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ABSTRACT
Beamforming is a signal processing technique with numerous ben-
efits. Unlike with omni-directional communications, it focuses the
energy of the transmitted and/or the received signal in a particular
direction. Although beamforming has been extensively studied on
conventional systems such as WiFi, little is known about its prac-
tical impact on OFDMA femtocell deployments. Since OFDMA
schedules multiple clients (users) in the same frame (in contrast
to WiFi), designing intelligent scheduling mechanisms and at the
same time leveraging beamforming, is a challenging task.
Unlike downlink, we show that the integration of beamforming

with uplink scheduling projects an interesting trade-off between
beamforming gain on the one hand, and the power pooling gain
resulting from joint multi-user scheduling on the other hand. This,
in turn, makes the uplink scheduling problem even hard to approx-
imate. To address this, we propose algorithms that are simple to
implement, yet provably efficient with a worst case guarantee of
half. We implement our solutions on a real WiMAX femtocell
platform integrated with an eight-element phased array beamform-
ing antenna. Evaluations from both prototype implementation and
trace-driven simulations show that our solution delivers throughput
gains of over 40% compared to an omni-directional scheme.

Categories and Subject Descriptors
C.2.1 [Network Architecture and Design]: Wireless communica-
tion
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1. INTRODUCTION
To meet the demands for increased capacity driven by the expo-

nential growth in mobile data traffic [1], broadband network de-
ployments are moving towards smaller cells – called femtocells
– that use Orthogonal Frequency Domain Multiple Access (OF-
DMA). Femtocells inherit OFDMA and their synchronous access
nature from macrocells, which allows for easier deployment and
seamless operations with mobile clients.
By focusing the energy in specific directions using antenna ar-

rays, beamforming can serve as a valuable tool in enhancing the
performance of OFDMA femtocells. While beamforming is ex-
tensively studied for WiFi systems (e.g., [2, 3]), the fundamental
differences between WiFi and OFDMA – scheduling of multiple
users in the same frame and the synchronous access in OFDMA –
render such studies inapplicable to femtocells. The future releases
of OFDMA systems (e.g., WiMAX 802.16m [4]) support beam-
forming as part of the standard. They allow for multiple beams
at the base-band level (one beam per user) to be used on the data
payload within the same frame (user-level beamforming). How-
ever, potential beamforming gains are limited as the standards typi-
cally support a limited number of antennas at femtocells (e.g., four
in WiMAX and LTE-Rel.8). In addition, the specific beamform-
ing implementations vary from one standard to another, making a
globally compatible beamforming solution impractical.
A more flexible alternative to user-level beamforming is to em-

ploy frame-level beamforming, which applies a single beam (com-
mon to all users) to the entire frame (not only the data payload but
also the control part) at the RF level. Since user-specific beams
are not leveraged, such an approach may incur sub-optimal perfor-
mance for the data payload. This is due to the fact that a femtocell
has to find a beam pattern that “fits” all of its clients. However, we
identify that frame-level beamforming still has desirable properties:
(a) it is realizable as a plug-and-play external RF beamformer and
hence, is agnostic of the access technology (WiMAX, LTE, etc.);
and (b) beamforming gain is not limited by the number of antennas
supported by the standards. Even more interestingly, we show that
frame-level beamforming also offers a unique, complementary ben-
efit for interference mitigation, in a multicell context (discussed in
detail later in §3). However in realizing the true potential of frame-
level beamforming, an essential first step is to integrate it with the
scheduler at each femtocell.
The integration of frame-level beamforming with downlink schedul-

ing can be accomplished by extending existing solutions [5, 6] - by
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running the scheduler for each beam and picking the one yielding
the best objective. However, the corresponding uplink problem en-
counters two aspects unique to the uplink that make the problem
challenging:
Power pooling vs. beamforming: When multiple users are jointly
scheduled in a frame (i.e., the frame resources are shared among
clients), each user pools his transmit power on a smaller set of
sub-channels (instead of using all sub-channels). This results in a
higher user rate per sub-channel and hence higher frame throughput
called power pooling gain. While beamforming improves a user’s
rate, using a single beam (common to all users) for a frame may
not yield the optimal performance for every user scheduled in the
frame. Hence, the higher the number of users scheduled in a frame,
the higher is the power pooling gain but lower is the beamforming
gain, and vice versa.
Batch scheduling: For a femto base station (BS) to compute the
uplink allocation, the scheduling requests have to come from the
clients (as is the case in macrocells). Clients contend for mak-
ing such requests, which they send in response to changes in their
buffer occupancies. This incurs both contention delay and over-
head, where multiple requests are made for a transmission buffer
worth of data. A better option is to allow the BS to poll clients
for their buffer occupancies at periodic intervals (e.g., called the
polling service in WiMAX [7]). Polling avoids contention and re-
duces overhead. However, scheduling is now done for a group of
frames jointly (batch scheduling), based on client buffer occupan-
cies. More generically, even without polling, batch scheduling al-
lows a user’s data to be spread across multiple frames, thereby ac-
centuating power pooling gains and hence, aggregate throughput
(details in §4.1).
In this study, we consider the batch scheduling problem on the

uplink for non-real-time traffic. While the problem is optimally
solvable for omni-directional communications, we show that it is
hard to even approximate when integrated with frame-level beam-
forming, where it also requires the determination of a beam pattern
for each frame. In addressing this problem, we make the following
contributions:

• We propose simple but efficient algorithms for both contin-
uous and discrete rate functions with a worst case guarantee
of 1

2 .

• We implement our solutions on a real WiMAX femtocell
platform that is integrated with an eight-element phased ar-
ray antenna used for beamforming.

• We conduct comprehensive over-the-air evaluations with both
a prototype implementation and trace-driven simulations; our
results indicate an average gain of 40% over an omni-directional
scheme, in practical settings.

The rest of the paper is organized as follows. §2 presents a brief
WiMAX overview and related work. In §3 and 4, we describe the
motivation and the design of our system. §5 describes our algo-
rithms. §6 contains implementation details and §7 shows evalua-
tion results. We conclude in §8.

2. BACKGROUND
WiMAX: While our solutions apply to OFDMA femtocells in

general, our implementation is on WiMAX. Hence, we provide
brief background on relevant WiMAX components (details in [7]).
OFDMA divides the spectrum into multiple frequencies (sub-carriers)
and several sub-carriers are grouped to form a sub-channel. The
sub-carriers can be grouped in a contiguous, partially contiguous or
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Figure 1: WiMAX Frame Structure.

fully distributed manner. Partially contiguous grouping, being the
mandatory model, is alone implemented on most WiMAX devices
and is hence, considered in our work. Here, sub-carriers forming a
sub-channel are permuted to allow for a common transmission rate
for a user on all sub-channels. This requires only a single chan-
nel feedback per user. Permuting also helps average out inter-cell
interference.
A WiMAX frame is a two-dimensional template that is sched-

uled at the MAC with data to/from multiple mobile stations (MSs),
across both time (symbols) and frequency (sub-channels). Data
to/from users are allocated as rectangular bursts of resources in a
frame (see Fig. 1). For e.g., the uplink allocation in Fig. 1 can be
visualized to be at the sub-channel granularity. The frame consists
of the preamble, control and data payload. While the preamble is
used by the MS to lock on to the BS, the control consists of FCH
(frame control header) and MAP. The BS, using MAP, indicates
the schedule of transmissions both on the downlink and the uplink.
The DL-MAP specifies the location of each burst, which MS it is
intended for, and what modulation decodes it. Similarly the UL-
MAP tells the MS where to place its data in the uplink and how to
modulate it.
Beamforming: The ability to transmit (receive) signal energy in

(from) specific directions is called beamforming. This is achieved
by weighing the signals transmitted (received) from an antenna ar-
ray in both magnitude and phase. Each applied weight vector gen-
erates a specific beam pattern. Such weight vectors can be deter-
mined and stored a priori (switched beamforming), or can be com-
puted on-the-fly based on instantaneous channel feedback from the
clients (adaptive beamforming).
To achieve low complexity, standards use code-book based beam-

forming, whereby weight vectors (pre-determined by the code-book)
are employed and the one yielding the best SNR at the client is cho-
sen. Since beams are enabled only for the data part, a beam vector
suited for each client scheduled in a frame can be chosen, to encode
data in the digital signal space (user-level beamforming). In con-
trast, applying a single beam physically at the RF level (frame-level
beamforming), will provide beamforming for the entire frame, in-
cluding the control part (advantageous in a multicell context as ex-
plained in §3). While its beamforming gain for the data part may
be sub-optimal compared to user-level beamforming, frame-level
beamforming is agnostic of the standards and thus, is not limited
by them. Indeed, this has allowed us to integrate an eight-element
phased array antenna with a WiMAXBS, although the current fem-
tocells do not support beamforming and the next generation ones
(e.g., 802.16m) support only four antennas. Given our experience,
we believe that frame-level beamforming has potential in enabling
universal beamforming solutions compatible across different stan-
dards. We consider frame-level beamforming for uplink, where the
beam patterns emphasize reception in desired directions and could
either correspond to physical directions covering the 360◦ azimuth
(e.g., [3]), or be based on Gaussian code-books (e.g., [8]).
Related Work: Several works have studied the design of thro-

ughput [5, 6, 9, 10] and QoS [11, 12] schedulers for OFDMA.How-
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Figure 2: Sub-optimality of frame-level beamforming (a) and relative overhead with batch scheduling (b).

ever, their focus has been on per-frame scheduling. While batch
scheduling is not very different from per-frame scheduling on the
downlink (in terms of optimization), the ability to leverage power
pooling on the uplink makes the problem challenging and has not
been addressed. While some studies (e.g., [13]) have looked at the
design of polling intervals specifically for the uplink of WiMAX,
they have not addressed the batch scheduling problem.
User-level beamforming has been jointly optimized with per-

frame scheduling for OFDMA systems [14, 15]. However, frame-
level beamforming and its various benefits have not been explored;
its integration with uplink batch scheduling and the challenges it
encounters have also not been considered. We contribute by design-
ing and implementing an efficient uplink scheduler that integrates
frame-level beamforming with batch scheduling for OFDMA.

3. MOTIVATION
We motivate the importance of frame-level beamforming and

batch scheduling for the uplink using measurements from an ex-
perimental testbed. We defer however, a detailed description of the
testbed to §6.
Small Loss Compared to User-level Beamforming: One draw-

back of frame-level beamforming is the constraint of using a single
beam for all the users scheduled in a frame, thereby potentially
limiting the per-user beamforming gain. In strong line-of-sight en-
vironments, where very few beams work well for each client, the
sub-optimality of such a common beam could be significant. To
understand this sub-optimality indoors, we placed a client at thirty
locations in the building and recorded the uplink SNR (as mea-
sured at the BS) with various beams for each of these locations.
Then, different subsets of client locations were grouped together to
emulate different sets of clients being scheduled in the same frame.
For each of these subsets, we chose a single beam (i.e., frame-level
beamforming) with the following criteria: the chosen beam min-
imizes the aggregate loss (in terms of SNR) compared to the case
where each client operates with its best beam (i.e., user-level beam-
forming). Here, the best beam of a client refers to the beam pattern
yielding the highest received SNR from that particular client.
We show the CDF of the loss per client (in dB) in Fig. 2(a).

It is seen that even when five clients (reasonably high for femto-
cells) are multiplexed in the same frame, the loss is less than 2 dB
for over 60% of the scenarios, indicating that the sub-optimality of
using a common beam for a frame is not significant. This can be
attributed to the multipath nature of the indoor environment, which
allows for multiple beams to perform reasonably well for a given
location, thereby increasing the possibility of finding a mutually
good beam for multiple clients. However, as more and more clients
are multiplexed together, the sub-optimality will tend to increase.
Reduced Overhead with Batch Scheduling: Client requests

for resources on the uplink typically experience contention, de-
lay and overhead, with redundant requests being sent out prior to
transmission. To overcome these issues, typical OFDMA systems

allow the BS to poll clients for data periodically (the period ad-
justed based on traffic variations). We profile the relative overhead
between client-initiated and BS-polled requests, by measuring the
number of requests generated for a fixed amount of data for a sin-
gle client, in Fig. 2(b). We see that BS polling reduces the over-
head by as much as five folds. Further, the overhead does not grow
with input rate unlike with client-initiated requests. With polling,
buffer occupancy information of clients is available only once ev-
ery polling interval. During this interval, frames can be scheduled
one at a time or jointly as a batch, with the latter yielding better
performance owing to joint optimization.
Improved Decoding of Control Part: One not-so-obvious ben-

efit of frame-level beamforming is its ability to improve the decod-
ing of the control part, through improved beamforming gain. As
described earlier in §2, the control part carries vital information
that helps clients decode and transmit their data payload. If the
control part in a frame cannot be decoded by the clients (e.g., due
to interference from other cells), the frame fails to deliver even a
single byte of data. To understand the impact of interference on
the control part, we experiment with two BSs that have one client
associated with each. To make sure that the interference impact is
only on the control part, we configure the two BSs to use orthogo-
nal sets of sub-channels for their data payloads (i.e., data payload
is protected from interference). While one BS is omni-directional,
the other is equipped with a beamforming antenna. The client as-
sociated with the beamforming BS is placed at various locations to
generate varying interference scenarios. In each of the locations,
we measure the downlink throughput observed by the client using
each beam pattern.
The throughputs delivered by the best beam and the omni-directional

beam are presented in Fig. 2(c). We see that there is a lot of room
for improvement with beamforming (≈ 7X on average) even when
the data parts are immune to interference. There are two factors be-
hind the observed throughput: (i) the rate (modulation) increase
due to beamforming gain on the data part, and (ii) improved re-
silience of the control part and hence, reduced frame losses. Fig.
2(d) presents the relative contributions of these two components.
We see that the improved decoding of the control part owing to
frame-level beamforming is the dominant component and provides
the bulk of the gain in most scenarios. This clearly indicates that
the performance of existing resource isolation solutions such as
[16] can be enhanced even further, if the control part decoding is
improved with the help of frame-level beamforming1. To realize
the benefits of frame-level beamforming2 and batch scheduling, we
next present our design of an integrated beamformer and uplink
scheduler – iBUS.

1While a scheme that combines an external common beam on the
control part with user-level beamforming on the data part may be
ideal, the varying size of the control part prevents its realization due
to lack of standards support.
2Hereafter referred to as simply beamforming.
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4. DESIGN OF IBUS

4.1 Overview
In batch scheduling, given a polling interval (F frames) and the

buffer occupancies of the clients, the problem is to effectively pack
(schedule) the out-standing client data jointly over F frames, with
potentially different schedules across frames. When batch schedul-
ing is integrated with beamforming, in addition to packing, one
also needs to determine a beam for each frame in the batch. Pick-
ing a beam for a frame and a subset of clients (for data packing) are
inter-twined since the beam choice for a frame will affect the rate
supported by clients in that frame and hence, the amount of data
that can be packed. Similarly picking a subset of clients will influ-
ence the beam choice since the sub-optimality of beamforming will
vary depending on the subset of clients.
Two aspects make the integrated scheduling problem challeng-

ing: (a) Power Pooling: In OFDMA, when multiple clients are
multiplexed in the same uplink frame, they pool their powers on a
smaller set of sub-channels, thereby potentially supporting higher
rates per sub-channel. Batch scheduling across multiple frames
enhances power pooling further - spreading a client’s data across
multiple frames will require fewer sub-channels per frame, result-
ing in higher power pooling gain per frame. (b) Beamforming:
Spreading data across multiple frames for each client will maxi-
mize the power pooling gain. However, this results in more clients
being scheduled in the same frame, making it harder to find a good
common beam for each frame; this increases the sub-optimality of
beamforming. The scheduler’s objective is to strike the right trade-
off between these two components.
Remarks: We note that unlike uplink, in the downlink, there is

no notion of power pooling (due to fixed BS total transmit power)
and no signaling overhead that may necessitate batch scheduling.
Hence, downlink is limited to per-frame scheduling, solutions for
which exist even when a user’s rate varies across sub-channels [5],
which is typically considered a hard problem. Further, the down-
link can be integrated with beamforming by simply running ex-
isting schedulers for various beams and picking that schedule and
beam, which maximizes an objective function. However for the up-
link, the combination of batch scheduling and power pooling with
beamforming, makes the problem challenging even when a user’s
rate does not vary across sub-channels.

4.2 Formulation and Hardness
The integrated uplink scheduling problem can be formally stated

as the following non-linear integer program.

ISP: Maximize
X

i

Ui(Ri)

Ri =
X

j,k

xi,j,k

(

X

!

yj,! · k · ri,k,!

)

≤ Bi, ∀i ∈ K

X

!

yj,! ≤ 1, ∀j ∈ F

X

i,k

xi,j,k · k ≤ N, ∀j

X

k

xi,j,k ≤ 1, ∀i, j

where xi,j,k and yj,! are binary indicator (output) variables indicat-
ing the assignment of k contiguous sub-channels in frame j to user
i and the assignment of beam ! to frame j respectively. K, F , L in-
dicate the set of users, frames in the batch and the available beams,
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Figure 3: Power Pooling.

respectively. The objective is to maximize the aggregate client util-
ity, where the utility function can be any concave function (e.g.,
logarithmic function captures proportional fairness [9]) of the data
scheduled and can vary from one client to another. The first con-
straint limits the net allocation to a user to be limited to its buffer
occupancy Bi (in bits). Further, it indicates the inter-dependence
of power pooling (# sub-channels assigned, k) and beam chosen
(!) on the user’s rate per sub-channel (ri,k,! in bits). The remaining
constraints are all conservation constraints indicating the (i) assign-
ment of a single beam per frame, (ii) net allocation of sub-channels
being limited toN in a frame, and (iii) assignment of one contigu-
ous set of sub-channels to a user in a frame, respectively.
We now show that it is hard to even obtain a PTAS (polynomial

time approximation scheme) for the ISP problem. Specifically, we
have the following result.

THEOREM 1. For some ε > 0, there is no (1 − ε)− approx-
imation algorithm for ISP unless P=NP.
PROOF. Scheduling of multiple sub-channels in a frame across

users with finite buffers and varying rates across sub-channels (SCF)
has been studied in [5] and shown to not admit a PTAS, using a re-
duction from 3-bounded 3-matching problem. We next show that
SCF is a special case of ISP.
Consider a simpler version of ISP, where the beam choices for

the frames do not have to be determined but are given a priori (!j

for frame j). Further, consider only one sub-channel per frame
(N = 1) available for allocation in each of the F frames. Since
a user’s (i) rate will vary from one beam to another and across
frames (ri,1,!j

, ∀j), the resulting ISP problem is now equivalent
to an SCF problem with F sub-channels (mapping from frames
in ISP) in a frame and users with finite buffers and varying rates
across the sub-channels, where the rate of user i on sub-channel c
is ri,c,!c , c ∈ [1, F ]. Hence, the desired result.

4.3 Components of iBUS
To address the above problem, we design and implement iBUS,

which consists of the following key components.
Measurement of Beam SNRs: If there are |L| beam patterns,

|L| frames are used for measurement (one for each pattern). On the
uplink part of each frame, the BS schedules all the active users such
that their data spans all the sub-channels (number of time symbols
allocated varies across users). Such a schedule can be visualized as
user bursts being arranged vertically rather than horizontally as in
Fig. 1 (see uplink). The resulting SNR (ρ) for each user with each
beam is measured directly at the BS and corresponds to that when
power is split on all sub-channels (ρ(i, N,! ), ∀i,! ).
Rate Estimation using Power Pooling: Rate tables are deter-

mined separately to identify the best modulation and coding rate
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(MCS) to employ for a given SNR that yields a specific loss rate
(e.g., < 0.1). However, since the rate would vary with the num-
ber of sub-channels allocated (due to power pooling), a direct SNR
measurement for each possible set of sub-channels for each beam
(ρ(i, k,! )) would constitute significant overhead. Hence, based on
the SNR measurement from all sub-channels (ρ(i, N,! )), we ex-
trapolate the SNR for other subsets of sub-channels, taking power
pooling into account. For e.g., if half of the sub-channels are allo-
cated to a user, then its resulting SNR ρ(i, N

2 , !) = ρ(i, N,! ) + 3
(in dB). Since the power gets distributed over 1

2 of sub-channels,
the per sub-channel power is doubled, corresponding to +3 in dB
scale. In general, ρ(i, N

α
, !) = ρ(i, N,! ) + 10 log10(α), α ∈

[1, N
N−1 , . . . , N

1 ]. Fig. 3(a) validates the modeling of power pool-
ing by measuring the SNR in practice for a client, when data is
transmitted on different sets of sub-channels. As expected, as we
reduce the number of sub-channels by a factor of half, the SNR at
each client location increases by≈ 3 dB.
From ρ(i, k,! ), one can obtain ri,k,! using the rate table. Essen-

tially, every user (i) has a power-pooling rate curve (g(i, k,! )) as
a function of number of sub-channels (k) and the beam chosen (!).
Depending on the nature of SNR-rate mapping, these curves may
or may not be concave. If continuous Shannon rates are employed,
then we have g(i, k,! ) = k ·log2(1+ N

k
ρ(i, N,! )), which is a con-

cave function (see Fig. 3(b)). If discrete rate tables are used then
g(i, k,! ) = k · ri,k,! results in a piece-wise linear (between SNR
thresholds) function, where the mapping ri,k,! ← N

k
ρ(i, N,! ) is

determined by the rate table. Depending on the rate-SNR thresh-
olds, g(i, k,! ) may still be concave or not (Fig.3(b) shows g() for
two such examples). As we shall see in §5, depending on the nature
of g() (concave or arbitrary), different algorithms will be required.
Buffer Estimation using Polling: The BS polls all its clients to-

wards the end of the current polling interval to estimate their buffer
occupancies for scheduling during the next polling interval. Note
that if the total buffer occupancy of all clients is less than the total
frame resources in the polling interval, then there will be under-
utilization. Further, the schedules computed for the polling interval
will be relevant only if the SNRs are relatively static during that
interval. Since we focus on indoor femtocell deployments with sta-
tionary clients, the coherence time of SNRs are reasonably high
(several frames) as we have experimented on our prototype (details
in §6).
Schedule Determination: Once the BS has all the information

needed to determine the batch schedule, it executes its algorithms.
The batch schedule consists of two parts. The first part is a schedule
for F − |L| frames (|L| << F ), where the ISP problem is solved
over F − |L| frames. The latter part is a schedule for the remaining
|L| frames, and serves as the measurement interval to obtain the
SNR information for the next polling interval. Hence, in the latter
part, the beam choices for the |L| frames are fixed (one beam each)
during measurement, and allocation is done only across time sym-
bols by employing the same algorithm used for solving ISP, albeit
with some fixed variables. While the main purpose of the second
part is measurement, one can also optimize the packing of client
data that remains after the first F − |L| frames, given the beam
choices. We next describe our solution to the ISP problem, where
we determine the data packing along with the beam choices over a
given set of frames.

5. ALGORITHMS IN IBUS
Given the hardness of the scheduling problem ISP, we focus on

algorithms that have a provable worst case guarantee and are simple

Algorithm 1 Integrated Scheduler: iBUS1
1: INPUT: Buffer occupancy Bi, ∀i ∈ K; rates g(i, k,! ), ∀i, k ∈

[1, N ], ! ∈ L
2: OUTPUT: Beam choices !j , ∀j ∈ F ; per-frame user allocation Aij ,

∀i, j
3: for f ∈ [1 : |F|] do
4: Omax = 0
5: for !f ∈ [1 : |L|] do
6: Di ← Bi, ∀i; aij = Aij , ∀i, j ∈ [1, f − 1] and aij = 0

∀i, j = f
7: for k = 1 : N do
8: i∗ = arg maxi∈K

n

Ui

“

Pf
j=1 g(i, aij , !j) + min

`

g(i, aif + 1, !f )

−g(i, aif , !f ), Di

´´

− Ui(
Pf

j=1 g(i, aij , !j))
o

9: ifi∗ %= ∅ then
10: Di∗ ← Di∗ − min

`

g(i∗, ai∗f + 1, !f )
−g(i∗, ai∗f , !f ), Di∗

´

11: ai∗f ← ai∗f + 1
12: else break endif
13: end for
14: Of =

P

i∈K Ui

“

Pf
j=1 g(i, aij , !j)

”

−Ui

“

Pf−1
j=1 g(i, aij , !j)

”

15: if Of > Omax then
16: Omax = Of ; !max = !f ; Aif = aif , ∀i
17: endif
18: end for
19: !f = !max; ; Bi ← Bi − min(g(i, Aif , !f ), Bi), ∀i
20: end for

to implement. Our algorithms can be classified based on the nature
of the power pooling rate curve.

5.1 Concave Rate Curves
We present two greedy algorithms called iBUS1 and iBUS2, out-

lined in Algs. 1 and 2, respectively. In iBUS1, resource allocation
and beam selection are performed one frame at a time in the batch,
sequentially. For a given frame (iteration), based on the remaining
data available for the users, resource allocation is performed for ev-
ery choice of the beam, and the beam yielding the best aggregate
marginal utility for the frame is chosen (steps 14-16). For resource
allocation within each frame given a beam (steps 6-13), iBUS1 as-
signs each sub-channel to the user who yields the highest marginal
utility taking the users’ buffer status into account (step 8). For con-
cave utility functions, such an allocation is indeed optimal. Further,
allocation based on the marginal utility also helps multiplex mul-
tiple users in the same frame thereby maximizing the benefits of
power pooling. Once the best beam and its corresponding resource
allocation are determined (steps 14-17) for the current frame, the
user buffers are updated (step 19) and the procedure is repeated for
the remaining frames in the batch, sequentially. iBUS1 has a time
complexity of O(|F||L||K|N).
The key difference between iBUS1 and iBUS2 is that while iBUS1

performs resource allocation within each frame in isolation, iBUS2
performs joint resource allocation across all frames considered in
an iteration. Hence, in addition to enabling power pooling within
each frame, it allows a user’s data to be spread across multiple
frames thereby pooling the user’s power across frames as well.
This, in turn, results in a more efficient data packing and hence,
higher aggregate throughput. Specifically, when considering a beam
for a given frame (f ) during a considered iteration, resource alloca-
tion is performed for all frames till the current frame jointly (steps
6-13) to determine the resulting utility for the beam. The beam
yielding the highest utility is then chosen for that frame (steps 15-
19). Hence, each iteration of resource allocation now involves de-
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Algorithm 2 Integrated Scheduler: iBUS2
1: INPUT: Buffer occupancy Bi, ∀i ∈ K; rates g(i, k,! ), ∀i, k ∈

[1, N ], ! ∈ L
2: OUTPUT: Beam choices !j , ∀j ∈ F ; per-frame user allocation Aij ,

∀i, j
3: for f ∈ [1 : |F|] do
4: Omax = 0
5: for !f ∈ [1 : |L] do
6: Di ← Bi, ∀i; Aij = 0 ∀i, j = [1, f ]; kj = N , ∀j ∈ [1, f ]
7: while kj %= 0, ∃j ∈ [1, f ] do
8: (i∗, j∗) = arg maxi∈K,j∈[1,f ]

n

Ui

“

Pf
m=1 g(i, Aim, !m)

+min{g(i, Aij + 1, !j) − g(i, Aij , !j), Di})

−Ui(
Pf

m=1 g(i, Aim, !m))
o

9: if(i∗, j∗) %= ∅ then
10: Di∗ ← Di∗ − min

`

g(i∗, Ai∗j∗ + 1, !j∗ )
−g(i∗, Ai∗j∗ , !j∗ ), Di∗

´

11: Ai∗j∗ ← Ai∗j∗ + 1; kj∗ ← kj∗ − 1
12: else break endif
13: end while
14: end for
15: Of =

P

i∈K Ui

“

Pf
j=1 g(i, Aij , !j)

”

16: if Of > Omax then
17: Omax = Of ; !max = !f

18: endif
19: !f = !max

20: end for

termining not only the user to whom a sub-channel must be allo-
cated but also in which frame (∈ [1, f ], step 8). Note that once
the beam is chosen for a given frame, user buffers do not have to
be updated for the next frame since resource allocation will then
be re-performed. Thus, for every newly considered frame, user
buffers are re-initialized (step 6). Essentially, resource allocation
for all frames till the one under consideration is done mainly for
the purpose of determining the beam yielding the highest utility
for the considered frame. The actual resource allocation is the one
that is computed during the final frame of iteration, where the al-
location for all the frames in the batch is jointly determined along
with the beam for that frame. While iBUS2 enables power pool-
ing both within and across frames, the joint resource allocation
across frames results in an additional time complexity of O(|F|)
and hence a net time complexity ofO(|F|2|L||K|N).
While iBUS2 results in a better performance than iBUS1, we

now show that even iBUS1’s worst case performance can be bounded.
We provide some definitions on matroid and sub-modularity that
are relevant for the proof.
Partition Matroid: Consider a ground set Ψ and let S be a set of

subsets ofΨ. S is a matroid if, (i) ∅ ∈ S, (ii) If P ∈ S andQ ⊆ P ,
then Q ∈ S, and (iii) If P, Q ∈ S and |P | > |Q|, there exists an
element x ∈ P\Q, such that Q ∪ {x} ∈ S. A partition matroid
is a special case of a matroid, wherein there exists a partition of
Ψ into components, φ1, φ2, . . . such that P ∈ S if and only if
|P ∩ φi| ≤ 1, ∀i.
Sub-modular function: A function f(·) on S is said to be sub-

modular and non-decreasing if ∀x,P, Q such that P ∪ {x} ∈ S
and Q ⊆ P then,

f(P ∪ {x}) − f(P ) ≤ f(Q ∪ {x}) − f(Q)

f(P ∪ {x}) − f(P ) ≥ 0, and f(∅) = 0

THEOREM 2. iBUS1’s worst case performance is within 1
2 of

the optimum.
PROOF. The sub-optimality of maximizing a sub-modular func-

tion over a partition matroid using a greedy algorithm of the form

x = arg maxx∈φi
f(P∪{x})−f(P ) in every iteration was shown

to be bounded by 1
2 in [17]. We will now show that iBUS1 is such

an algorithm, with our scheduling objective corresponding to a sub-
modular function to obtain the desired result.
Let the ground set be composed of the following triplets.

Ψ = {(j,! j ,aj) : j ∈ [1 : |F|], !j ∈ [1 : |L|],

aj = ∪i∈Kaij s.t.
P

i aij ≤ N}

Now Ψ can be partitioned into φj = {(j,! j ,aj) : !j ∈ [1 :
|L|], aj = ∪i∈Kaij s.t.

P

i aij ≤ N}, ∀j. Let S be defined
on Ψ as a set of subsets of Ψ such that for all subsets P ∈ S, we
have (i) if Q ⊆ P , then Q ∈ S; (ii) if element x ∈ P\Q, then
Q ∪ {x} ∈ S; and (iii) |P ∩ φj | ≤ 1, ∀j. This means that S
is a partition matroid. Further, any P ∈ S will provide a feasible
schedule with at most one feasible allocation and beam choice for
each frame. Note that, every feasible schedule is contained in S by
definition since it allows for the possibility of all feasible channel
allocations and beam choices to be selected for each frame in the
schedule. This, in turn, allows the partition matroid to capture our
scheduling problem. Our scheduling objective is given as,

f(P ) =
X

i∈K

µi(P )

where, µi(P ) = U(min{
X

j:(j,!j ,aj)∈P

g(i, aij , !j), Bi})

It can be seen that if Q ⊆ P , then µi(Q) ≤ µi(P ). Hence, for
an element (j,! j ,aj) such that P ∪ {(j,! j , aj)} forms a valid
schedule, it follows that f(P ∪ {(j,! j , aj)}) − f(P ) ≤ f(Q ∪
{(j,! j ,aj)}) − f(Q). This results both from the potential buffer
limitation in subsequent frames as well as the concave nature of the
utility function. This establishes that the function f(P ) is indeed
sub-modular. Further, our scheduling problem aims to maximize
this non-decreasing sub-modular function over a partition matroid.
Hence, if the optimal allocation corresponding to every beam were
given by some oracle for each frame, then picking the beam yield-
ing the highest marginal utility for a frame in iBUS1 (steps 14-17)
would correspond to determining

(j,! ∗
j ,a

∗
j ) = arg max

(j,!j ,aj)∈φj

{f(P ∪ {(j,! j ,aj))}) − f(P )}

Thus, the sub-optimality of 1
2 would then follow from the result in

[18].
Note that, there are exponential allocations possible that satisfy

P

i aij ≤ N for every beam choice. Hence, bypassing the ora-
cle assumption would require us to find the optimal allocation for a
given beam, which is a problem in itself. However, since the utility
functions are concave, this would correspond to a concave opti-
mization problem, which iBUS1 solves optimally by employing a
steepest gradient-like approach based on maximum marginal utility
(steps 7-13). Hence, iBUS1 is able to bound its sub-optimality by
1
2 .
5.2 Arbitrary Rate Curves
For arbitrary power pooling rate curves, we present the following

algorithm iBUS3, which is a modified version of iBUS1. Specifi-
cally, iBUS3 is similar to iBUS1 in picking the beam yielding the
highest marginal utility for each frame. However, its frame alloca-
tion for a given beam choice is significantly different. This is be-
cause if the power pooling rate curves are not concave, then alloca-
tions based on marginal utilities will not work. Hence, allocations
to users in each frame must be made as a subset of sub-channels
instead of individual sub-channels. Thus, we model the alloca-
tion problem for a given frame and beam choice (f,! f ) with arbi-
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Algorithm 3 Integrated Scheduler: iBUS3
1: INPUT: Buffer occupancy Bi, ∀i ∈ K; rates g(i, k,! ), ∀i, k ∈

[1, N ], ! ∈ L
2: OUTPUT: Beam choices !j , ∀j ∈ F ; per-frame user allocation Aij ,

∀i, j
3: for f ∈ [1 : |F|] do
4: Omax = 0
5: for !f ∈ [1 : |L] do
6: Di ← Bi, ∀i; aij = Aij , ∀i, j ∈ [1, f − 1] and aij = 0

∀i, j = f
7: Run an FPTAS for multiple-choice knapsack problem

FA(f,!f ); Obtain aif , ∀i

8: Of =
P

i∈K Ui

“

Pf
j=1 g(i, aij , !j)

”

−Ui

“

Pf−1
j=1 g(i, aij , !j)

”

9: if Of > Omax then
10: Omax = Of ; !max = !f ; Aif = aif , ∀i
11: endif
12: end for
13: !f = !max; ; Bi ← Bi − min(g(i, Aif , !f ), Bi), ∀i
14: end for

trary rate curves as the following multiple choice knapsack problem
(MCKP), which is a NP-hard problem in itself.

FA(f,!f ) : Maximize
X

i

X

k∈Ni

uik(f,! f )xik(f)

s.t.
X

i

X

k∈Ni

k · xik(f) ≤ N

X

k∈Ni

xik(f) = 1; ∀i

where xik(f) ∈ {0, 1} andNi ∈ {0, 1, . . . , N}.
Essentially, there are N + 1 allocations (Ni) possible for each

user and the MCKP problem is to pick exactly one allocation for
each user such that the total frame allocation does not exceed N .
The user’s profit or utility for each allocation is computed based on
the current and previous frames’ allocations as follows:

uik(f,! f ) =
X

i∈K

Ui

 

f−1
X

j=1

g(i, aij , !j) + min{g(i, xik(f), !f ), Bi}

!

where aij = k : s.t. xikj = 1, ∀i, j ∈ [1, f − 1]. Note that
the user’s buffer occupancy is automatically accommodated in its
profit. Now a FTPAS based on dynamic programming from [19]
can be employed to efficiently solve FA(f,!f ) to within (1 − ε)

of the optimal at a time complexity of O( |K|N
ε

). This results in a
net time complexity of O( |F||L||K|N

ε
) for iBUS3.

In establishing a bound on the worst case performance of iBUS3,
we employ the following lemma proved in [20].

LEMMA 1. If the sub-modular function is onlyα− approximable,
then the approximation guarantee of greedy maximization changes
to α

p+α
, where the maximization is subject to a p− independence

system.

THEOREM 3. iBUS3 provides an approximation guarantee of
1
2 − ε.

PROOF. Note that matroids are 1-independence systems (see [21]
for an exposition). Given that the FPTAS yields a (1 − ε) approx-
imation in computing the frame allocation and hence the sub-modular
function, we have α = 1 − ε and hence the resulting performance
guarantee of iBUS3 reduces to 1

2 − ε.
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Figure 4: iBUS system architecture.

Remarks: While we have shown that our algorithms have an
approximation guarantee of half for both concave and arbitrary
power pooling rate curves, one might wonder how much further
can this guarantee be improved without increasing the complexity
significantly. Unfortunately, the answer is not optimistic. We had
shown that ISP does not admit a PTAS and hence a (1− ε) approx-
imation. Further, recall from §4.2 that single frame scheduling with
varying sub-channel rates and finite user buffers (SCF) is a special
case of our ISP problem. In [5], it was shown that one can im-
prove the guarantee for SCF to 0.63 albeit through a complex LP
relaxation and rounding procedure, where an exponential number
of subsets is involved in the LP formulation. In light of this, we
believe that our greedy algorithms strike a good balance between
both performance and complexity. Further, §7 reveals their close-
to-optimal performance in practice, on average, compared to their
worst case guarantees of half.

6. IMPLEMENTATION
Fig. 4 depicts our system design. The testbed consists of a Wi-

MAX femtocell platform and commercial clients (USB dongles
attached to laptops). Our experiments are conducted over-the-air
(10 MHz bandwidth) with an experimental license from FCC. We
have an eight-element phased array antenna designed by Fidelity
Comtech, attached via a RF cable to the BS. The array generates
16 beam patterns of 45◦ each, spaced 22.5◦ apart to cover the en-
tire azimuth of 360◦. We also have a Linux PC for the gateway
functionality required for WiMAX. In WiMAX, the gateway man-
ages the service flows needed to transmit/receive data to/from the
clients.
The BS and the gateway communicate using sockets via an Eth-

ernet switch. When the BS decodes user data on the uplink, it
passes it to the application at the gateway (iperf) via the switch.
In addition, the switch is used to pass the client buffer information
and the measured beam SNRs to the gateway. The gateway both
implements our algorithms in Java, and at the same time controls
the array by a serial port (RS232) application that we have devel-
oped in C.
When the gateway receives the buffer and SNR information, it

executes the iBUS algorithms and sends the computed batch sched-
ule to the BS, one frame at a time. A beam corresponding to a frame
in the batch is applied to the array just before the corresponding
schedule is sent to the BS. However, note that there is inevitably a
delay before a particular beam is applied by the antenna following
the gateway command. We measured this delay to be≈ 6ms on av-
erage (8ms max.). Since each WiMAX frame is 5ms, applying one
beam for a single frame is difficult. To circumvent this, each sched-
ule corresponding to a frame in the batch is extended over 20 frames
at the BS, by taking into account the resources from the 20 frames
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Figure 5: Parameters and performance results with iBUS in real experiments.

jointly. In addition, each beam li is applied 10ms (two frames)
prior to schedule i. With this a priori beam application, when
the BS starts executing schedule i, the hardware is ready to trans-
mit with beam li. One can alternatively implement the algorithms
and the beam management component at the BS, for tighter beam
and schedule synchronization. However, this would add complex-
ity and overhead to the BS, making the deployment less practical.
Our design realizes a light-weight, standards-compatible OFDMA
beamforming system that does not result in significant processing
overhead at the BS. In addition, since the gateway is agnostic of the
underlying technology, we believe that it can flexibly be extended
to other OFDMA systems such as LTE, which use a similar notion
of sub-channels.
In our implementation, the BS polls the clients for buffer occu-

pancies every 100 frames, thereby forming the batch scheduling
interval. Since there are 16 beam patterns, 16 frames are used to
measure the beam SNRs of each client. Selecting a large polling
interval will not sufficiently capture the channel diversity (e.g., the
SNRs can change in the interim), making the computed schedule
sub-optimal. Conversely, a short polling interval will not suffi-
ciently reduce the contention overhead for buffer requests. We have
verified in our experiments that the SNRs with each beam are rela-
tively stable during a 100 frame (500ms) interval, and that the client
buffers are large enough to hold pending data.
Practicality of our Implementation: Wewish to point out here

that our implementation is compatible with off-the-shelf clients since
it does not require any modification on the standard client func-
tions. Polling is supported by the standard and each client, by de-
fault, responds to the BS with the amount of bits in their buffer.
Further, the clients are oblivious to the beam selection by the BS.
Note that the clients are omni-directional and it is the BS that ap-
plies different beam patterns to the signals it receives from these
clients and measures the SNRs. We also keep the modifications re-
quired at the BS to a minimum. Indeed, the only change we made to
the BS was to disable the stock scheduler and make the BS accept
and apply schedules provided externally by the gateway (14 lines
of code where the entire BS code is around 10K lines). We believe
that this small modification can easily be realized as a firmware up-
date. Naturally, the “brains” of our solution resides on the gateway,
which can be configured with minimal deployment effort (e.g., the
scheduler and the beam manager can be downloaded from a repos-
itory).

7. PERFORMANCE EVALUATION
In this section, we evaluate iBUS using both our prototype im-

plementation and trace-driven simulations. To isolate the gains
achieved with power pooling (i.e., packing) and beam selection,

we propose two simpler versions of iBUS1 that do not require
beam adaptation across frames: (a) iBUS-mean schedules multi-
ple clients in the same frame like iBUS1 but uses a fixed beam
for every frame. The fixed beam is chosen to minimize the mean
loss from the best beams of each client. Each client i has SNR
ρi

max with some beam yielding the max. SNR from its perspec-
tive. If client i has SNR ρi

l for beam l, then the loss is ρi
max−ρi

l.
iBUS-mean picks beam l ∈ L that minimizes the mean loss over all
clients, (b) iBUS-weighted uses a fixed beam as in iBUS-mean but
the loss is weighted based on the buffer occupancy of each client,
to account for asymmetric application rates. In this case, the loss
for a client is calculated as (ρi

max − ρi
l) ∗ Bi. Again, the beam

l ∈ L that minimizes this weighted mean loss over all clients is
fixed for all frames in the batch. We compare our algorithms to
an omni-directional scheme (labelled omni) that leverages power
pooling by employing the same packing procedure as iBUS1 (but
each frame is transmitted omni-directionally).

7.1 Prototype Evaluation
In WiMAX, the modulation to be used by the clients for uplink

communications is determined by the BS. Since the BS directly
measures the received SNR from clients, it uses a threshold-based
table to determine the modulation for each client. Fig. 5(a) enlists
the thresholds used in our platform.
With such discrete rate tables, all SNRs in between two consec-

utive thresholds map to the MCS with the lower threshold (similar
to WiFi). For example in Fig. 5(a), the BS instructs the clients to
use QPSK

3

4 for all SNRs between 12dB and 15dB. Depending
on the thresholds (determination of which is not specified by the
standard and is left to the vendor), this may result in non-concave
client power-pooling curves (g()). Indeed with our femtocells, we
observed that such non-concavity occurs in practice. While iBUS3
can address non-concavity, we choose to implement iBUS1, iBUS-
mean and iBUS-weighted on our prototype because of their low
complexity and ease of implementation.
To make iBUS1 compatible with non-concave g(), we transform

a given g() into a corresponding concave function. Fig. 5(b) de-
picts an example transformation where g() is computed as the prod-
uct of number of sub-channels and the number of bits that a given
MCS encodes. To do the transformation, we first determine the
number of sub-channels where each MCS transition occurs. This
can easily be done by computing the SNR for a given number of
sub-channels using the power pooling formula. Then, the transi-
tion points are connected by lines with an appropriate slope. Note
that the resulting concave function assumes that the error rate at a
given MCS level increases in conjunction with the SNR drop as the
power is distributed over more sub-channels. Even if the table maps
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Figure 6: Performance of iBUS obtained with trace-driven simulations.

two SNRs to the same MCS, the lower SNR will likely result in a
higher bit (or symbol) error rate, reducing the throughput in prac-
tice. This observation is also leveraged by prior studies (e.g., [22]).
In our experiments, we observed that the throughput predicted by
the concave transformation matched the observed client throughput
in practice reasonably well. On average, the predicted throughput
was 94% of the actual throughput.
We run each scheme on several topologies, created by placing

three clients in different locations. The utility function of a user
is equal to the total data scheduled for that user in the batch (i.e.,
Ui(Ri) = Ri). The clients initiate UDP flows to the BS, gener-
ated by iperf. Fig. 5(c)(a) shows the aggregate throughput for five
sample topologies of clients with equal application rates (iBUS-
weighted yields the same fixed beam as iBUS-mean and hence, is
not considered). We observe that iBUS1 outperforms omni by 42%,
on average. In addition, the beam adaptation component in iBUS1
helps outperform iBUS-mean by 15% - 25%. However, cases ex-
ist where iBUS-mean performs as well as iBUS1, indicating that
the proper choice of a fixed beam may provide significant gains,
depending on the topology. Fig. 5(c)(b) shows the aggregate thro-
ughput for clients with different application rates. We observe that
iBUS1 outperforms omni by 45% on average. For iBUS-weighted,
we see that it can improve performance over iBUS-mean in some
cases (e.g., topology 2 and 3). In addition, there are again cases
where iBUS-mean and iBUS-weighted perform as well as iBUS1.
To summarize, while iBUS1 consistently outperforms the omni-
directional scheme by≈45%, an appropriate choice of a fixed beam
can also yield significant gains in practice.

7.2 Trace-driven Simulations
To evaluate with a large client population, we resort to SNR

traces measured at 30 different client locations in our testbed. We
consider 100 topologies, generated by picking random subsets of
the client locations from our traces. To evaluate iBUS1 and iBUS2
with MCS tables in practice (i.e., discrete r()), we employ the same
g() transformation as before. We also consider a continuous r()
function (Shannon). We introduce an alternative scheme labelled
ULBF, that mimics user-level beamforming and serves as a loose
upper bound. In ULBF, packing is executed by spreading a client’s
data over multiple frames as in iBUS2. However, rather than using
a common beam for a frame, each client can operate using its best
beam (i.e., beam with the max. SNR.) even within a frame.
Fig. 6 shows the the mean gains achieved over omni for a vary-

ing number of clients. With discrete rate tables (Fig. 6(b) and
6(c)), we observe that iBUS1 delivers around 40% gain over the
omni scheme for four clients (inline with our prototype evaluation).
However, iBUS2 and ULBF do not significantly improve the per-
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Figure 7: CDF of the gain distribution with four clients. iBUS2
is not shown in (a) for clarity (it achieves similar performance
as iBUS1).

formance further. Even though there is increased power pooling
and hence higher SNR, the effective rate is not substantially higher
than iBUS1 due to the nature of discrete MCS tables. In addition
for all the schemes, the gains tend to drop with increasing num-
bers of clients. With a larger client population, finding a common
beam comes at the cost of significant SNR loss from their best beam
for some clients. On the other hand, the omni benefits from client
diversity (increased chance of a client having high SNR with the
omni beam) and is able to deliver increased throughput. However,
since the femtocell client populations are typically small (<8), ap-
preciable gains can still be attained. Thus, we conclude that iBUS1
is a low-complexity alternative to user-level beamforming in prac-
tical deployments. Since the increased power pooling and beam-
forming gains of user-level beamforming cannot fully be harnessed
with discrete MCS tables, iBUS1 serves as a flexible alternative
(i.e., number of antennas is not limited) with similar performance.
Fig. 6(d) and 6(e) show the mean gains over the omni scheme for
the continuous rate (Shannon) function. This time, we observe that
iBUS2 outperforms iBUS1 by 10% - 20% due to its better power
pooling capability across frames. Further, the gap with respect to
ULBF is around 30% - 40%. This behavior is expected since the
continuous rate function will benefit more from better power pool-
ing and proper beam selection, compared to a discrete rate table.
In the above experiments, we have demonstrated the mean gains

over the omni scheme. To better visualize the distribution, we plot
the CDF of the gain for four clients. Fig. 7(a) shows that the max-
imum gain with iBUS1 can be as high as 60% - 80% for 20% of
the scenarios. Further, an interesting observation that is revealed
is that in 10% - 15% of the scenarios, iBUS-mean performs worse
than omni. Recall that iBUS-mean picks a common beam that min-
imizes the mean loss from the best beam of each client. In such sce-
narios, some clients may have to operate with a beam, yielding a
SNR that is several dB less than their optimal beam and even worse
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than the omni-directional beam. However, adapting the beam in
iBUS1 addresses this issue to deliver improved performance. Simi-
lar observations hold for both types of rate functions (see Fig. 7(b)).

8. CONCLUSIONS
In this paper, we investigate the joint problem of uplink batch

scheduling and frame-level beamforming (shown to not admit a
PTAS) in OFDMA femtocells. We propose a set of algorithms
with a worst case approximation guarantee of 1

2 . Our algorithms
address the unique tradeoff between scheduling multiple users in
a frame (benefiting from power pooling) and harnessing the gains
from directional beams (by applying a common beam for multiple
users). We implement the algorithms on a real WiMAX femtocell
platform. Our prototype evaluation and trace-driven simulations
demonstrate that our algorithms provide benefits of over 40% over
an omni-directional scheme. To our best knowledge, this is the first
study that integrates and evaluates frame-level beamforming on an
actual OFDMA femtocell platform.
For future work, we would like to investigate the uplink schedul-

ing problem, relaxing the assumption that the best user beams re-
main stable during a batch interval (i.e., the users are not necessar-
ily static and can be mobile). In this paper, we have demonstrated
the motivation for using beamforming for interference mitigation
in a multi-cell context considering downlink traffic. We would also
like to further investigate this direction, while considering beam
selections for downlink scheduling in each femtocell.
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