbolic
(i.e., derived from internal states). If not, we directly patch the
constant and exit; otherwise we move on to the next step.

(4) SCENT queries a SMT solver for a feasible assignment to the
internal states such that (a) the path constraints are satis�ed
and (b) the operand used in the branch will fall into the range
of the variable operand.

(5) If the solver can return an assignment, SCENTmodi�es themodel
initialization procedure to assign the values returned from the
SMT solver to the related internal states; otherwise it tries to
�nd another recorded path that can lead to the target branch
and goes back to Step (2).



Table 3: Side-channel vulnerabilities discovered by SCENT with di�erent initial secret settings.

6 Secret Settings in Table 1
SYN_Recv EstablishedOS

Kernel
Index-
ClassID Key Constraint that Causes Violations Di�erent Outputs

port SEQ ACK port SEQ ACK

Transfor
-mation
Required

New

1-A RST pkt vs NULL + + Y Y
2-A RST pkt vs NULL # # # # Y Y
3-A

V_icmp_rates[3].cr.cr_rate <V_icmplim
RST pkt vs NULL + + Y Y

4-A V_icmp_rates[4].cr.cr_rate <V_icmplim RST pkt vs NULL + + Y Y

FreeBSD
13.0

5-B sch->sch_length >= V_tcp_syncache.bucket_limit NULL vs RST pkt + Y Y
6-C tcp_memory_allocated <sysctl_tcp_mem[2] ACK pkt vs NULL # # # # # # Y Y
7-C Immediate ACK vs Delayed ACK # # # # # # Y Y
8-C tcp_memory_allocated <sysctl_tcp_mem[1] ACK pkt with di�erent window size # # # # # # Y Y
9-B inet_csk_reqsk_queue_len(sk) >= sk->sk_max_ack_backlog SYN-ACK pkt vs NULL + + Y Y
10-B inet_csk_reqsk_queue_len(sk) >= sk->sk_max_ack_backlog SYN-ACK pkt vs NULL # # Y Y
11-B sk->sk_ack_backlog >sk->sk_max_ack_backlog SYN-ACK pkt vs NULL # # # # Y Y
12-D ACK pkt vs NULL # # # # Y Y
13-D ACK pkt vs NULL + + Y N
14-D ACK pkt vs NULL * * * * Y N

Linux
4.8.0

15-D

challenge_count <sysctl_tcp_challenge_ack_limit

ACK pkt vs NULL # # # # # # Y N
+: correct port number required to trigger the violation
*: correct port number and SEQ number (in-window) required to trigger the violation
#: correct port number, SEQ number (in-window) and correct ACK number required to trigger the violation

8 EVALUATIONS
In this section, we evalute SCENT on two OS implementations, viz.,
Linux 4.8.0 and FreeBSD 13.0, with the goal of answering the fol-
lowing questions:
• E�ectiveness on vulnerability �nding: Can SCENT �nd real
TCP side-channel vulnerabilities from these two kernels? (§8.2)

• E�ectiveness of automated downscaling: Does automated
downscaling allow SCENT to cover more code and more impor-
tantly, �nd more vulnerabilities? (§8.3)

• E�ectiveness ofmodel checking: Does bounded model check-
ing o�er better scalability than bounded testing? (§8.4)

8.1 Evaluation setup
Implementation details. Our implementation of SCENT is built
on a set of open-sourced program analysis platforms and tools.
The static data-�ow analysis used by Model Generator is built
upon kernel-analyzer [46]. The concolic execution engine used
by Model Transformer is built on top of KLEE [6] with the Z3
SMT solver [47]. The instrumentation is built on top of the LLVM
compiler infrastructure [30]. The bounded model checking is done
using the SPIN model checker [23].
Stub function abstraction and crafting a standalone system.
As discussed in §5, we abstract a few functions to facilitate scala-
bility and make the code amenable to model checking. The details
are listed below. It initially takes us longer with Linux as we were
�nalizing the methodology. However, it took us only 2.5 weeks to
build the model for FreeBSD afterwards.
• Mutex and Lock related functions: Use empty function (During
model checking, TCP is executed as a single thread process).

• Memory allocation: Pre-allocate the memory and return the cor-
responding memory object (because the model checker cannot
track dynamic memory).

• Memory release: Use empty function (because we preallocated
the memory).

• Callback functions: Use empty functions (as limited by the state
explosion issue, we only consider one interleaving of concurrent
events; therefore, we can focus on TCP mechanisms).

• Out of scope functions (IP layer or User space): Use empty function
body or craft abstractions manually, to send packets with TCP
layer information.

• Functions that include assembly code: Either replace with glibc
functions or abstract them based on their logic (examples in-
clude printk or __memcpy). Since we need to keep the model
deterministic, we replace prandom_u32 function with a �xed but
arbitrarily chosen value.

• Timer: Return the �xed value captured from a snapshot based on
a real connection (e.g., for tcp_current_mss). This helps elimi-
nate the non-determinism in the model as well as the otherwise
intractable state space (time as a new dimension) that we are not
interested in.

In general, manually abstracting functions results in a risk of miss-
ing vulnerabilities (lowered true positives); however, this step is
necessary to ensure the feasibility of model checking. If these man-
ual abstractions cause false positives, they can be easily veri�ed (in
our experiments, we did not encounter such cases).
Testbed. We evaluated SCENT on two servers, each with a 2.6GHz
(8-core) CPU and 128Gmemory. The secrets of interest are tabulated
in Table 1. We consider the following scenarios: (1) the attacker
has established its own TCP connection with the server; (2) the
attacker sends packets to an open port at the server; and (3) the
attacker sends packets to a closed port at the client. We assume
that the attacker can either send packets to the client or the server,
but not send to both5. We consider 6 di�erent settings with regards
to the victim’s secret attributes and thus, with the three attacker
scenarios, we run 36 experiments for each model. For the Linux
model, we set 2 days as a hard limit for each experiment (given that
it is more complex); while for the FreeBSD model, we set 1 day as a
hard limit. We point out that these limits were imposed based on

5The latter cases can be handled by SCENT but we leave such evaluations for future
work.



the computation capacity available, and to obtain results within a
reasonable time frame. Based on the counter examples found by
SCENT, we set up two virtual hosts (Debian OS with Linux kernel
4.8.0 and FreeBSD OS with kernel 13.0) to validate their veracity in
real settings.

8.2 Discovered side-channels
Table 3 shows the violations found during our experiment. SCENT
discovered a total of 53 distinct violations. Our manual veri�cation
con�rmed that they are all true positives.

These violations relate to a total of 15 side-channels, of which 10
are found in Linux and 5 in FreeBSD. Herewe de�ne “a side-channel”
as a branch that causes the violation. Since the same check over a
shared variable can be applied at multiple branches, the same key
constraint in Table 3 can be associated with multiple side-channels.

Five of the discovered side-channels (4,6,7,8,11) are based on
shared variables that are not discovered before, namely, close port
reset counter, tcp memory counter, and accept queue associate with
Listen socket (details to follow). Seven side-channels (1,2,3,5,9,10,12)
are new ways (i.e., execution path) to exploit known shared re-
sources [1, 16, 48]. The remaining three side-channels (13,14,15) are
known ways to exploit a known shared resource [7].

Based on the shared resources, the side-channels can be catego-
rized into 4 classes. Next, we describe the details and provide an
examplar to showcase in each case.
Reset counter based side-channels (Class A). Side-channel 1,
2, and 3 in Table 3 are caused by what is called the “open port RST
packet rate,” which is used to restrict sending too many RST packets
from an open port. Side-channel 4 is caused by what is called the
“close port RST packet rate,” which is used to restrict sending too
many RST packets from a closed port at a host.

Figure 7 shows how side-channel 1 can be exploited to infer the
port number of a victim connection. During the guess phase, the
attacker sends a spoofed ACK packet with a guessed port number.
As shown in the left part of the �gure, if the port number is the one
used in the victim connection, the server will either accept or drop
the packet (depending on the SEQ and ACK numbers); the response
is sent to the client if appropriate. If the port number in the packet
is not used (right part of the �gure), the server determines that an
ACK was received before any SYN packet. It therefore drops the
packet but responds to the client with an OPENPORT RST packet.
Because of this, the OPENPORT RST Counter is increased by one.
Subsequently, in a check phase, the attacker will send 200 SYN-
ACK packets to exhaust the OPENPORT RST limit (in 1 second) and
observes the number of resposnes (RSTs) received from the server.
If the attacker receives 200 RSTs, it means that the victim client is
using that port number to communicate with server; else, it infers
that the port number that it had guessed is incorrect.
SYN-backlog-based side-channels (Class B). The SYN backlog
is a bu�er that stores half-opened TCP sockets from connections
during the three-way-handshake. Because the SYN backlog is asso-
ciated with the “Listen” socket, its state is shared by all connections
to the server. In order to prevent DoS attacks, the size of the SYN
backlog is constrained to a shared limit. When the number of half-
opened sockets has reached this limit, the SYN backlog bu�er will

either remove an old element or directly drop the current one (based
on the OS kernel used, i.e., FreeBSD or Linux).

Side-channels 5 and 9 in Table 3, are caused because of this
feature, exploiting which an attacker can infer the port number
of a victim connection. Side-channels 10 and 11 can be used to
infer the port number, SEQ number and ACK number; however it is
practically hard to do so since the attacker needs to guess all three
secrets simultaneously (which leads to a prohibitive search space).

To illustrate, let us consider the side-channel 9 as an example,
which can be used to infer the port number of the victim connection.
To begin with, the attacker establishes a number of half-opened
sockets to just leave enough space for one additional spot in the
SYN backlog bu�er. Next, as shown in Figure 8, the attacker sends
a spoofed SYN packet to server pretending to be the victim. If the
guessed port number is already used in an established connection
(i.e., the server and the client are communicating), the server will
drop the SYN or send a challenge ACK, without allocating a new
half-opened socket (as shown in the left part of the �gure). Other-
wise, a half-open socket is allocated and this makes the bu�er full
(as shown in the right part of the �gure). Subsequently, the attacker
sends a SYN packet with its own IP address towards creating a
new half-opened socket, but more importantly to check whether
the SYN backlog is full. Because Linux implements a LIFO (Last In
First Out) algorithm to constrain the bu�er size, if SYN backlog is
full (as shown in the right part of the �gure) , the server simply
drops this new request for a half-opened socket without sending
a response (assuming that SYN cookies are not enabled, which is
common among quite a few cloud servers [2, 12]). Otherwise, the
server will respond with a SYN-ACK to attacker.

Di�erent from the Linux kernel, FreeBSD implements SYN back-
log as a FIFO (First In First Out) bu�er; this implies that an old
half-opened socket will be dropped if the bu�er is full. In this case,
before sending the spoofed SYN packet, the attacker needs to plant
its own half-opened socket �rst (via a legitimate SYN). After send-
ing the spoofed SYN, it can infer whether bu�er is full by checking
if the previously planted half-opened socket still exists, by send-
ing an ACK packet. Similar to the case with Linux, here we again
assume that SYN cookies are not enabled.
TCP memory-counter-based side-channels (Class C). Side-
channels 6, 7, and 8 are caused by a new shared variable discovered
by SCENT. We refer to them as the TCP memory-counter-based
side-channels. As shown in Table 3, all three vulnerabilities require
an attacker to guess port number, SEQ number (in-window) and
ACK number simultaneously, therefore they are not quite practi-
cal. Information leakage in this class are due to a global variable,
viz., tcp_memory_allocated, which can be changed by any TCP
connection. Table 3 depicts two key constraints associated with
this variable: (a) sysctl_tcp_mem[1] indicates that currently the
memory is under pressure, while (b) sysctl_tcp_mem[2] is used
to indicate if the current allocated memory has reached a hard limit
(thus, the server will drop data packets that need additional memory
allocation). The di�erent values of the above global variable can lead
to di�erent control �ows, which in turn cause the server to send dif-
ferent packets to the attacker (in response to speci�c sequences of
inputs). To exploit this feature, the attacker will �rst send a spoofed
packet to try to change this global variable. The changes occur



Off-path	
a)ackerServer1 Client1 Server2Client2

Has connection No connection

199	RST

ACK

OPENPORT	
RST	Counter	

=	0

OPENPORT	
RST	Counter	

=	200

200	ACKs

RST

200	ACKs

OPENPORT	
RST	Counter	

=	200

OPENPORT	
RST	Counter	

=	0
200	RST

ACK

OPENPORT	
RST	Counter	

=	199

Drop

Figure 7: Reset counter based side chan-
nel example (Vulnerability 1, FreeBSD)

Off-path	
a)ackerServer1 Client1

SYN

Server2Client2

Has connection No connection

SYN

reqsk
que
(9)

SYN

SYN-ACK

SYN
SYN-ACK

reqsk
que
(9)

reqsk
que
(10)

reqsk
que
(10)

RST

Figure 8: SYN-backlog based side
channel example when SYN-Cookie
is disabled (Vulnerability 9, Linux)

Off-path	
a)ackerServer1 Client1 Server2Client2

In-window seq 
& correct ACK

Out-of-window seq 
or wrong ACK 

memory	
under	

pressure

Drop

ACK

Data	pkt

tcp_mem_
allocated++

memory	
over	hard	

limit

memory	
under	

pressureData	pkt

Pkt	with	
128B	

payload

ACK

Pkt	with	
128B	

payload

tcp_mem_
allocated++

tcp_mem_
allocated++Drop

Figure 9: TCP memory counter based
side channel example (Vulnerability 6,
Linux)

Table 4: Branch Coverage Information Before and After
Transformation

Kernel Before Transformations After Transformations Increase RateNum Rate Num Rate
Linux 476 36.62% 598 46.00% 25.63%

FreeBSD 618 33.59% 781 42.45% 26.38%

only when the secret attributes of interest (i.e., SEQ number, ACK
number, and port number) are guessed correctly. Subsequently, the
attacker sends its own packets to try to reach the aforementioned
limit; it can observe if the global variable has changed, based on
the patterns of packets that are received. A change indicates that
its guess of the secret attributes holds true.

To showcase this class of side channels, we sketch an exemplary
case study shown in Figure 9. First, the attacker subsumes (pre-
allocates) a large volume of memory before the attack. Next, the
attacker sends a spoofed long data packet with a guessed SEQ
number and ACK number. If the SEQ number is in window and
the ACK number is correct (as shown on the left), the long data
payload is stored in a queue that holds out-of-order packets (packets
that are in window but are not equal to the next expected packet
i.e., rcv_next) causing an increase in the tcp_memory_allocated
counter; otherwise, the server will simply drop the packet (as shown
on the right). During a subsequent probing phase, the attacker
deliberately sends an out-of-order packet with a large data payload
on its own connection. This is designed to signi�cantly increase
tcp_memory_allocated. If tcp_memory_allocated has increased
before (in the previous step) causing the server to reach its hard
memory limit, it will cause a droppage of this packet; otherwise, the
attacker will receive an ACK packet from server. Therefore, attacker
can infer whether the guesssed secret attributes (SEQ number and
ACK number) in the spoofed packet are correct or not.
Challenge counter based side channel (Class D). Side-channel
12 is a new one that is similar to previously reported old ones (13,
14, 15). Here, we explicitly include the challenge ack mechanism in
Linux 3.8.0 towards validating previously reported side channels [7];
these are based on a global variable called challenge_count and
have been extensively described in [7]. Furthermore, this has al-
ready been patched in Linux and other OSes.

8.3 E�ectiveness of automated downscaling
Automated downscaling is the core innovation of SCENT that im-
proves the code coverage of bounded model checking. In this sub-
section, we evaluate the e�ectiveness of this technique.

Table 4 shows the branch coverages achieved before and after
the transformation of automated downscaling. The branch cover-
age rate was increased by 25.63% with regards to the Linux kernel
and by 26.38% with the FreeBSD kernel. Although the �nal branch
coverage rate is seemingly low at 46.00% (as in Linux model), dur-
ing our manual analysis, we found that many of the uncovered
branches were due to our limited input space. Speci�cally, we did
not explore paths related to header options, paths that involve the
server actively sending packets, paths that are related to connec-
tion termination before the “Closed” state, etc. If we discard these
branches (which we do not expect to cover) the branch coverage
rate improves to around 70%.

Besides code coverage, a more important question is whether au-
tomated downscaling enables SCENT to discover more side-channels.
The second last column in Table 3 shows the answer to this question.
In fact, none of the side-channels can be found without automated
downscaling (all require it). We believe that this highlights the im-
portance and e�ectiveness of our technique.

8.4 Performance of model checking
One important design choice we made when building SCENT is
whether to use bounded testing [32], wherein we can directly test
an unmodi�ed kernel, or use bounded model checking. The bene�t
of model checking is that it will visit each state only once, thereby
avoiding the execution of redundant steps and improving the perfor-
mance of testing. In this subsection, we compare the performance of
bounded model checking with bounded testing, in terms of number
of iterations. Figure 10 shows the result. Basically, bounded model
checking executes 4 orders of magnitude fewer iterations than blind
enumeration (i.e., bounded testing).

The next choice we made, that is related to the performance of
model checking, is imposing a limit on the number of packets to be
enumerated during bounded model checking. Figure 11 shows how
the time of one round of model checking increases as the number
of packets increases. Figure 12 shows how the memory usage of the
model checker increases as the number of packets increases. When



the number of packets increase to 4, it will either take too long to
test all the di�erent con�gurations or exhaust all the memory on
the testbed.

9 CASE STUDY
When the port number is leaked, an attacker can infer whether the
victim client is communicating with the server (either during the
three way handshake or in ESTABLISHED state). This leaks the
victim user’s privacy. Side-channels 1, 3, 4, 5, 9 can leak port number
information, and can therefore be used to achieve this attack. In the
previous section, we discussed how such an attack can be launched.
We now construct a real attack to demonstrate the impact of the
corresponding side-channels found by SCENT.

As an exemplar, we pick side-channel 1 (as shown in Figure 7),
and evaluate it in terms of metrics such as success rate and the time
to succeed. In our experiment, we used a Ubuntu 14.04 host on a
university campus as the victim client. The victim server is a virtual
machine running FreeBSD OS from a di�erent Ubuntu 14.04 host.
The attack machine is a Ubuntu 16.04 host on the same campus.
The steps in the attack process are listed below:
(1) Synchronize machine times between attacker and server;
(2) Send spoofed and unspoofed ACK packets to linearly guess a

port number range based on the number of RST packets re-
ceived;

(3) Given a port number range, use binary search to locate the
speci�c port number.
The attacker can guess 200 di�erent port numbers (via spoofed

packets) in one second; otherwise, spoofed packets will always
reach the reset counter limit. The attacker can guess the port num-
ber starting from the Ephemeral port range [15], and then guess
the remainder of the port range. Our experiment shows that this
attack of inferring a correct port number is achievable within an
average time of 73 seconds with a 100% success rate.

10 RELATEDWORK
TCP side channel attacks. In the last decade, several TCP side
channels have been manually found by researchers. These side
channels can be utilized to (1) cause a TCP inference attack [7, 11,
18, 37, 38], which in turn can lead to a hijack of the connection
and injection of malicious data; (2) measure host attributes without
exposing the attacker’s IP address (examples include performing an
idle port scan [16] or measuring the RTT between two hosts [1]).
Roughly these distinct attacks can be mapped onto the exploita-
tion of four categories of side-channel vulnerabilities: (1) Shared
rate limit: these side-channels relate to a rate limit that is shared
across the victim and an o�-path attacker connection, such as IPID
counter [4, 10, 18, 35, 39, 49], the challenge ACK rate limit [7], the
reset rate limit and the shared SYN backlog queue limit [1, 16]. (2)
System-wide packet counter: As the name suggests a packet counter
is shared globally in these cases [37, 38]. (3) Wireless link: Wire-
less contention results in information leakage in these cases [11]
(timing-based side channel). (4) Browser implementation’s feature:
A per destination port-counter and a FIFO HTTP request queue
cause information leaks [19].

While most of these side-channels are discovered manual by do-
main experts, SCENT aims to automate the discovery in a principled
way. Our evaluation shows that SCENT indeed can detected (both
new and known) side-channels.
Side channel detection. Most previous side-channel vulnerabili-
ties have been discovered manually (e.g., using domain expertise).
However, a few side-channel detection tools have been proposed.
[9] uses static taint analysis to discover system-wide TCP packet
counter side-channel vulnerabilities. Generally, static taint analy-
sis can be guaranteed to �nd all true violations, but su�ers from
high false positives. By relying on violation of the non-interference
property, SCENT can avoid high false positives and can detect side-
channels caused by di�erent shared variables. There are also several
e�orts relating to the detection of other types of side-channels but
these are orthogonal to our work [5, 44].
Program analysis and testing. There are also several e�orts
that use program analysis (e.g., static and/or dynamic analysis) to
�nd bugs or other types of attacks in TCP implementations [26, 28].
These are orthogonal to our work and address signi�cantly di�erent
problems.

Model checking and formal veri�cation have been used to an-
alyze the robustness of TCP implementations [17, 33]; however,
their objectives are sign�ciantly di�erent. More importantly, SCENT
uses automated downscaling to improve the e�ectivenss of model
checking.

Besides bounded module checking [14, 29, 31], one could also
do bounded testing [32]. The advantage of bounded testing is that
it does not require additional modi�cation to the target program,
whilemodel checking usually requires generating amodel amenable
to the model checker. However, as shown in our evaluations, by
avoiding redundant states, a model checker can help explore a
larger input space.

Program transformation has been used to assist testing using
fuzzing to patch hard-to-�ip branches (like checksum checks) as
a way of improving code coverage [27, 36, 45]. In contrast, SCENT
tries to coerce both true and false path to be visited and most of
the target branches (Table 3 column 3) have simple constraints. In
addition, SCENT changes the internal states instead of “disabling”
the branch.

11 CONCLUSIONS
In this paper, we consider the challenging problem of developing a
principled approach to discovering hard-to-�nd TCP side-channels.
We use model checking as a basis for �nding violations of the
non-interference property between simultaneous TCP connections,
which we argue is a precursor to exploitable side channels. As
our main contribution, we build a tool SCENT that achieves our
goal by addressing two hard challenges in making model check-
ing amenable to our goal namely, (a) making a TCP code base
self contained after pruning irrelevant parts and (b) systematically
downscaling both the input space and the model state space by
means of principled program transformations. We use the counter-
examples generated by the transformed model checker in SCENT
to discover 12 new side channels and also validate all previously
discovered ones. In this work, we limit ourselves to side channels
that facilitate the inference of a speci�c set of secret attributes (e.g.,



Figure 10: Number of testing iter-
ations versus number of incoming
packets

Figure 11: Timecost of one model
checking run versus number of in-
coming packets

Figure 12: Memory cost of one
model checking run versus number
of incoming packets

SEQ number); we will expand our threat model to �nd other types
of vulnerabilities (e.g., idle port scans) and with more scenarios
(e.g., attacker can send packets to both the client and the server
and/or with di�erent OSes) in the future.

ACKNOWLEDGMENTS
This research was partially sponsored by the U.S. Army Combat Ca-
pabilities Development Command Army Research Laboratory and
was accomplished under Cooperative Agreement Number W911NF-
13-2-0045 (ARL Cyber Security CRA). The views and conclusions
contained in this document are those of the authors and should not
be interpreted as representing the o�cial policies, either expressed
or implied, of the Combat Capabilities Development Command
Army Research Laboratory or the U.S. Government. The U.S. Gov-
ernment is authorized to reproduce and distribute reprints for Gov-
ernment purposes notwithstanding any copyright notation here on.
It was also partially supported by the NSF grant 1652954.

REFERENCES
[1] Geo�rey Alexander and Jedidiah R Crandall. 2015. O�-path round trip time

measurement via TCP/IP side channels. In 2015 IEEE Conference on Computer
Communications (INFOCOM). IEEE, 1589–1597.

[2] Apache Geode Documentation [n. d.]. Disable TCP SYN Cookies. Retrieved
May 15, 2019 from https://geode.apache.org/docs/guide/14/managing/monitor_
tune/disabling_tcp_syn_cookies.html

[3] Thomas Ball and Sriram K. Rajamani. 2001. The SLAM Toolkit. In Computer
Aided Veri�cation, Gérard Berry, Hubert Comon, and Alain Finkel (Eds.). Springer
Berlin Heidelberg, Berlin, Heidelberg, 260–264.

[4] Steven M Bellovin. 2002. A technique for counting NATted hosts. In Proceedings
of the 2nd ACM SIGCOMMWorkshop on Internet measurment. ACM, 267–272.

[5] Robert Brotzman, Shen Liu, Danfeng Zhang, Gang Tan, and Mahmut Kandemir.
2019. CaSym: Cache aware symbolic execution for side channel detection and
mitigation. In CaSym: Cache Aware Symbolic Execution for Side Channel Detection
and Mitigation. IEEE, 0.

[6] Cristian Cadar, Daniel Dunbar, Dawson R Engler, et al. 2008. KLEE: Unassisted and
Automatic Generation of High-Coverage Tests for Complex Systems Programs..
In OSDI, Vol. 8. 209–224.

[7] Yue Cao, Zhiyun Qian, Zhongjie Wang, Tuan Dao, Srikanth V. Krishnamurthy,
and Lisa M. Marvel. 2016. O�-Path TCP Exploits: Global Rate Limit Consid-
ered Dangerous. In 25th USENIX Security Symposium (USENIX Security 16).
USENIX Association, Austin, TX, 209–225. https://www.usenix.org/conference/
usenixsecurity16/technical-sessions/presentation/cao

[8] Martim Carbone,Weidong Cui, Long Lu,Wenke Lee, Marcus Peinado, and Xuxian
Jiang. 2009. Mapping kernel objects to enable systematic integrity checking. In
Proceedings of the 16th ACM conference on Computer and communications security.
ACM, 555–565.

[9] Qi Alfred Chen, Zhiyun Qian, Yunhan Jack Jia, Yuru Shao, and Zhuoqing Mor-
ley Mao. 2015. Static detection of packet injection vulnerabilities: A case for

identifying attacker-controlled implicit information leaks. In Proceedings of the
22nd ACM SIGSAC Conference on Computer and Communications Security. ACM,
388–400.

[10] Weifeng Chen, Yong Huang, Bruno F Ribeiro, Kyoungwon Suh, Honggang Zhang,
Edmundo de Souza e Silva, Jim Kurose, and Don Towsley. 2005. Exploiting the
IPID �eld to infer network path and end-system characteristics. In International
Workshop on Passive and Active Network Measurement. Springer, 108–120.

[11] Weiteng Chen and Zhiyun Qian. 2018. O�-Path {TCP} Exploit: How Wireless
Routers Can Jeopardize Your Secrets. In 27th {USENIX} Security Symposium
({USENIX} Security 18). 1581–1598.

[12] Cisco [n. d.]. Defenses Against TCP SYN Flooding Attacks. Retrieved May 15,
2019 fromhttps://www.cisco.com/c/en/us/about/press/internet-protocol-journal/
back-issues/table-contents-34/syn-�ooding-attacks.html

[13] Edmund M. Clarke and E. Allen Emerson. 1982. Design and synthesis of synchro-
nization skeletons using branching time temporal logic. In Logics of Programs,
Dexter Kozen (Ed.). Springer Berlin Heidelberg, Berlin, Heidelberg, 52–71.

[14] Lucas Cordeiro, Jeremy Morse, Denis Nicole, and Bernd Fischer. 2012. Context-
bounded model checking with ESBMC 1.17. In International Conference on Tools
and Algorithms for the Construction and Analysis of Systems. Springer, 534–537.

[15] Cymru [n. d.]. Ephemeral Source Port Selection Strategies. Retrieved May 15,
2019 from https://www.cymru.com/jtk/misc/ephemeralports.html

[16] Roya Ensa�, Jong Chun Park, Deepak Kapur, and Jedidiah R. Crandall. 2010.
Idle Port Scanning and Non-interference Analysis of Network Protocol Stacks
Using Model Checking. In Proceedings of the 19th USENIX Conference on Security
(USENIX Security’10). USENIX Association, Berkeley, CA, USA, 17–17. http:
//dl.acm.org/citation.cfm?id=1929820.1929843

[17] Paul Fiterău-Broştean, Ramon Janssen, and Frits Vaandrager. 2016. Combin-
ing model learning and model checking to analyze TCP implementations. In
International Conference on Computer Aided Veri�cation. Springer, 454–471.

[18] Yossi Gilad and Amir Herzberg. 2012. O�-Path Attacking the Web.. In WOOT.
41–52.

[19] Yossi Gilad and Amir Herzberg. 2013. When tolerance causes weakness: the case
of injection-friendly browsers. In Proceedings of the 22nd international conference
on World Wide Web. ACM, 435–446.

[20] Patrice Godefroid. 1997. Model Checking for Programming Languages Using
VeriSoft. In Proceedings of the 24th ACM SIGPLAN-SIGACT Symposium on Princi-
ples of Programming Languages (POPL ’97). ACM, New York, NY, USA, 174–186.
https://doi.org/10.1145/263699.263717

[21] J. A. Goguen and J. Meseguer. 1982. Security Policies and Security Models. In
1982 IEEE Symposium on Security and Privacy. 11–11. https://doi.org/10.1109/SP.
1982.10014

[22] Thomas A. Henzinger, Ranjit Jhala, Rupak Majumdar, and Grégoire Sutre. 2003.
Software Veri�cation with BLAST. In Proceedings of the 10th International Confer-
ence on Model Checking Software (SPIN’03). Springer-Verlag, Berlin, Heidelberg,
235–239. http://dl.acm.org/citation.cfm?id=1767111.1767128

[23] Gerard J. Holzmann. 1997. The model checker SPIN. IEEE Transactions on software
engineering 23, 5 (1997), 279–295.

[24] Gerard J. Holzmann and Rajeev Joshi. 2004. Model-Driven Software Veri�cation.
In Model Checking Software, Susanne Graf and Laurent Mounier (Eds.). Springer
Berlin Heidelberg, Berlin, Heidelberg, 76–91.

[25] G. J. Holzmann and M. H. Smith. 1999. A practical method for verifying event-
driven software. In Proceedings of the 1999 International Conference on Software
Engineering (IEEE Cat. No.99CB37002). 597–607. https://doi.org/10.1145/302405.
302710



[26] Samuel Jero, Endadul Hoque, David Cho�nes, Alan Mislove, and Cristina Nita-
Rotaru. 2018. Automated attack discovery in TCP congestion control using a
model-guided approach. In Proceedings of NDSS.

[27] Ulf Kargén and Nahid Shahmehri. 2015. Turning programs against each other:
high coverage fuzz-testing using binary-code mutation and dynamic slicing. In
Proceedings of the 2015 10th Joint Meeting on Foundations of Software Engineering.
ACM, 782–792.

[28] Nupur Kothari, Ratul Mahajan, Todd Millstein, Ramesh Govindan, and Madanlal
Musuvathi. 2011. Finding protocol manipulation attacks. In ACM SIGCOMM
computer communication review, Vol. 41. ACM, 26–37.

[29] Daniel Kroening andMichael Tautschnig. 2014. CBMC–C boundedmodel checker.
In International Conference on Tools and Algorithms for the Construction and
Analysis of Systems. Springer, 389–391.

[30] Chris Lattner and Vikram Adve. 2004. LLVM: A Compilation Framework for
Lifelong Program Analysis & Transformation. In Proceedings of the International
Symposium on Code Generation and Optimization: Feedback-directed and Runtime
Optimization (CGO ’04). IEEE Computer Society, Washington, DC, USA, 75–.
http://dl.acm.org/citation.cfm?id=977395.977673

[31] Florian Merz, Stephan Falke, and Carsten Sinz. 2012. LLBMC: Bounded model
checking of C and C++ programs using a compiler IR. In International Conference
on Veri�ed Software: Tools, Theories, Experiments. Springer, 146–161.

[32] Jayashree Mohan, Ashlie Martinez, Soujanya Ponnapalli, Pandian Raju, and Vijay
Chidambaram. 2018. Finding crash-consistency bugs with bounded black-box
crash testing. In 13th {USENIX} Symposium on Operating Systems Design and
Implementation ({OSDI} 18). 33–50.

[33] Madanlal Musuvathi and Dawson R. Engler. 2004. Model Checking Large Network
Protocol Implementations. In Proceedings of the 1st Conference on Symposium on
Networked Systems Design and Implementation - Volume 1 (NSDI’04). USENIX As-
sociation, Berkeley, CA, USA, 12–12. http://dl.acm.org/citation.cfm?id=1251175.
1251187

[34] Madanlal Musuvathi, David Y. W. Park, Andy Chou, Dawson R. Engler, and
David L. Dill. 2002. CMC: A Pragmatic Approach to Model Checking Real Code.
SIGOPS Oper. Syst. Rev. 36, SI (Dec. 2002), 75–88. https://doi.org/10.1145/844128.
844136

[35] Paul Pearce, Roya Ensa�, Frank Li, Nick Feamster, and Vern Paxson. 2017. Augur:
Internet-wide detection of connectivity disruptions. In 2017 IEEE Symposium on
Security and Privacy (SP). IEEE, 427–443.

[36] Hui Peng, Yan Shoshitaishvili, and Mathias Payer. 2018. T-Fuzz: fuzzing by
program transformation. In 2018 IEEE Symposium on Security and Privacy (SP).
IEEE, 697–710.

[37] Zhiyun Qian and Z Morley Mao. 2012. O�-path TCP sequence number inference
attack-how �rewall middleboxes reduce security. In 2012 IEEE Symposium on
Security and Privacy. IEEE, 347–361.

[38] Zhiyun Qian, Z Morley Mao, and Yinglian Xie. 2012. Collaborative TCP sequence
number inference attack: how to crack sequence number under a second. In
Proceedings of the 2012 ACM conference on Computer and communications security.
ACM, 593–604.

[39] Zhiyun Qian, Z Morley Mao, Yinglian Xie, and Fang Yu. 2010. Investigation of
triangular spamming: A stealthy and e�cient spamming technique. In 2010 IEEE
Symposium on Security and Privacy. IEEE, 207–222.

[40] Jean-Pierre Queille and Joseph Sifakis. 1982. Speci�cation and Veri�cation of
Concurrent Systems in CESAR. In Proceedings of the 5th Colloquium on Interna-
tional Symposium on Programming. Springer-Verlag, London, UK, UK, 337–351.
http://dl.acm.org/citation.cfm?id=647325.721668

[41] SCENT [n. d.]. SCENT: TCP Side Channel Excavation Tool. https://github.com/
seclab-ucr/SCENT

[42] Kevin Sullivan, Jinlin Yang, David Coppit, Sarfraz Khurshid, and Daniel Jackson.
2004. Software assurance by bounded exhaustive testing. In ACM SIGSOFT
Software Engineering Notes, Vol. 29. ACM, 133–142.

[43] Rijnard van Tonder, John Kotheimer, and Claire Le Goues. 2018. Semantic crash
bucketing. In Proceedings of the 33rd ACM/IEEE International Conference on Auto-
mated Software Engineering.

[44] Shuai Wang, Pei Wang, Xiao Liu, Danfeng Zhang, and Dinghao Wu. 2017.
CacheD: Identifying cache-based timing channels in production software. In
26th {USENIX} Security Symposium ({USENIX} Security 17). 235–252.

[45] Tielei Wang, Tao Wei, Guofei Gu, and Wei Zou. 2010. TaintScope: A checksum-
aware directed fuzzing tool for automatic software vulnerability detection. In
2010 IEEE Symposium on Security and Privacy. IEEE, 497–512.

[46] Xi Wang, Haogang Chen, Zhihao Jia, Nickolai Zeldovich, and M Frans Kaashoek.
2012. Improving Integer Security for Systems with {KINT}. In Presented as part of
the 10th {USENIX} Symposium on Operating Systems Design and Implementation
({OSDI} 12). 163–177.

[47] Z3Prover/z3 [n. d.]. The Z3 Theorem Prover. Retrieved May 4, 2019 from
https://github.com/Z3Prover/z3

[48] Xu Zhang, Je�rey Knockel, and Jedidiah R Crandall. 2015. Original SYN: Find-
ing machines hidden behind �rewalls. In 2015 IEEE Conference on Computer
Communications (INFOCOM). IEEE, 720–728.

[49] Xu Zhang, Je�rey Knockel, and Jedidiah R Crandall. 2018. ONIS: Inferring TCP/IP-
based Trust Relationships Completely O�-Path. In IEEE INFOCOM 2018-IEEE
Conference on Computer Communications. IEEE, 2069–2077.


