
A Lightweight Framework for Source-to-Sink Data
Transfer in Wireless Sensor Networks

J. Jobin†, Zhenqiang Ye†,Honomount Rawat†,Srikanth Krishnamurthy†, Satish K. Tripathi‡
†Dept. of Computer Science & Engineering ‡Dept. of Computer Science & Engineering

University of California, Riverside, CA 92521 University of Buffalo, SUNY Buffalo, NY 14260
{jobin,zye,hrawat,krish}@cs.ucr.edu tripathi@buffalo.edu

Abstract— Lightweight protocols that are both bandwidth and
power thrifty are desirable for sensor networks. In addition, for
many sensor network applications, timeliness of data delivery at
a sink that collects and interprets raw sensor data is of great
importance. In this work, we propose a lightweight framework for
source-to-sink data transfer in a wireless sensor network that is
geared towards achieving the above two objectives. Our integrated
framework consists of three elements: 1) simple labels that
eliminate complex addressing requirements, 2) implicit routing
that provides an inherent robustness during sleep/wake schedules,
and 3) MAC layer anycast to support routing. Our framework,
in addition, facilitates the self-organization of sensor nodes into
a network that efficiently relays information from the sources to
the sink.

The key idea of our framework is to associate each sensor node
with a hierarchical level with respect to a sink and using MAC
layer anycast to simply further packets to higher levels towards
the sink. There are no explicit route tables created or maintained;
this eliminates the overhead due to route queries or updates, the
need for complex processing and the memory requirements for
caching routing information. Furthermore, with our framework,
the energy costs of data transmission are evenly distributed across
the nodes, thereby improving the longevity of the network. Our
MAC layer anycast mechanism not only facilitates routing, but
also reduces the number of MAC layer back-offs incurred and,
consequently, the waiting times for data transmission. This in turn,
improves the timeliness of data delivery at the sink. To summarize,
our framework is a) energy efficient, b) inherently robust, and
c) conceptually simple. We qualitatively assess our scheme to show
its efficiency in terms of power consumption, robustness to failure,
ease of setup. The results from our simulations and assessments
demonstrate the aforementioned benefits and the viability and
potential of using our framework.

I. INTRODUCTION

Energy efficiency and timeliness of data delivery are two
fundamental requirements for many wireless sensor network
applications. In this paper, towards addressing the above re-
quirements, we propose an integrated lightweight framework
for transferring data from a sensing source to a data collecting
sink in a wireless sensor network. Our scheme consists of three
main elements: 1) classification of nodes with simple labels as
opposed to providing them with unique but complex addresses
(our scheme also facilitates simple self-organization), 2) pro-
vision of implicit dynamic routes that reduce the heavyweight
routing overhead incurred with traditional routing schemes, and,
3) a MAC layer anycast method that facilitates routing and
improves timeliness of data delivery by reducing waiting times

and back-offs at the MAC layer.
Wireless sensor networks typically consist of tiny sensor

nodes (referred to as sources) that detect an event and try
to relay this information to higher-powered data aggregators,
generally referred to as sinks. The transfer of information is to
be done in a manner that takes into consideration several im-
portant factors such as: energy efficiency, robustness, flexibility,
ease of implementation, etc. Traditional routing protocols from
the wired network and wireless ad hoc network domains are
far too complicated and expensive in terms of energy costs to
be applicable directly to wireless sensor networks. This has
been recognized by the research community and alternative
paradigms such as data-centric mechanisms have been proposed
to achieve the energy efficient transfer of information. Such
schemes consider the network as being driven by data flows and
the routing mechanisms are built so as to facilitate the flows.
Data-driven routing architectures present a better alternative
than traditional routing based ones. Nevertheless, they do not
solve all the problems and are not necessarily suitable for
all class of applications. The concept of being driven by
data requires the network and, therefore, the nodes that form
the network, to maintain state in terms of a data flow. This
contributes to the incurred overhead in terms of storage and
processing costs and this might in fact be costly for sensor
networks.

We propose a lightweight framework that enables the sensor
nodes to organize themselves into a network and relay sensed
data to the sinks. The design objectives are to ensure energy
efficiency while maintaining robustness and facilitating timely
delivery in the presence of sleep/wake cycles of sensor nodes,
typical in sensor networks. The initial setup, with our frame-
work, consists of labels being assigned to the nodes to indicate
their distance (in terms of hop count) from the sinks. We refer
to these labels as levels. When a node has data to send to the
sink, it simply directs it to a node that is at a higher level,
i.e., is closer to the sink. The forwarding process continues
until the information reaches the sink. All that a node needs
to know is its own level. We, however, need a mechanism that
facilitates the the transfer of information to the node’s parent
which is at a higher level. This is facilitated by our MAC layer
anycast mechanism. There are no route tables maintained and
there is no need for explicit addressing. Our scheme provides
a multiplicity of routes for the data transfer.

Our contributions can be summarized as follows:

• We propose an integrated lightweight framework for
source-to-sink data transfer in wireless sensor networks.

• Our framework eliminates routing overhead due to routing
queries and/or updates, and other resource intense require-
ments such as caching and processing.

• The proposed scheme eliminates the need for explicit
addresses in routing information and instead, uses dynamic
paths that also achieve the distribution of energy costs
across nodes.

• Our framework includes a MAC layer anycast scheme that
facilitates routing. This has the additional advantage of
reducing the number of back-offs and thus, the waiting
times for data transmission.

Our simulations demonstrate the claimed benefits of using our
framework.

The remainder of this paper is organized as follows: Sec-
tion II provides the background to support the rest of the paper.
In Section III, we provide a description of our framework. This
is followed by an qualitative assessment of the performance of
our framework in Section IV. We describe our experimental
results in Section V and related work in Section VI. Finally,
we conclude in SectionVIII.

II. BACKGROUND

With sensor networks, numerous potential and existing ap-
plications abound in a broad variety of fields such as the
environmental monitoring, national security, habitat monitoring,
agriculture, atmospheric condition studies, health care, etc.
Sensor networks differ from traditional networks in a variety of
ways. Briefly, the size of the nodes that make up a network is of
the order of a few square centimeters (e.g., the size of a credit
card), the processor on the nodes operates at a few hundred
MHz, and the available storage is a few megabytes. A primary
difference is power - sensor nodes are severely constrained
in terms of available power1 and therefore all schemes and
protocols employed must be energy-aware and energy-efficient.
An extensive survey of sensor networks is provided by Akyildiz
et.al.[2].

Two important areas of sensor network research are self-
organization and routing. With self-organization, the nodes
in the network would organize themselves (with little or no
external help) into a fully functional network which can then
relay the sensed information back to the data collecting sink
nodes. This relaying of information is, in turn, is to be fa-
cilitated by routing schemes; these routing schemes have to
take into account the energy constraints of the sensor nodes.
We discuss several of these schemes, later, in Section VI. Our
framework not only facilitates the aforementioned objectives
in a lightweight manner, but also provides timeliness of data
delivery, a key requirement of many sensor network applicatons
via a tightly intercoupled MAC layer mechanism. Before we
describe our framework, we discuss the type of applications
that are relevant.

1The battery lives of unattended sensors need to be conserved.

A. Application Scenario

Since sensor networks are heavily driven by the application,
the protocols developed are to be tailored, to a large extent,
for the application that a particular network is built to address.
Thus, a single solution does not work for all networks and it
is important to delineate the specific application or class of
applications that a network is being designed for.

We now describe the kind of application that our framework
is meant to support by means of an example. Consider an
airplane that flies over a certain geographic region and scatters
hundreds of tiny sensor nodes. The geographic region is such
that it prevents humans from going there physically and there-
fore, all information has to be collected by the sensor nodes.
This kind of a scenario could easily be imagined in a battlefield
that is covered with toxic elements, or inhospitable terrain such
as marshlands or swamps. The information that needs to be
collected could be the toxicity of the sand or air, temperature,
humidity, presence and concentration of certain elements in the
sand or air, etc. Moreover, we would also like the information
to be conveyed as quickly as possible. So, ideally, if a node
has information to send, it should send it to the nearest sink.
We assume that all the sinks are connected to each other or to
some central node where all the collected information can be
collated and analyzed.

B. Motivation

The motivation for this work comes from the complexity in
the currently existing solutions to information routing. Most
routing protocols incur overhead in several areas: setup of
a routing infrastructure, establishing route, maintaining route,
route repair, state maintenance, etc. We will now discuss how
these costs could potentially be reduced.

Among the tenets of the guiding philosophy behind our
framework are:

• simple, one-time establishment of routing infrastructure
• elimination of explicit routing tables and state
• reduction of overhead due to routing queries and updates
• availability of multiple dynamic routes with little or no

state information
• inherent robustness to route failure
• tighter coupling with and therefore improved efficiency at

the MAC layer.

Consider Figure 1 which contrasts a single route with mul-
tiple dynamic routes. By a dynamic route, we mean that the
route is not pre-specified. The circles represent nodes and the
lines represent the links between the nodes. In the multiple
route scenario, the ellipses represent a choice of two nodes for
each link.

With sensor nodes either sleeping to conserve battery or
ultimately dying out due to the depletion of battery resources
links are bound to fail. Let the probability of a link failure in
a considered time interval be x, where x ≤ 1. If the single
route on the left in Figure 1 is considered, the probability of
successful delivery of a message that is sent in the considered
time interval is (1 − x)k , where k is the number of links. In

Single route Multiple routes

Fig. 1. Benefits of multiple dynamic routes

the multiple route scenario, assume that we have a choice of
two nodes at each link. In this case, the link will fail only if
both the nodes fail and therefore, the link failure probability is
x2, and consequently, the probability of successful transmission
on the link is 1− x2. Therefore, the probability of success for
a message sent over k links is (1 − x2)k. The ratio (1−x

2)k

(1−x)k

represents the overall improvement factor by having multiple
routes instead of a single route. Even a cursory assignment of
values will show that this improvement is significant. For a
generic case, where there are j nodes available at each level
(instead of two), the improvement factor can be easily computed
to be (1−x

j)k

(1−x)k . Thus, having a multiplicity of routes improves
the chances of successfully transferring a sensor report to a
sink by a significant factor.

Now, examine the same scenario in terms of energy costs.
Recall that the nodes in a sensor network are typically energy-
constrained. With a single route, each time a message is sent, a
node is used once. However, with our multiple route scenario
where there are j nodes at each level, each node is picked
with a probability 1/j, during the process of delivery of a
message. Therefore, the energy costs are distributed across a
larger number of nodes (by a factor of j) which in turn reduces
the possibility of some of the nodes failing due to energy
depletion caused by overuse.

III. A FRAMEWORK FOR SOURCE-TO-SINK DATA

TRANSFER

As mentioned previously, our framework consists of three
elements: a) a self-organization mechanism that assigns labels
to nodes, b) an implicit dynamic routing policy and c) a tightly
coupled MAC layer anycast mechanism. We now describe each
of these elements in detail.

In order to organize the network in such a way that the nodes
have a notion of their distances from the sinks, we propose a
scheme that we call simple hierarchical level based scheme.

A. Self-organization: hierarchical level scheme

In the hierarchical level scheme, each node in the network
belongs to a certain level with respect to a sink. The level

represents the distance (in number of hops) from a sink. This
concept is best explained by the use of a diagram.

S1 S2 S3

S4

S5S6S7

S8

1
1

1

2

2

3 3
3

3

3

Fig. 2. The simple hierarchical level scheme.

Consider Figure 2 which depicts the layout of a sensor
network. The sinks are shown by the X marks at the edges of
the network and are labeled from S1 through S9 in a clockwise
direction. The circles inside the box represent the sensor nodes.

The addressing process starts from each sink which broad-
casts a message informing the sensor nodes in its vicinity
indicating its identity; say, sink S1 would announce that it is S1.
The nodes that hear this message assign themselves to level 1
(with respect to S1) and then each of them broadcasts a message
indicating that they belong to level 1. All nodes that hear this
message and do not have a level yet, increment the value of the
received level by 1, assign themselves to this level, and then
broadcast this new level. This process continues until all nodes
belong to some level. Once a node has assigned itself to a level,
it ignores any future broadcasts with level information2.

B. Data transfer scheme

Once the above initial set up using levels is completed, the
framework for data transfer is in place. The sensor nodes will
use the levels to relay data to the sinks. When a node has data
to be sent to a sink, it simply sends the data to a parent. Note
that a parent of a node at level n is any node belongs to level
n − 1 and is within the direct transmission range of the node.
The parent, when it gets the message, sends it to its parent,
and so on until the message reaches the sink which is at level
0. Note that no explicit route tables are created or maintained.
There are no route queries or updates. For transferring data, the
nodes do not have to specify explicit addresses; instead, they
just hand the packets off to a parent node.

The question arises: How does a node choose a parent given
that it can potentially have more than one? Broadcasting a
message to all parents at each level could potentially lead to a
broadcast storm and is inefficient in terms of energy usage. To
address this issue, we now describe the third element of our
framework - a MAC layer anycast that will result in the sender
sending the data to only one parent at each level.

2This can be modified easily to accommodate cases wherein a node would
choose to consider a broadcast that would potentially reduce its level.

C. MAC layer anycast

The data at each node has to be sent to a node that
is at a higher level, i.e., one of the possibly many parent
nodes. However, in order to prevent each message from being
processed and forwarded by all of the node’s parent nodes,
we need to be able to ensure that exactly one of the parents
performs the processing and forwarding.

A simple solution to this problem is that a node could
maintain a list of its parent nodes and pick one a random
when it has a message to be sent to a sink. However, this
is not an efficient method. If the selected parent happens to
be unavailable, the node will back-off and retry a few times
before it decides to try another parent. Thus, for each successful
transmission, a node could potentially have to try a few times
and thus the overall waiting time of the data transfer could be
adversely affected. Furthermore, the retransmissions result in
a wastage of both bandwidth and energy. Our framework, in
addition to facilitating routing, reduces the waiting time and
the number of back-offs by incorporating the functionality of
anycasting at the MAC layer.

When a node has a message that it wants to send to the parent
nodes, it first broadcasts an RTS message. One or more of these
parents will respond with a CTS. The sender node will pick one
of these parents as the destination and then send the message
directly to this parent node. Some of the parent nodes will send
the CTS before the others. In this case, the other parent nodes
might overhear the CTS messages and therefore, will desist
from sending their own CTS messages. Even if there are one
or more CTS messages received at the sender, the sender will
ignore all but the first received CTS message. Thus, the node
does not explicitly choose a parent node as a receiver; instead,
the process would inherently cause one of the parents to be
chosen to be the forwarding node for the sensed data. This
parent node would typically be the node that is awake and is
not interfered with (i.e., is not within the interference region
of any other transmission). The probability that at least one
of the neighbors is free from interference is larger than that
of a particular chosen neighbor being free from interference.
Thus, the scheme inherently provides robustness and reduces
the possibility of back-offs at each link. Note here that this
process does not cause the chosen routes to be longer. Since
the chosen parent has to belong to the node’s preceding level,
at each step, the data moves one hop closer to the sink i.e., one
of multiple shortest paths (if more than one are available) is
chosen.

After a successful handshake, the node would need to iden-
tify the chosen parent uniquely in order to send the packet to
the specific parent. We use the MAC address of the chossen
parent as its identifier. At each instance when a parent node’s
CTS response is received, the MAC layer address is recorded
in order to facilitate this. Note that for MAC layer packets, the
Address Resolution Protocol (ARP) protocol typically provides
a translation of the IP address to the MAC address. In our case,
the ARP mechanism is modified appropriately to facilitate the
above functionality.

D. Implementation details

Each node maintains a simple counter that indicates the level
it belongs to. Note that this level is with respect to a specific
sink and therefore, this information will also be encoded. The
reason for maintaining sink information is that there could be
multiple sinks. When the self-organization process starts, the
nodes have no knowledge of how far they are from any given
sink. So, it is possible that after a node assigns itself to a
particular level with respect to a particular sink, it might then
learn that it is in fact closer to another sink and may wish to
forward information to this closer sink.

The counter is simply a bit register (0 and 1) and thus is
easy to include on any sensor node. For instance, with a 5
bit representation of a level, one could have up to 32 levels
from any given sink. The first part of the counter is used to
represent the sink identifier and the second part to represent
the level number with respect to that particular sink. Figure 3
shows a node with level number of 5 and associated with sink
3.

011 0101

Sink Level

Fig. 3. Addressing for the simple hierarchical level based scheme.

Each node could potentially maintain more than one such
counter. Each counter only requires a few bits of storage and
so this does not cause a large storage overhead. Figure 4 shows
the case where the address propagation begins from two sinks
and reaches node B. B could associate itself with sink S1 or
with sink S3 or both. If the node is allowed only one counter, it
will always try to choose to associate itself with the sink with
respect to which it is at the lower level since, sending to the
nearest sink is preferrable in terms of resource utilization. So,
in this case, node B will choose sink S1 with regard to which
its level number is 4 instead of sink S3 with regard to which,
its level number is 5.

S1 S2 S3

S4

S5S6S7

S8

1
1

1

2

2

3 3
3

3

3

1

1

2
2

2

3
3

3
4

4

4B

Fig. 4. Sensor nodes with multiple sink associations.

By maintaining multiple counters, the node could improve

its efficiency as well as that of the data transfer process. For
example, in the above case, if node B decides to maintain
associations with both sinks S1 and S3, it will maintain
two counters with the corresponding sink and level numbers.
Assume that at some point in time, it has a message to be
sent. Normally, it would choose to send to S1 since it is closer.
However, if the node knows that the congestion is higher in
the direction of S1, or it is unable to find an awake parent that
can forward the packet towards S1, it could make a decision
to send it to S3.

Notice that we do not maintain any routing tables or route
caches. Using a simple counter and minimal information with
regard to the levels, the nodes can transfer data easily. We
provide a brief description of our scheme in the form of
pseudo-code. Recall that our scheme has two main parts -
1) the initial labeling phase wherein nodes obtian associated
sink and level numbers, and 2) the data transfer phase when
the nodes try to send data to the sinks.

Initial labeling:
variables:

sink-num: // to store sink number
level-num: // to store level number
self: // node’s pointer to itself
bcast-recvd: // broadcast packet received

data structure:
level-info = (sink-num,level-num)

Sink node:
Broadcast level-info to nearby nodes.

Sensor node:
1. Listen to broadcast from other nodes
2. If (self.level-info is NULL)

{
Extract bcast-recvd.level-info

self.level-num = (bcast-recvd.level-num + 1)
self.sink-num = (bcast-recvd.sink-num)

}
else

Discard broadcast packet received
3. Create new data structure packet-to-send

packet-to-send = (self.sink-num,self.level-num)
4. Broadcast packet-to-send

Data transfer:

Send:
If node has data to send
{

Assign parent.level-num = (self.level-num - 1)
Assign parent.sink-num = (self.sink-num)
Let parent.level-info =

(parent.sink-num,parent.level-num)
Broadcast MAC layer RTS with parent.level-info
Wait for CTS from a parent node
Send DATA to the parent that responds

}

In order to keep the exposition of the algorithm simple,
we have not included some details such as that a node could
have multiple labels corresponding to different sink associa-
tions. However, these issues were described in the previous
section and it is fairly straightforward to include them in the
algorithmic representation.

IV. QUALITATIVE ASSESSMENTS

In this section, we conduct a detailed qualitative assessment
of our schemes. We consider issues such as setup cost, latency,
reliability, impact upon failure, and throughput.

A. Setup cost: number of messages

In our self-organization scheme, every node broadcasts its
own level number once. The children nodes pick up this
notification, determine their own levels accordingly, and broad-
cast their levels to their children. Thus, each node in the
network broadcasts one message. Therefore, the total number
of messages, M , to set up a hierarchy in a network of N nodes,
is: M = N . Note that this is a one-time cost.

B. Storage costs

Each node stores one or more level counters that is associated
with a sink. Depending on the size of the network and the
density of the nodes, the number of bits needed for storing
this level information will change. However, even with as
little as 1 byte (8 bits), our framework can support up to
28 = 256 levels, if there is a single sink. If each level has,
on an average, four nodes, the network can have up to 1000
nodes. With 2 bytes (16 bits) and four nodes at each level,
the network can have more than a quarter of a million nodes.
Thus, the scheme is significantly economical in storage costs
and therefore, scalable. Furthermore, we point out that routing
is fairly simple in spite of such large network sizes.

C. Data transmission cost: number of messages

In order to send a data message to its parent node, a node
uses the MAC layer anycast mechanism which involves a series
of RTS/CTS exchanges. As described earlier this is to ensure
that only one parent is chosen to deliver the message instead
of all parents.

Thus each node has to broadcast an RTS message when
it wants to send data. The parent nodes, when they hear the
RTS, will try to respond with a CTS. If a parent overhears
the CTS sent by another parent, it will desist from sending
its own CTS. However, sometimes two parents can be hidden
from each other, in which case, they both will send a CTS
to the sender node. The sender node upon receiving the first
CTS will send the data to the node that sent the CTS. It will
then ignore all subsequent CTS messages from other parents
by discarding them.

Once the RTS/CTS exchange is successful, the sender will
send the data message and the receiver will reply with an ACK
when it gets the data successfully. Thus, we have 3 control
messages at each level for a data message to be sent. As
mentioned earlier, due to topological artifacts additional CTS
messages may be generated. However, the number of such
CTS messages is at most 4 (easily computable by geometry);
typically due to the random distribution of nodes, the additional
CTS transmissions seldom occur and hence, one may consider
such additional overhad to be negligible.

The methods provide significant savings in terms of transmis-
sion costs as compared with the typical routing schemes which
construct and use explicit routes. With an explicitly defined
route, a node will try to contact a specific next-hop destination.
If that fails, it will retry a few times as dictated by the MAC
protocol. If this fails, it will decide that the link has failed and
initiate a route discovery or try to use another route that is in its
cache. The retransmissions and repeated route query attempts
may lead to a wastage of both power and bandwidth resources.

D. Latency

Once the routing infrastructure is in place, the nodes will start
relaying information to the sink. The time taken to transfer the
information, i.e., the latency incurred is important for many
sensor network applications.

In the simple hierarchical level scheme, a sender has to
negotiate with its parents using the RTS/CTS mechanism and
pick one parent to send the data to. The time taken for the
RTS/CTS would be typically equivalent to the duration of a
single RTS/CTS exchange since the other nodes that send CTS
messages after the first CTS has been received by the sender
would be ignored. However, in case there is a CTS collision,
this time could be higher.

Note that with an explicit routing scheme, retransmissions
may be more common and this in turn would lead to back-
offs. This may be due to the fact that the explicit parent being
sought is either asleep or is within the interference range of
an other transmission. Thus, typically one would expect the
latency incurred to be lower with our framework.

E. Reliability

Our scheme offers an inherent reliability in two different
aspects. The first aspect is the fault tolerance afforded by having
multiple parents. Because each node has multiple parents, a
node can be assured that even if one parent fails, there might
be another parent that can relay the message. This happens

transparently to the sender node, i.e., it does not need to know
which of the parents have failed nor will have to take additional
steps to recover from the failure.

The second aspect follows from the multiplicity of parent
nodes. Note that each time a sender has to send data, it goes
through an RTS/CTS exchange. Assuming a scenario where
all nodes are homogeneous, it is likely that a different parent
node will be selected each time. This implies that the energy
costs of data transmission are uniformly distributed across the
nodes. This prevents scenarios wherein some single parent node
gets chosen more often than others, thereby draining its energy
sooner than the other nodes and consequently increasing the
possibility of its failure. Therefore, the overall reliability of the
network is increased3.

F. Savings as compared with traditional routing policies

To analyze the savings achieved by using our framework,
we compare it with two generic routing schemes - a proactive
scheme and a reactive scheme. We now briefly describe the
various operational components of the schemes in order to
facilitate a comparison in terms of the incurred costs.

A proactive routing scheme is typically based on maintaining
routing information in a table and updating it on a regular
basis. It usually provides only one path to a destination based
on some variation of the shortest-path algorithm. However, the
scheme requires route update messages to be sent periodically
regardless of whether the network topology has changed.

A reactive scheme, also known as an on-demand scheme,
does not maintain route tables. Instead, it tries to discover routes
when they are needed. Typically the whole process consists of
the following phases: route discovery, route maintenance, and
route rediscovery (in case of failure).

Now we analyze the three schemes in terms of their costs for
various operations - setup, communication, failure, etc. We will
refer to the survey paper by Royer and Toh [8] for assessing
some of these costs. Note that the paper considers routing
protocols for ad hoc networks. These would need to be modified
to be applicable to a sensor network where the emphasis is
on power savings. Nevertheless, for comparison purposes, a
generic protocol from each of the two types is sufficient to
understand the rough quantum of savings that our scheme can
provide. We represent the number of nodes in the network by
N and the diameter of the network under consideration by d
in the following discussion.

1) Cost of setup: The cost of setup involves setting up
a route. [8] categorizes the cost into time complexity and
communication complexity. Time complexity is the number
of steps required to perform an operation and communication
complexity is the number of messages required to complete an
operation.

For a proactive protocol, the time complexity is O(d) and the
communication complexity is O(x = N) where x is the number

3Note here that we can further improve this scheme by choosing back-off
times prior to transmitting the CTS message based on a parent’s residual energy
level. Thus, nodes with higher residual energies would be more likely to be
chosen for packet forwarding.

of nodes affected by a topological change. For a reactive
protocol, the time complexity is O(2d) and the communication
complexity is O(2N). In our scheme, each node broadcasts one
message during the setup phase. Let there be j nodes at each
level. In this case, at each step, j nodes could be transmitting
simultaneously. Therefore, the time complexity is O(N/j). The
communication complexity is O(N) since each node broadcasts
one message.

2) Route maintenance: In a proactive protocol, route main-
tenance is done by sending update messages on a periodic
basis. This happens even if there are no changes in the network
topology and is therefore inefficient in such scenarios. In a
reactive protocol, there are no such periodic updates, but a form
of route maintenance occurs by letting the nodes cache multiple
routes to the same destination. This results in storage overhead.
In our scheme, no routes are explicitly maintained and there are
no periodic updates. The only piece of information maintained
is the level number associated with a sink. As described earlier,
this information can be maintained in a few bits of data. Thus,
our scheme is significantly better than a reactive or proactive
scheme in terms of consuming lower overhead.

3) Route failure: In a proactive protocol, in case of a link
failure, the time complexity for recovery is O(d) and the
communication complexity is O(x = N). This is because each
node maintains routing tables that get updated on a periodic
basis. In a reactive protocol, there are no such tables and
hence the cost increases. The time complexity associated with
recovery from a link failure is O(2d) and the communication
complexity is O(2N). In our scheme, a link failure does not
lead to any additional messages because of the MAC layer
anycast. By using this technique, instead of a sender choosing a
destination, the destination chooses itself and notifies the sender
that it is ready to receive data. Thus, a node always chooses a
link that is available and link failures are transparent in most
cases. One problem that could arise is if all the parent nodes of
a node fail. In this case, the node can resort to using its siblings
for message delivery. This issue is explored in more detail later
when we discuss possible refinements to our framework.

The costs incurred in recovering from route failures can
be particularly severe in the case of proactive protocols that
simply erase the entire route when the particular route fails.
This scenario will not occur in our scheme since no route is
maintained explicitly. Even a protocol that uses local route
repair techniques (instead of complete route erasure) has the
cost of communicating with neighbors (time taken for recovery
can be fairly large) in order to find a new link.

An especially detrimental scenario can arise when a link is
deemed unavailable and the routing protocol either switches to
a new route, or initiates route discovery. Often, it might happen
that the node itself is not dead but the link fails due to external
factors such as interference. Thus, even though the node is
alive and might become available sometime in the future, cost
intensive recovery methods are invoked. In our scheme, we do
not erase or switch routes or initiate route discovery when a
link fails; therefore the costs are are much lower.

4) Energy efficiency: The proactive and reactive protocols do
not have any inherent notion of energy efficiency. For instance,
if a route is established, it will continue being used. This could
lead to energy depletion of the nodes on that route but will not
be resolved unless there are specific mechanisms built to ad-
dress this. Compare this to our scheme, where energy efficiency
is built in. At each level, considering there are j nodes, each
node has a 1/j chance of being chosen for delivering a message.
Thus, the energy costs are now more evenly distributed across
all the nodes instead of being restricted to nodes on a single
route as in the case of a traditional routing scheme. This is
because in our scheme, a route is not pre-defined and there
are multiple routes available to the sink. A route is created
dynamically and thus it is more energy efficient.

Note that nodes nearer to the sink are more likely to get
used since they act as parents to a larger number of nodes.
One could think of these nodes as bottleneck nodes. However
this remains true even in a traditional scheme. Our scheme
improves the energy distribution factor in the regions further
away from the sink.

5) Reliability: In a proactive protocol, reliability is provided
by the existence of multiple routes in the routing table. How-
ever, maintaining the routing tables incurs overhead in terms
of periodic messages. In a reactive protocol, some reliability
may be provided by letting the nodes maintain multiple routes.
This, however, entails the overhead of storing these routes
at each node. In our scheme, reliability is provided in the
form of multiple dynamic routes. No route tables or routes are
maintained or stored. Thus, there is no extra overhead other
than the level information maintained by the nodes.

G. Assumptions

We assume that the nodes are uniformly scattered in the
geographic region. We also assume that the sinks can be
positioned at the edges of this region in such a way that they can
establish communication with the sensor nodes. Naturally, this
entails that the process cannot start until the sinks are in place.
Once the nodes are scattered, they do not move. Thus, mobility
is not considered. We would like to emphasize that even though
we have described our framework in great detail and provided
analysis for a variety of issues, extensive experimentation
evaluation is required in order to fully understand the benefits
of the framework. We now describe some experiments which
is an initial step in the direction.

V. SIMULATIONS AND RESULTS

In order to further understand and analyze our schemes, we
conducted simulations using the ns-2 simulator [1]. The ns-2
version was 2.27 and the simulations were conducted on a set
of Linux machines. Table I shows the values of the simulation
parameters used in the experiments. The values were averaged
over ten runs.

In the experiments that follow, we refer to our scheme as the
anycast scheme since it involves the anycast at the MAC layer.
The generic routing scheme which uses a predefined route is
referred to as a unicast scheme.

Parameter Value

Number of nodes 100 to 400
Number of sinks 8

of traffic generators 20
Simulation area 1250 X 1250 m

2 to 1600 X 1600 m
2

Simulation time 400 s

TABLE I

SIMULATION PARAMETERS

A. Robustness to failure

Earlier we described how our scheme distributes the task
of data transfer among the nodes more evenly than a generic
routing protocol. This leads to a decrease in the probability of
some nodes failing before the others. Figure 5 shows how the
nodes fail, i.e., die due to energy depletion.

50

60

70

80

90

100

110

120

130

140

150

1 2 3 4 5 6 7 8 9 10

Nu
mb

er o
f de

ad
nod

es

Different scenarios

Unicast
Anycast

Fig. 5. Node failure in different scenarios for anycast and unicast

The x-axis shows different scenarios generated by the setdest
utility in ns − 2. The y-axis is the number of nodes that die.
The simulation area is 1250X1250 m2 and the number of nodes
is 250. The graph shows the anycast always outperforms the
unicast scheme in all scenarios. Fewer number of nodes die
during the course of a simulation in the anycast scheme because
of the even task distribution.

B. Failure over duration of time

Now we would like to see the dynamic nature of the node
failure using the two schemes. Figure 6 shows the cumulative
failure of the nodes in time. The x-axis shows time in simulation
seconds. The y-axis shows the number of nodes that die due to
overuse. In this scenario, we specify the life of a node as 1000
packets, i.e., a node can transmit 1000 packets before it dies.
For the traffic generator nodes, we fix a higher lifetime than the
other nodes. For this specific set of experiments, this lifetime
was 5000 packets. The sink nodes are assumed to never die
and their lifetimes are set as such.

Figure 6 shows the case for a 1250X1250 m2 network with
100 nodes and Figure 7 is the same network with 400 nodes.
Thus the density is four times more in the second case.

The graph shows that as time goes by a larger number of
nodes die in the unicast scheme as compared to the anycast

0

5

10

15

20

25

30

35

40

45

50

55

60

50 100 150 200 250 300 350

Nu
mb

er o
f no

des
 tha

t di
e

Time

Anycast
Unicast

Fig. 6. Node failure with time for 100 nodes

scheme. This behavior is explained by the fact that the anycast
scheme uses the nodes more evenly than the unicast scheme.
Thus, the energy depletion over time, which ultimately leads to
failure, is more uniformly distributed among the nodes in the
anycast scheme.

0

5

10

15

20

25

30

35

40

45

50

55

60

50 100 150 200 250 300 350

Nu
mb

er o
f no

des
 tha

t di
e

Time

Anycast
Unicast

Fig. 7. Node failure with time for 400 nodes

Figure 7 shows the case where the density is more. The
plot shows that anycast is still better than unicast in terms of
a lower number of nodes that die. Moreover, it is also seen
that the overall improvement in anycast is drastically better
than unicast. The number of dead nodes in the unicast scheme
decreases from 45 to 41 as the density increases; in the anycast
scheme this number decreases from 31 to 19 which is a 38%
drop. The reason is that as the network becomes denser, there
are more dynamic paths available and hence the energy costs
will be even more evenly distributed among the nodes thereby
reducing the overall probability of node failure.

C. Energy distribution

We would now like to see how the energy costs are dis-
tributed. In our model, we assume that the most energy is
consumed in transmitting and receiving data packets; control
packets such as RTS and CTS are assumed to consume sig-
nificantly less energy. As an indicator of the energy cost, we
decided to track the number of packets sent and received.

Our scheme utilizes dynamic paths to transfer data. Thus,
nodes are utilized randomly in a uniform manner. Figure 8
shows the usage of the nodes. The x-axis shows the total
number of packets processed per node; this includes both
transmitted and received packets. The y-axis is a cumulative
fraction of the nodes up to 1, i.e., all nodes.

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

0 200 400 600 800 1000

Per
cen

tag
e o

f no
des

Number of packets processed per node

Anycast
Unicast

Fig. 8. Cumulative distribution of packets per node

The plot shows that up to 28% of the nodes do not process
any packets in the anycast scheme. This figure is 60% in the
unicast scheme. This means that all the processing is done
by 72% of the nodes in the anycast scheme and 40% in the
unicast scheme. Thus, the usage of the nodes is significantly
more distributed in the anycast scheme. This implies that the
chances of some nodes failing earlier than the others is less in
the anycast scheme. Moreover, the plot also shows a significant
rise in the curve at the 1000 packets mark on the x-axis. This
means that significantly more nodes process a larger number
of packets in the unicast scheme as compared to the anycast
scheme.

D. Summary

Thus, our scheme is more robust to node failure than a
generic routing scheme by a significant factor. The nodes are
more evenly utilized because of the multiple dynamic routes
and this reduces the probability of overall node failure.

VI. RELATED WORK

Routing in wireless sensor networks has been the focus of
significant research in the last few years [9], [7], [5], [6], [4],
[3]. It should be noted that owing to the inherent nature of
wireless sensor networks, there is no single routing scheme
that fits all scenarios. Sensor networks are heavily driven by
the application and consequently, the routing scheme applied
to a particular network will depend on its purpose.

Lin et.al. propose the concept of gossip routing which is
a probabilistic form of the simple broadcast scheme. The idea is
that a node will send a message to some of its neighbors instead
of all. This is determined probabilistically. This is primarily
intended for small networks since for larger networks, the
overhead is significant. Thus, for a energy-constrained wireless
sensor network, this is probably not a good option.

Barrett et.al. propose the concept of parametric prob-
abilistic sensor network routing [3]. Their scheme tries to
combine the best features of limited flooding and information-
sensitive path-finding protocols. The probability of transmitting
to the neighbors is driven by a probability function that is
stored at each node. This function incorporates the distance
between source and destination, and the distance between the
current node and the destination. Their scheme is similar to
ours in the intention that the number of broadcasts has to be
reduced, except that in our case, the nodes do not broadcast
data back to the sink. Their scheme calculates distances by
starting with an arbitrary estimate and then using an iterative
process to refine this estimate. In contrast, we do not perform
any such operations. Thus, in terms of computation and storage
overhead, our scheme is more lightweight.

In [5], the authors discuss the concept of directed diffusion
as a communication paradigm. This work is partly similar to
ours in the motivation aspect - to relay information from the
sources to the sinks in a robust, scalable, and energy-efficient
manner. However, their approach is data-centric which is based
on naming data and also requires that all nodes be application-
aware. The nodes disseminate interests and set up gradients in
order to facilitate the flow of information. The robustness comes
from setting up multiple paths by using the gradients. They
also discuss the concept of reinforcing certain paths which are
better than others. Correspondingly, there is also the negative
reinforcement concept to deal with low quality paths. The nodes
have to maintain caches of interest entries that are a few bytes
in size (36 bytes in their experiments).

In our scheme, we do not require the nodes to be application-
aware. All that a node needs to maintain is a level number
associated with a sink that indicates the distance (number of
hops) from the sink. No explicit paths are set up and so there
is no overhead of reinforcement or negative reinforcement.
Unlike directed diffusion where any node in the network can
be interested in information anywhere in the network, our
application domain has only the sinks interested in information;
the sensor nodes only collect and relay the information to the
sinks. Our scheme is not meant for the case where any sensor
node wants to communicate with any other sensor node; we
assume that the communication is only from source-to-sink.

The concept of rumor routing has been proposed by Bra-
ginsky et.al [4]. The authors note that rumor routing is
a logical compromise between flooding queries and flooding
event notifications. The idea is based on the creation of paths
leading to each event and when a query is generated, it can be
directed on a random walk until it finds the event path instead
of flooding it. However, the random walk concept suffers from
the possibility of taking a long time before it finds the correct
path. A similar protocol called the Wanderer has been discussed
in [3] where they use it only for the sake of comparison against
their protocol.

VII. FURTHER POSSIBLE REFINEMENTS

Our proposed framework is only a first step towards our goal
of developing a lightweight mechanism for source-to-sink data

transfer in wireless sensor networks. We now describe several
refinements that could potentially enhance performance. We do
not go into great detail here since this is a topic for future work.

A. Using siblings to route around failure

Consider the scenario shown in Figure 9. For ease of expo-
sition, we use a uniform layout for the network. There are two
levels - 3 and 4 and 6 nodes in each level named a through
f . Each node can send data to three of its parents, e.g., in the
diagram, node 4b can send to nodes 3a, 3b, and 3c whereas
node 4d can send to nodes 3c, 3d, and 3e. This is shown by
the arrows.

a b c d e f

3

4

Fig. 9. Optimization of message delivery in a failure scenario.

Now consider a scenario where all the parent nodes within
range of a node fail. So, for instance, node 4b has data to send
and it finds that all three of its parents, i.e., nodes 3a, 3b, and
3c are not available. In this case, the node has the option of
sending it to a sibling, i.e., a node that is in the same level.
The sibling could potentially have parents that are available and
thus the data could be sent to them.

Notice that in the figure, node 4b can send the data to either
sibling 4a or 4c. However, sending to 4a will not accomplish
anything since it has the same three parents as 4b, which are
not available. So, it is preferable to send to node 4c. An even
better option is to send the message to a sibling that is two or
more hops away since this would mean going away from the
region close to the failed parents. For instance, sending to the
sibling 4d would open up two extra possibilities for the parent
nodes - 3d and 3e.

B. Multicasting to multiple siblings

A related optimization in the case of unavailable parent
nodes is to send to more than one sibling. Thus, the node will
multicast the data to multiple siblings. This way, even if some
of the multicast paths end in failure, there is a better probability
that the data will still be able to reach the sink via some path.

For instance, consider Figure 10 which shows a node B that
wants to send data. However, both its parents, P1 and P2, are
unavailable due to some reason (e.g., interference, etc.) and
therefore the choice is to send the data to a sibling. If B decides
to multicast to two siblings C and D, the chances of the data
transfer being successful increases. However, at the same time,
more network energy resources will be utilized.

The challenge here is in identifying the degree of multicast.
The more siblings we multicast to, the more the drain on
the overall network energy resources. The tradeoff is between

Problematic
 region

P1 P2

C D

F

B

Fig. 10. Multicasting to multiple siblings

increased reliability and increased energy consumption. Addi-
tionally, we could also decide that once the data is multicast
around the “problematic” region, it could then be aggregated at
a higher level so as to reduce energy costs, like shown in the
figure.

C. Soft state association with multiple sinks

As described earlier, each node can associate itself with one
or more sinks. For each association, a node has to maintain the
data structure shown in Figure 3. Depending on the storage
constraints, a node might not want to maintain more than
one or two such counters. In case a node finds that a new
association is closer to a particular sink, it can choose to replace
an older association with the new one. However, the simple act
of dropping an association does not mean that it is not able
to reach that particular sink. It still knows the identity of its
neighbors and has the option of using a previously discarded
association by merely querying its neighbors to see if they can
reach the sink. Thus, these extra associations are maintained in
a soft state. This is better explained by the Figure 11.

S1 S2 S3

S4

S5S6S7

S8

1
1

1

2

2

3 3
3

3

3

1

1

2
2

2

3
3

3
4

4

4
B

1

1
1

22

2
2

2

A

Fig. 11. Soft state association with multiple sinks

The figure shows node B in the middle of the network.
Assume Node B has associations with two sinks - S1 at level
4 and S3 at level 5. After a while, it comes to know that
sink S6 is only 4 levels. At this point, it decides to drop its

association with sink S3, i.e., it will discard the level counter
(S3,5). However, notice that node A still is a neighbor of B and
A is associated with sink S3. Therefore, if at any point in the
future, if B has to contact S3, it can query its neighbors and
find that it can reach S3 through node A.

D. MAC layer back-offs

In the MAC layer anycast process, it is possible that when
a node sends an RTS to its parents, there might be multiple
parents who decide to send a CTS simultaneously and this could
result in CTS collisions. A simple alternative is to back-off for
a random period and then try again. An improvement can be
made by associating the back-off interval with the amount of
remaining energy. So, for instance, a node that has lower energy
remaining might back-off for a longer interval than a node with
higher energy. Another option is that if a node is running low
on energy, it will not respond will a CTS unless absolutely
necessary. We intend to study these issues in greater detail as
part of our future work.

E. Incorporating more state at MAC layer

Another possibility in optimizing the choice of parent is to
incorporate the estimated “burden” on the parents. The parents
nodes will, over a period of time, learn about the number
of child nodes that they are linked to. Then, at the time of
data transfer, along with the CTS replies, the parents will also
include a counter that indicates the number of its children. The
sender will then pick the parent which has the least estimated
burden. However, this would be at the cost of incorporating
more state at the MAC layer. The study of the tradeoffs involved
is the subject of future work.

F. Data aggregation

If an event is detected by multiple sensors in a close vicinity,
there is an opportunity to save energy by data aggregation.
So, in this case, multiple detecting nodes will collaborate to
select one sender and then the process of data transfer will
proceed from that node. We intend to investigate this aspect in
the future.

VIII. CONCLUSION

We presented a lightweight integrated framework that enables
sensor nodes to self-organize themselves into a sensor network
and transfer data from source to sink nodes. Our integrated
framework combines three elements: a) labeling nodes, 2) im-
plicit dynamic routes, and 3) MAC layer anycast.

Our contributions can be summarized as follows:

• We proposed a lightweight integrated framework to facil-
itate source-to-sink data transfer.

• Our scheme eliminates the overhead of routing queries and
updates since it does not maintain explicit routing tables.

• Our scheme also reduces storage and processing overhead
because the nodes do not need to maintain or specify
explicit addresses or routes.

• We showed that the framework supports inherent reliability
by making multiple dynamic paths available to the sink.

• We described a MAC layer anycast to reduce the MAC
layer waiting times and the back-offs.

• We also showed that our framework is energy efficient.

As future work, we plan to investigate in greater detail
the optimizations that we described earlier. We also intend
to investigate the incorporation of mobility into our scheme.
Mobility will make it more complicated to maintain the levels.
We would like to see how to modify the scheme so as to still
make it effective while retaining as much of the simplicity as
possible.

REFERENCES

[1] ns-2. http://www.isi.edu/nsnam/ns.
[2] I. F. Akyildiz, W. Su, Y. Sankarasubramaniam, and E. Cayirci. Wireless

sensor networks: A survey. In Computer Networks: The International
Journal of Computer and Telecommunications Networking, volume 38,
pages 393–422. Elsevier North-Holland, Inc. New York, NY, USA, 2002.

[3] Christopher L. Barrett, Stephan J. Eidenbenz, Lukas Kroc, Madhav
Marathe, and James P. Smith. Parameteric probabilistic sensor network
routing. Proceedings of the 2nd ACM international conference on Wireless
sensor networks and applications, pages 122–131, 2003.

[4] David Braginsky and Deborah Estrin. Rumor routing algorithm for sensor
networks. Proceedings of the 1st ACM international workshop on Wireless
sensor networks and applications, pages 22–31, September 2002.

[5] Chalermek Intanagonwiwat, Ramesh Govindan, and Deborah Estrin. Di-
rected diffusion: A scalable and robust communication paradigm for sensor
networks. Proceedings of the 6th annual international conference on
Mobile computing and networking, pages 56–67, August 2000.

[6] Bhaskar Krishnamachari, Deborah Estrin, and Stephen Wicker. Modelling
data-centric routing in wireless sensor networks. USC Computer Engineer-
ing Technical Report CENG, pages 02–14, 2002.

[7] M. Lin, K. Marzullo, and S. Masini. Gossip versus deterministic flooding:
Low message overhead and high reliability for broadcasting on small
networks. Technical Report: CS1999-0637, 1999.

[8] Elizabeth M. Royer and C-K. Toh. A review of current routing protocols
for ad-hoc mobile wireless networks. IEEE Personal Communications
Magazine, pages 46–55, April 1999.

[9] Alec Woo, Terence Tong, and David Culler. Taming the underlying
challenges of reliable multihop routing in sensor networks. Proceedings of
the first international conference on Embedded networked sensor systems,
pages 14–27, November 2003.

