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ABSTRACT

Every night, a large number of idle smartphones are plugged into
a power source for recharging the battery. Given the increasing
computing capabilities of smartphones, these idle phones consti-
tute a sizeable computing infrastructure. Therefore, for an enter-
prise which supplies its employees with smartphones, we argue
that a computing infrastructure that leverages idle smartphones be-
ing charged overnight is an energy-efficient and cost-effective alter-
native to running tasks on traditional server infrastructure. While
parallel execution and scheduling models exist for servers (e.g.,
MapReduce), smartphones present a unique set of technical chal-
lenges due to the heterogeneity in CPU clock speed, variability in
network bandwidth, and lower availability compared to servers.

In this paper, we address many of these challenges to develop
CWC—a distributed computing infrastructure using smartphones.
Specifically, our contributions are: (i) we profile the charging be-
haviors of real phone owners to show the viability of our approach,
(ii) we enable programmers to execute parallelizable tasks on smart-
phones with little effort, (iii) we develop a simple task migration
model to resume interrupted task executions, and (iv) we imple-
ment and evaluate a prototype of CWC (with 18 Android smart-
phones) that employs an underlying novel scheduling algorithm
to minimize the makespan of a set of tasks. Our extensive eval-
uations demonstrate that the performance of our approach makes
our vision viable. Further, we explicitly evaluate the performance
of CWC’s scheduling component to demonstrate its efficacy com-
pared to other possible approaches.

Categories and Subject Descriptors

C.2.1 [Network Architecture and Design]: Wireless communica-
tion
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1. INTRODUCTION
Today, a number of organizations supply their employees with

smartphones for various reasons [1]; a survey from 2011 [2] reports
that 66% of surveyed organizations do so and many of these organi-
zations have 75–100% of their employees using smartphones. For
example, Novartis [3] (with 100,000 employees in 140 countries)
handed out smartphones for its employees to manage emails, cal-
endars, as well as information about health issues; Lowe’s [4] did
so for its employees to have real time access to key product infor-
mation and to allow managers to handle administrative tasks.

In this paper, we argue that in such settings, an enterprise can
harness the aggregate computing power of such smartphones, to
construct a distributed computing infrastructure. Such an infras-
tructure could reduce both the capital and energy costs incurred by
the enterprise. First, this could reduce the number of servers to be
purchased for computing purposes. For example, Novartis awarded
a contract of $2 million to IBM to build a data center for their com-
putational tasks [5]. If they could exploit the smartphones handed
out to their employees to run some portion of their workload, it
is conceivable that the cost of their computing infrastructure could
have been reduced. Due to recent advancements in embedded pro-
cessor design, now a smartphone can replace a normal desktop or a
server running a dual core processor for computation. According to
Nvidia, their Quad Core CPU, Tegra 3, outperforms an Intel Core
2 Duo processor in number crunching [6]; for other workloads, one
can expect the performance of the two CPUs to be comparable.

Our second motivation for the smartphone-based computing in-
frastructure is that the enterprise could benefit from significant en-
ergy savings by shutting down its servers by offloading tasks to
smartphones. The power consumed by a commercial PC CPU such
as the Intel Core 2 Duo is 26.8W [7] at peak load. In contrast, a
smartphone CPU can be over 20x more power efficient, e.g., the
Tegra 3 has a power consumption of 1.2W [7, 8]. Since their com-
puting abilities are similar, it is conceivable that one can harness 20
times more computational power while consuming the same energy
by replacing a single server node with a plurality of smartphones.
In fact, to harness the energy efficiency of embedded processors,
cloud service providers are already pushing towards ARM-based
data centers [9].

The construction and management of such a distributed com-
puting infrastructure using smartphones however, has a number of
associated technical challenges. We seek to articulate these chal-



lenges and build an efficient framework towards making such a
platform viable. In particular, the biggest obstacles to harnessing
smartphones for computing are the phone’s battery-life and band-
width. If a smartphone is used for computing during periods of
use by its owner, we run the risk of draining its battery and ren-
dering the phone unusable. Further, today data usage on 3G carri-
ers are typically capped, and thus, shipping large volumes of data
using 3G is likely to be impractical. Thus, our vision is to use
these smartphones for computing when they are being charged, es-
pecially at night. During these periods, the likelihood of active use
of the phone by its owner will be low. Moreover, the phone will
be static and, will likely have access to WiFi in the owner’s home
(today, 80% of the homes in the US have WiFi connectivity [10]);
this will both reduce fluctuations in network bandwidth, and allow
the transfer of data to/from the smartphones at no cost.

We name our framework CWC, which stands for computing while
charging. To realize CWC, we envision the use of a single server,
connected to the Internet, for scheduling jobs on the smartphones
and collecting the outputs from the computations. The scheduling
algorithms executed on the server are lightweight, and thus, a rudi-
mentary low cost PC will suffice. Smartphones are only utilized
for computation when being charged. If an owner disconnects the
phone from the power outlet, the task is suspended, and migrated
to a different phone that is connected to a power outlet. Towards
building CWC, our contributions are as follows:

• Profiling charging behaviors: While an enterprise can possi-
bly mandate that its employees charge their smartphones when
they are not being actively used, we examine the typical charging
behaviors of smartphone owners. Using an Android application
that we develop, we gather charging statistics on the phones of
15 volunteers. Our results demonstrate that, on average, a typical
user charges his phone for up to 8 hours every night.

• Scheduling tasks on smartphones: As a fundamental compo-
nent of CWC, we design a scheduler that minimizes the makespan
of completing the jobs at hand, taking into account both the CPU
and bandwidth available for each smartphone. Since the optimal
allocation of jobs across phones is NP-hard, we design a greedy
algorithm for the allocation, and show via experiments that it
outperforms other simple conceivable heuristics.

• Migration of tasks across phones: CWC executes tasks on
smartphones only when they are being charged. Tasks are sus-
pended if phones are unplugged during execution. We design
and implement an approach to efficiently migrate such tasks to
other phones that are plugged in.

• Automation of task executions: The typical means of running
an application on smartphones is to have the phone’s owner down-
load, install, and run the application. However, we cannot rely
on such human intervention to leverage smartphones for a com-
puting infrastructure. We demonstrate how task executions on
phones can be realized in a completely automated manner. Note
that, while we recognize the potential privacy implications of
running automated tasks on smartphones, we simply assume here
that an enterprise would not run malicious tasks on its employ-
ees’ smartphones. Improving the isolation of tasks implemented
in typical smartphone operating systems is beyond the scope of
our work.

• Preserving user experience: Blindly executing tasks for ex-
tended durations on a smartphone being charged, can prolong
the time taken for the phone to fully charge. We show that in-
tensive use of a phone’s CPU can delay a full charge by 35%.
We design and implement a CPU throttling mechanism, which
ensures that task executions do not impact the charging times.

• Implementation and experimentation: Finally, to demonstrate
the viability of CWC, we implement a prototype and conduct ex-
tensive experiments on a testbed of 18 Android phones. Specifi-
cally, we show the efficacy of the scheduling and task migration
algorithms within CWC.

2. RELATED WORK
To the best of our knowledge, no prior study shares our vision of

tapping into the computing power of smartphones. However, some
efforts resemble certain aspects of CWC.

Smartphone testbeds and distributed computing platforms.

Publicly-available smartphone testbeds have been proposed [11,
12] to enable smartphone OS and mobile applications research.
CrowdLab [13] and Seattle [14] provide resources on volunteer de-
vices. There also exist systems where users voluntarily contribute
idle time on their PCs to computational tasks (e.g., [15]). In con-
trast, our vision is not for the smartphone infrastructure to be used
for research and testing, but to enable energy and cost savings for
real enterprises. Moreover, the issues that we address have not been
considered by these efforts. In addition to these systems, flavors of
MapReduce for smartphones have been implemented (e.g., [16]).
However, such efforts do not address the issues of detecting idle
phone usage and partitioning tasks across phones with diverse ca-
pabilities. They do envision using phones to offer a distributed
computing service.

The system that is closest in spirit to CWC is Condor [17]. Con-
dor can be used to queue and schedule jobs across a distributed
set of desktop machines. These machines are either dedicated to
running jobs on them or are operated by regular users for routine
activities. In the latter case, Condor monitors whether user ma-
chines are idle and harnesses such idle CPU power to perform the
computations required by jobs. It also preempts computations on
these machines once the users continue their routine use (i.e., the
machine is no more idle).

While the above features of Condor may be similar to CWC, the
two have the following key differences:

• CWC tries to preserve the charging profile of smartphones
via its CPU throttling technique. This is a challenge not ad-
dressed by Condor since desktop machines do not exhibit
such a problem.

• Desktop machines mostly differ in terms of their CPU clock
speed, memory (RAM) and disk space. In a cluster, these
machines are connected via Ethernet switches and this typ-
ically results in uniform bandwidth across machines. Thus,
systems such as Condor do not typically consider machine
bandwidth in their scheduling decisions. In contrast, smart-
phones have highly variable wireless bandwidths (in addition
to their variable CPU clock speed and RAM). This can lead
to sub-optimal scheduling decisions if bandwidth is not taken
into account (details in Section 3 and Section 5).

Participatory sensing. Recent studies such as [18], advocate
the collective use of the sensing, storage, and processing capabili-
ties of smartphones. With participatory sensing [19], users collect
and analyze various types of sensor readings from smartphones.
Unlike these efforts, a distinguishing aspect of CWC is that the
data to be processed does not originate from the phones. In addi-
tion, CWC allows the execution of a variety of tasks unlike above,
where typically a fixed task (sensing) is supported. Finally, CWC
seeks to leverage compute resources on smartphones, rather than
tapping human brain power [20].
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Figure 1: Benchmarking smartphone CPUs against the Intel

Core 2 Duo.

Measurements of smartphones. There have been measurement
studies [21, 22] to characterize typical network traffic and energy
consumption on smartphones. In contrast, our focus is on devel-
oping a scalable platform for gathering measurements from the
phones in CWC. Several prior studies [23, 24] have observed that
phones are idle and are being charged for significant periods of
time every day. We are however the first to recognize that these
idle periods can be harnessed to build a distributed computing in-
frastructure.

Provisioning tasks on cloud services. Prior efforts have also
tried to identify when the use of cloud services is appropriate (e.g.,
[25]), discuss the challenges involved in using them (e.g. [26]), or
present solutions for provisioning applications (e.g., [27]). How-
ever, these efforts focus on traditional server-based cloud services.
Prior efforts on managing resources in the cloud (e.g., [28]) do not
tackle challenges associated with provisioning tasks on heteroge-
nous resources nor deal with the variability of wireless links.

3. FEASIBILITY STUDY
In this section, we examine (a) the challenges associated with

building a smartphone-based computing infrastructure and (b) the
potential savings in capital and energy costs offered by such an
infrastructure.

3.1 Challenges
Adequacy of computing power: The smartphone infrastruc-

ture is only attractive if it can effectively accomplish the computing
tasks undertaken on today’s servers. Due to rapid advances in em-
bedded processor technologies, numerous smartphones with Quad
Core CPUs are emerging [29]. Some of these CPUs offer clock
speeds of up to 2.5 Ghz per core (Qualcomm snapdragon quad-core
APQ8064) and their computational capabilities are beyond that of
typically used server machines. To compare the performance of a
smartphone CPU with that of typical desktop and server CPUs, we
refer to the well known CoreMark benchmarks [30]. Figure 1 (bor-
rowed from [8, 30]) shows the performance of major smartphone
CPUs against a widely used desktop and server CPU—the Intel
Core 2 Duo; the higher the CoreMark score, the better. We see that
while the Nvidia Tegra-3 outperforms the Intel Core 2 Duo, the
Core 2 Duo outperforms the other processors by more than 50%.
This shows that state-of-the-art smartphones like Samsung Galaxy
S-3 (running on Tegra-3 CPU) can only replace a single-core server
or desktop machine. In our smartphone testbed, most of the smart-
phones are running on Tegra-2, Snapdragon S-3, and Ti OMAP-4
CPUs; in spite of this, we can execute a typical server job with two
or three (of these older) smartphones.

Availability of idle task execution periods: Beyond the dra-
matic improvements in their compute capabilities, smartphones are
attractive for a computing service because their resources are un-

used for long periods of time. Most users leave their phones idle
overnight while the batteries are being recharged. When being
recharged, a smartphone typically runs only light-weight background
jobs (e.g., downloading e-mail) that require minimal computation
and intermittent network access. Scheduling jobs on a phone dur-
ing such periods is unlikely to impact the phone owners.

To identify and utilize idle periods, we have implemented an An-
droid application to profile the charging behaviors of users (Apple
iOS also supports the core functionality required). The application
tracks three states on every phone: (a) plugged: when the user is
charging the phone, (b) unplugged: when the phone is detached
from the charger, and (c) shutdown: when the phone is powered
off. When there is a change in state (i.e., unplugged to plugged),
the application logs the change to a server along with a timestamp
(of the user’s local timezone). In addition, it logs the total bytes
transmitted and received over all wireless interfaces (cellular and
WiFi) when in the plugged state; this statistic is reset every time
the phone newly enters the plugged state. The server parses the
log files and computes for every charging interval of a particular
user: (a) the duration of the interval, and (b) the number of bytes
(transmitted and received) during that interval.

We conduct a study of realistic user behavior by having 15 volun-
teers (real users) install our application on their phones and gath-
ering statistics. In Fig. 2(a), we plot the distribution of charging
interval lengths, with every interval assigned to day or night; if the
plugged state occurs between 10 p.m. and 5 a.m. of a user’s local
time, that interval is considered to be in the night, else in the day.
We observe that the median charging interval is around 30 minutes
and 7 hours long, at day and night respectively. In addition, there
are fewer charging intervals in the night. This suggests that users
charge their phones for an uninterrupted stretch of several hours at
night. During the day, charging is interrupted frequently, resulting
in a large number of short intervals.

We now focus only on the charging intervals at night. Fig. 2(b)
plots the CDF of data transfers over all night charging intervals.
Although the user is unlikely to be actively using the phone, there
is background data in the form of periodic e-mail checks, push no-
tifications from news and social media, etc.. However, we find that
the total network activity is less than ≈ 2 MB for 80% of all night
charging intervals.

Using the network activity data, we identify night charging in-
tervals that can be considered idle to be the ones in which the data
transfer is less than 2 MB. Fig. 2(c) shows that the users, on aver-
age, have at least 3 hours of idle charging at night. However, the
characteristics highly depend on the individuals. Users with the
highest idle durations (users 3, 4, and 8) have lower variability in
their behavior; this suggests that they regularly charge their phones
for 8 to 9 hours at night. In addition, users very rarely turn their
phones off while charging (only 3% of the logs are in the shut-

down state). The consistent low load at night (as also reported by
[31]) suggests that idle usage patterns occur in large-scale settings
as well. Given this, we speculate that this will provide an overlap of
long idle charging times across users, yielding several operational
hours for computing, without disturbing users’ routine activities.

Next, we also examine the plugged and unplugged activity of
each user. Our goal is to identify periods where, the phones are
most likely to be unplugged. In our setting, we consider unplug-

ging as a failure since we do not execute tasks when a phone is
unplugged. Figure 3(a) plots the CDF of unplugged activity (fail-
ure) for all users. It is seen that the likelihood of failure between
12 AM to 8 AM is less than 30%. In CWC, we simply migrate
such failed tasks to other phones that are still plugged in (discussed
later).
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Figure 2: The median charging interval at night is around 7 hours and the data transfer is mostly below 2MB.
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Figure 3: Availability of smartphones for CWC task scheduling.

Profiling an individual user’s behavior can allow the prediction
of device specific failures. This can help since tasks can be mi-
grated to phones that are less likely to fail at the time of consider-
ation. Figures 3(b) and 3(c) show the unplugging behaviors of two
representative users from our study. The likelihoods of failure in
both cases are very low between 12 A.M. and 6 A.M. It increases
between 6 A.M. and 9 A.M. when people begin using their phones.
During the day, the likelihood of unplugged activity is high; it de-
creases when phones are charged again at night.

Our study suggests that the charging behaviors of users are typ-
ically consistent at night, and offer an opportunity for harnessing
the computing power of idle phones during these times.

Stability of the wireless network: To fully utilize the idle pe-
riods to execute jobs, a stable network connection is necessary.
Since we only schedule jobs when a phone is on charge (typically at
night), it is safe to assume that the channel qualities do not fluctuate
much. The location of a device may, however, affect the bandwidth
(due to fading); to account for temporally varying fading effects,
a periodic (short) bandwidth measurement test is required prior to
scheduling jobs on the phones. To examine the stability of these
measurements over WiFi links, we conduct experiments at three
different locations (within a 2 mile radius), when the phones are
put on charge. Figure 4 depicts the results of such a bandwidth test
for WiFi links where we run an iperf session from the phones to the
server for 600 seconds.

We see that the variation in bandwidth for WiFi links is very
low; this means that we can use infrequent (periodic) bandwidth
measurements. Since we expect that communications between the
smartphones and the supporting server will typically be via WiFi
at users’ homes, we conclude that bandwidth stability is not likely
to be an issue. Cellular links can also be utilized as appropriate,
but will require more frequent bandwidth measurements since they
may exhibit high instability[32].
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Figure 4: WiFi network stability.

Variability of bandwidth across smartphones: Although we
showed that the bandwidth of a static smartphone is relatively sta-
ble, there may still be high variability in bandwidth across smart-
phones 1. The task executable and the input data have to be shipped
wirelessly to smartphones. This makes task completion times sen-
sitive to the bandwidth variability across smartphones. To validate
this in practice, we design a simple experiment where we have a
central server (a regular PC) that interacts with 6 smartphones. The
phones have identical CPU clock speeds but they differ in terms of
their wireless bandwidths to the server. The server has 600 files
to be processed by the phones (each phone finds the largest inte-
ger in the file). For each file, the typical cycle is the following.
The server sends the file to one of the idle phones, which then pro-
cesses the file and returns the result back to the server. If there are
no idle phones (i.e., all phones are busy receiving and processing
some file), the file is queued. Since all the phones are initially idle,
the server can copy the first 6 files in parallel without any queue-

1Note that this is in contrast to the typical setting where desktop
machines are inter-connected via Ethernet.
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ing. The server logs the turn-around time for each file, which is
computed as the difference between the time that the phone returns
the result and the time that the file was queued. After this first ex-
periment, we remove the two phones that have the “slowest” con-
nections and schedule the 600 files on the remaining 4 phones. We
observe from Fig. 5 that with 6 phones, 90% of the tasks finish in
less than 1200 milliseconds. On the other hand, choosing a reduced
number of phones albeit with fast wireless connections, improves
the 90th percentile to 700 milliseconds (though the queueing delay
increases). Our experiment reveals that simply accounting for the
CPU clock speed and using all the phones results in poor task com-
pletion times. If this experiment were conducted on a cluster of 6
PCs with identical CPU clock speed, using more machines would
have reduced the completion times (since the PCs would have the
same bandwidth). In summary, one should also take wireless band-
width into account when scheduling tasks across smartphones. This
factor is unique to a smartphone environment and is not accounted
for in systems such as Condor [17].

3.2 Benefits
Savings in infrastructure costs: Since the idle compute re-

sources on already deployed smartphones are used, the cost borne
by corporations to bootstrap the platform will be minimal in com-
parison to that in setting up a similar service on a server-based in-
frastructure. Companies have either to invest in buying hardware
(e.g., servers, switches) or in outsourcing their tasks to third party
cloud services. In addition, establishing computing infrastructure
requires careful planning with regards to factors such as space, fed-
eral and state regulations, and the provisioning of power and cool-
ing support. In contrast, the use of a smartphone infrastructure ob-
viates such considerations. To leverage existing smartphones as the
elements of a utility computing service, an enterprise will need no
more than a central, lightweight server to identify idle resources
and allocate them to computational tasks.

Savings in energy costs: A primary concern of cloud service
providers is the power consumption in their data centers. A typical
data center server can consume 26.8 Watts (Intel Core 2 Duo) to
248 Watts (Intel Nehalem) [33] of power, depending on the con-
figuration. More importantly, this does not account for the power
required for cooling. To calculate the total power consumption, we
use an Average Power Usage Effectiveness (PUE) ratio [34] of 2.5;
for every Watt consumed by a server, 2.5 watts are in addition con-
sumed for cooling and power distribution. Extrapolating this, we
can project the energy cost of a Intel Core 2 Duo server to be:

67

1000
KWH × 24 hrs × 365 days × $0.127 = $74.5/year

(using the average commercial price of 12.7c/KWH in the US in
April 2011). Note that a more powerful server (like the Intel Ne-
halem) may cost up to $689 /year.

In comparison to a datacenter server, the power consumption of
a smartphone is as low as 1.2 Watts at peak load. We estimate the
cost of operating a smartphone (with a similar model) to be:

1.2

1000
KWH × 24 hrs × 365 days × $0.127 = $1.33/year

Note that the PUE ratio does not apply in case of smartphones
since they do not require any cooling. The above analysis suggests
that energy costs of operating the smartphone computing infrastruc-
ture are significantly lower (by an order of magnitude) than using
typical datacenter servers.

Example applications: Next, we describe some example appli-
cations that are suitable for execution on CWC in a real enterprise
setting. The first is an example taken from the Condor website [17].
A movie production company can render each scene in a movie, in
parallel, using smartphones. A second example is where, a depart-
ment store gathers the sales records from several locations. These
records can be partitioned and shipped to phones to quantify what
types of goods are sold the most. We believe Lowe’s would be a
typical example for this [4]. Lastly, the IT department in an enter-
prise can gather machine logs throughout the day and analyze them
for certain types of failures at night.

4. DESIGN AND ARCHITECTURE
In this section, we describe the design of CWC. We first de-

scribe the parallel task (job) execution model for CWC 2, and then
seek answers to the following. (a) How can we predict task execu-
tion times?, (b) How can we implement automated task execution
on smartphones without requiring direct user interaction?, and (c)

How can we preserve user experience while the tasks are being ex-
ecuted on the phones?

Task model: In CWC, a task is a program that performs a com-
putation on an input file, such as counting the number of occur-
rences of a word in a text file. Similar to the model in MapRe-
duce, a central server partitions a large input file into smaller pieces,
transmits the input partitions (together with the executable that pro-
cesses the input) to the smartphones in CWC. Upon receiving the
executable and the corresponding input, the phones execute the task
in parallel and return their results to the central server when they
finish executing the task. The central server performs a logical ag-
gregation of the returned results, depending on the task. For the
word count example, the server can simply sum the number of oc-
currences reported by each phone (obtained by processing their re-
spective input partitions) to compute the number of occurrences in
the original input file. We call such tasks breakable tasks to reflect
that in this class, a task does not exhibit dependencies across parti-
tions of its input and hence, can be broken into an arbitrary number
of concurrent pieces.

While the above model is suitable for parallel tasks in general,
some tasks cannot be broken into smaller pieces on which computa-
tions can be performed followed by merging the results, to produce
a logical outcome. We call such tasks atomic tasks; such a task (and
its input) can only be executed on a single phone due to the depen-
dencies in its input. An example of an atomic task is photo filtering
(e.g., blurring a photo). A blur is typically obtained by comput-
ing a new pixel value based on the neighboring pixels. Since the
blurred pixel value depends on its neighboring pixels, a blur on a
photo cannot be obtained by breaking the photo into smaller pieces,
blurring the pixels in each individual piece and merging the results.
Although an atomic task cannot be parallelized, there are still con-
currency benefits when many such tasks are executed in batches.

2We use the terms task and job interchangeably.
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For example, if one needs to filter 1000 photos, each individual
photo can be transferred to a phone and thus, multiple photos can
be filtered in parallel. CWC accounts for both breakable tasks and
batch atomic tasks in its scheduler (details in Section 5).

We realize that the RAM on most phones is smaller (1-2 GB)
than most desktop machines (4 GB). This constraint can easily be
overcome by splitting a given job input data into smaller fragments
so that each data partition fits in the smartphone memory. We be-
lieve 1 GB RAM per phone is enough to run most of the MapRe-
duce style distributed jobs. Note here that the work in [35] reports
that the median job input size for such jobs is less than 14 GB. One
can easily partition such jobs across 15-20 phones and still sched-
ule them using CWC. Next, we describe how CWC predicts task
execution times.

4.1 Predicting Task Execution Times
When a task is scheduled on a phone, there are two important

factors that affect the completion time of that task. First, it takes
time to copy the executable (i.e., binary) and the input file partition
to a phone. This depends on the achievable data rate on the link be-
tween the phone and the central server that copies the data. Second,
the same task takes different times to complete on different phones
(depending on the computational capabilities of the phone). While
“computational capabilities” is broad and can include characteris-
tics such as the speed of reading a file from the disk (e.g., the SD
card on a phone) or the size and speed of the cache, we only fo-
cus on the CPU clock speed of a phone; a phone with a fast CPU
(in GHz) should execute a given task in less time as compared to a
phone with a slow CPU.

Next, we introduce some basic notation that we use in the subse-
quent discussions. bi is the time that it takes to copy 1 KB of data
from the central server to phone i. cij is the time it takes to execute
task j on 1 KB of input data using phone i. Ej is the size (in KB)
of the executable for task j and Lj is the size (in KB) of input data
that task j needs to process. Given this notation, the completion
time of task j, when it is scheduled to run on phone i, is equal to
Ej ∗ bi + Lj ∗ (bi + cij). The first term accounts for the time that
it takes to copy the executable to the phone and the second term
accounts for the copying of the input data and executing the task on
it. If phone i is assigned a piece of job j’s input file, we denote this
by lij and one can simply replace Lj with lij in the above formula
to account for executing input partitions.

The estimation of the bi values are via direct measurements in
CWC (bandwidth tests described earlier). While we focus on de-
scribing how task execution times are estimated in the following
paragraphs, we emphasize that the bandwidth to a smartphone is
taken into account when making scheduling decisions.

The estimation of cij for each phone task pair has to be low-cost
since many such combinations may exist. To estimate cij values,
we resort to a scaling technique where we first execute each task j

on 1 KB of its input using the slowest phone with a S MHz CPU
speed. If the slowest phone takes Ts milliseconds to locally execute
task j on a 1 KB input (excluding the associated ‘executable and
data’ copying costs), a phone with ‘A’ MHz CPU speed is expected
to complete the same task in Ts ∗

S
A

milliseconds. This technique
avoids the cost of profiling each phone-task pair and as we show in
Figure 6, is a fairly accurate representation of actual task comple-
tion times. In plotting Figure 6, we first run a task on the slowest
phone in our testbed (HTC G2 with 806 MHz CPU). We then run
the same task on all the other phones (the relevant executable code
and data are transferred a priori). Comparing the actual runtimes
of each phone i (denoted ti) to the run time of the slowest phone
(denoted ts), we have the measured speedup, ts

ti
. We then com-

pute the expected speedup based on CPU clock speeds. If a phone
has a X MHz CPU, then the expected speedup with respect to the
HTC G2 is equal to X

806
. We do this comparison for three differ-

ent tasks (described later in detail in Section 6). Figure 6 shows
that the CPU scaling model captures the actual speedup for most
of the points (the points are clustered around the y = x line), with
a few exceptions where the actual speedup is higher than what is
predicted by the model (the rightmost points on the x-axis).

The above model is used by CWC’s task scheduler (described
in Section 5), which runs on the central server and periodically as-
signs partitions of tasks to a set of phones based on the predicted
task completion time. The phones return their results along with
the time it actually took to locally execute their last assigned task.
The scheduler then updates its prediction for each phone (and task)
based on the reported execution times and uses it for predicting the
run time in the following scheduling period. With this, CWC ac-
counts for the few cases that the initial prediction fails to capture
with regards to task execution.

4.2 Automating Task Execution
One of the key requirements of CWC is that a task be executed

without requiring user input. The typical means of “running a task”
on smartphones today is running an application (i.e., “app”). When
a user wants to execute a new task on her phone, she needs to down-
load and install the app. This process typically requires human
input for various reasons (e.g., Android users are presented a list
of app permissions and have to manually validate the installation).
Such a mechanism is clearly not apt for CWC, since the tasks are
to be dynamically scheduled on smartphones.

To run tasks on the phones, we leverage a cross-platform mech-
anism that uses the Java Reflection API for the Android OS. With
reflection, a Java executable (i.e., a .class file) can dynamically
load other executables, instantiate their objects and execute their
methods, at runtime. This allows CWC to ship different task exe-
cutables and input files to a particular phone in an automated fash-
ion. In addition, the reflection functionality can be implemented
as an Android service 3 thus, bypassing the need for human input.
Note that dynamic class loading is not specific to Android; such ca-
pabilities are also available with other smartphone OSs (e.g., iOS
permits this via shared libraries).

With reflection implemented on the smartphone side, CWC does
not require any additional infrastructure at the central server. In
fact, developers can continue to use their traditional Java programs
and have them scheduled for parallel execution by CWC. Since An-
droid can execute Java code, we just require developers to imple-
ment their tasks in Java (no knowledge of Android API required).
In Fig. 7, we depict the flow chart of a typical CWC task. The
.java source files are compiled into .class files at the cen-

3Android services do not display graphical elements to users and
can run in the background.
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Figure 7: Flow chart of a CWC task (shown in shaded compo-

nents).

1 p u b l i c c l a s s Task {
2 p u b l i c s t a t i c vo id main ( S t r i n g [ ] a r g s ) {
3 e x e c u t e T a s k ( a r g s [ 0 ] ) ;
4 }
5 p u b l i c s t a t i c vo id e x e c u t e T a s k ( S t r i n g f i l e n a m e

) {
6 / / r ead and p r o c e s s i n p u t

7 }
8 }

Figure 8: Task.java to be compiled at the central server.

tral server, which are then packaged as .jar files using the An-
droid tool chain (i.e., the dx command). The .jar file (containing
the executable for the Android VM) together with the input data is
copied to the phone. The phone extracts the .jar file and uses
reflection to load and run the task, producing an output of results.
Figure 8 shows the Java implementation of a typical CWC task.
When the .java file is compiled and packaged in a .jar file,
the task is executed on the phone using the code snippet in Figure
9. Thus, each phone concurrently processes the input partition (in-

put.txt) assigned to it and this is transparent to the developers who
implement their tasks (with the template in Figure 8) with a single
machine in mind.

4.3 Preserving User Expectations
While predicting task execution times and automating them are

important, we must note that phones are personal devices. Thus,
first it is important to ensure that when a user chooses to use her
phone, CWC stops the execution of the last assigned task to that
phone so as not to adversely impact the end-user experience (e.g.,
task execution on the CPU can affect the responsiveness of the user
interface). The tasks that are thus stopped, are then migrated to
other phones that are still plugged in (as discussed).

Second, running tasks on phones that are are plugged in, should
have a minimal impact on the charging times of the phones’ batter-
ies. We observe that a heavy utilization of a phone’s CPU draws
power and therefore, in some cases, prolongs the time taken to
fully charge a phone’s battery. Specifically, we conduct experi-
ments where we first fully charge many types of phones (i.e., from
0% residual battery to 100%) in two settings; the first setting is
without any job running on the phone, and the second setting cor-
responds to a case wherein a CPU intensive task is continuously
run. As an example, we discuss results in the case of HTC Sen-
sation phones, where we repeatedly run a CPU intensive task of
counting the number of prime numbers in a large input file contin-
uously during the charging period. We observe that while it takes
around 100 minutes to complete full charging in the first setting, the

1 S t r i n g p a t h = g e t F i l e s D i r ( ) . g e t A b s o l u t e P a t h ( ) ;
2 S t r i n g j a r F i l e = p a t h + " / t a s k . j a r " ;
3 DexClas s L oade r c l a s s L o a d e r = new DexClas s L oade r (

j a r F i l e , pa th , nul l , g e t C l a s s ( ) . g e t C l a s s L o a d e r
( ) ) ;

4 C l a s s [ ] t y p e s = {new S t r i n g [ ] { } . g e t C l a s s ( ) , } ;
5 Clas s <?> myClass = c l a s s L o a d e r . l o a d C l a s s ( " Task " ) ;
6 Method m = myClass . ge tMethod ( " main " , t y p e s ) ;
7 O b j e c t [ ] p a s s e d = {new S t r i n g [ ] { p a t h + " / i n p u t . t x t "

} } ;
8 O b j e c t x = m. invoke ( c l a s s L o a d e r , p a s s e d ) ;

Figure 9: Reflection functionality on the smartphone.

Figure 10: Charging times under different schemes for the

HTC Sensation phones.

time increases to 135 minutes in the second setting. Note that this
increase could be phone-specific. In fact, we repeated the same ex-
periment with HTC G2 phones and observed no significant effect
(results are not reported due to space limitations). Our observa-
tion is that the more powerful the phone, the higher the penalty in
terms of the increase in the charging period. Further note that, if the
tasks are only scheduled after the phone is fully charged, there is no
penalty (the phone remains fully charged); this is because the en-
ergy from the power outlet is directly applied to CPU computations.
However, this would delay task processing and is thus avoided in
CWC; moreover, users may not leave their phones plugged in until
they are fully charged.

Our goal is to minimize the aforementioned adverse effect on a
device’s charging profile. If the CPU utilization can be controlled,
we could achieve our goal. Prior approaches dynamically vary the
voltage and/or the frequency of the CPU [36]. However, the modi-
fication of the voltage and frequency values require root privileges
on the phone, and is therefore not applicable in our setting (using
root privileges voids the phone warranty). Thus, our approach is
to periodically pause the tasks being executed on the phones, and
leave the CPU idle during such paused intervals. Next, we discuss
when and for how long, we pause the execution of a task.

To begin with, our experiments demonstrate that the residual bat-
tery percentage (reported by the operating system) exhibits a pre-
dictable linear change with respect to time (as seen from Figure
10) in the case where no jobs run on the phone (referred to as the
phone’s charging profile). The rate of this linear change is specific
to the device and the power source, but the relation remains linear
across all the devices. When a task runs on the CPU of the phone, it
draws power and thus, the charging profile deviates from this linear
profile. We seek to minimize this deviation.

If there was no other task (e.g., background jobs not scheduled
by CWC) running on the phone, we could determine the devia-
tion due to CWC. Unfortunately, the process is complicated by the
existence of such other tasks (possibly at different times) each of
which with unpredictable CPU requirements and therefore power
consumption patterns. Further, there could be fluctuations in the



input power drawn from the supply (e.g. charging using a USB
vs. a wall charger). Given this, our approach is to continuously
monitor the rate at which the battery is charged, and either increase
or decrease CPU utilization accordingly; the amount by which we
increase the CPU utilization is called the scaling factor.

Specifically, we first measure the time it takes for the residual
battery charge (δ) to increase by 1% of its preceding value, without
any jobs running on the phone. This value of δ is referred to as the
target charging parameter. Then, we run the task for a time period
of δ/2 and put the process to sleep for the next δ/2 seconds. We
repeat this process until the overall residual battery charge increases
by 1 %. Let the time taken for this be β(≥ δ); this is referred to
as the actual charging parameter. If β = δ, there may be energy
available to further ramp up the CPU utilization (the power from the
outlet might be higher than what is required for charging). In this
case, we decrease the sleep time during each δ period by a factor of
0.75, thereby inherently increasing CPU utilization; a new β is then
computed based on the new settings. If β > δ, the power drawn by
the CPU is affecting the battery charging profile. Thus, we increase
the sleep time by a factor of 2. Again, a new β value is computed.
The process is repeated continuously. Note that the above strategy
is akin a multiplicative increase/multiplicative decrease (MIMD) of
the period for which the CPU is kept idle. Finally, since the phone’s
charging profile could change with time (as an example due to other
tasks), we recompute the value of δ each time the residual battery
charge changes by 5 %.

We plot the results with our adaptive MIMD based CPU schedul-
ing in Fig. 10 for the HTC Sensation phones. The results from an
ideal charging profile (no tasks) as well as a case where the CPU is
heavily utilized without our approach are also shown. We see that
our approach allows the phone to charge in a time that is almost
the same as in the ideal case; the MIMD behavior of our approach
is highlighted in the zoomed insert in the figure. Without our ap-
proach, the charging time increases by 35 %. Note here that, the
use of the adaptive approach results in an increase in computation
time of about 24.5 % compared to the heavily utilized scenario (due
to the sleep cycles).

5. TASK SCHEDULING
In this section, we detail how tasks are scheduled in CWC. We

are given a set J of jobs and a set P of smartphones. As discussed
earlier, each job j ∈ J and phone i ∈ P . The time it takes i to
process x KB of j’s input is given by

Ej ∗ bi + x ∗ (bi + cij) (1)

where, Ej is the size (in KB) of job j’s executable, bi is the time
(in milliseconds) that it takes phone i to receive 1 KB of data from
the server, and cij is the time that it takes for phone i to execute the
job j on 1 KB of input data. Our objective is to schedule the tasks
across the phones such that the time it takes for the last phone to
complete, T , (the makespan) is minimized. In the schedule, each
job j’s input can be split into pieces and each piece can be assigned
to a phone. lij denotes the size (in KB) of job j’s input partition
assigned to phone i. lij = 0 simply indicates that phone i is not
assigned any input partition of job j. uij is an indicator variable
that denotes whether or not a partition of job j’s input is scheduled
to run on phone i. The scheduling problem (SCH) is then captured
by the following quadratic integer program.

SCH: Minimize T

s.t.
∑

j

uij ∗ (Ej ∗ bi + lij ∗ (bi + cij)) ≤ T, ∀i ∈ P

∑

i

lij = Lj , ∀j ∈ J

uij ∈ {0, 1} ∀i ∈ P ,∀j ∈ J
∑

i

uij = 1 ∀ atomic j ∈ J

where we minimize the makespan, T . The first constraint requires
that all phones finish executing their assigned tasks before T . The
second constraint ensures that for every job, all of its input is pro-
cessed. The last constraint ensures that atomic jobs are allocated to
a single phone 4. SCH reflects the general case for the minimum
makespan scheduling (MMS) problem, which is known to be NP-
hard. MMS is defined as: “Given a set of jobs and a set of identical

machines, assign the jobs to the machines such that the makespan

is minimized” [37]. A more general version of MMS is schedul-
ing using unrelated machines (U-MMS), where each machine has
different capabilities and thus, can execute tasks in different times.
In both of these problems, only atomic jobs are considered. In
other words, the goal is to assign each job to exactly one of the ma-
chines such that the makespan is minimized. SCH is a general case
of U-MMS. We consider both atomic and breakable tasks and the
machine capabilities are different. Since the special case of SCH
(U-MMS) is NP-hard, the hardness carries over to SCH as well.

Our Solution: We address the SCH problem by solving the
complementary bin packing problem (CBP), similar to the approach
in [38]. In CBP, the objective is to pack items using at most ‖P‖
bins (with capacity C) such that the maximum height across bins
is minimized. Here, the items correspond to the tasks and the bins
correspond to the phones. The correlation between CBP and SCH
can be drawn as follows. Let us assume that there is an optimal
solution to CBP where the maximum height across the bins is M .
If one rotates each bin 90◦ to the right, each bin visually appears
as a phone in makespan scheduling. Items packed on top of each
other in a bin correspond to input partitions assigned to a phone
one after the other. Clearly, M corresponds to the maximum com-
pletion time across the set of phones in the rotated visualization.
Thus, packing all items (tasks) using at most ‖P‖ bins (phones)
and minimizing the maximum height across bins will minimize the
makespan 5.

The pseudocode of our greedy algorithm to solve CBP is given
in Algorithm 1. The idea is to first sort the tasks in decreasing order
of local execution time. The first item in the sorted list is the one
where Rj ∗ csj is the largest; s is the slowest CPU phone in the
system and Rj is the remaining input size (in KB) of item (job) j
that is yet to be assigned to some phone. Initially Rj = Lj .

In each iteration, we search for the first item in the list that can
be packed in any of the previously opened bins (an open bin repre-
sents a phone that has previously been assigned some input parti-
tion). Note that determining whether an item can be packed in a bin
depends on whether the current height of the bin plus the execution
cost of that item in the particular bin is less than the bin capacity. If
we can find such an item, we pack it in the bin with the minimum
height at that time (i.e., the phone with the least total execution
time). When packing such an item (line 6), we pack its largest in-
put partition that can fit. If the item can fit without partitioning it,
we prefer packing it as a whole.

4Although not currently addressed in the paper, CWC can handle
memory constraints. One can add lij ≤ ri to ensure that any job
j’s partition assigned to phone i is less than or equal to the phone’s
RAM (denoted here by ri).
5The reader can refer to [38] for details.



Algorithm 1 Greedy Packing Algorithm

1: L : sorted list in decreasing order of execution time
2: C : bin capacity
3: repeat
4: find the first item in L that can fit in any opened bin
5: if such an item exists then

6: pack the item in the bin with min. height
7: if the item was packed as a whole then

8: remove it from L

9: else

10: insert its remaining input in L

11: re-sort L
12: end if

13: else
14: if there are un-opened bins then

15: open the best bin for the largest item in L

16: pack the item in the opened bin
17: if the item was packed as a whole then
18: remove it from L

19: else

20: insert its remaining input in L

21: re-sort L
22: end if

23: else

24: cannot open any more bins
25: cannot finish packing with C

26: end if

27: end if

28: until all jobs are packed

The idea behind our design is the following. If a task is broken
down to N pieces, the central server would have to aggregate N
partial results, which would be an extra overhead at the server when
the phones return their results. Thus, if two packings produce the
same minimum bin height, we would prefer one with fewer parti-
tions. If packing an item as a whole is not possible (simply because
doing so would result in the bin height exceeding the capacity), we
pack that item’s largest partition that can fit without violating the
bin capacity (with the purpose of keeping the number of partitions
low). If no item can fit in the opened bins (line 13), we check if
we can open a new bin. If not, the algorithm cannot find a feasible
packing for the given capacity. If we can open a new bin, we open
the bin that would accept the largest item in L, with the minimum
increase in its height (line 15). Clearly, such a bin is the one that
minimizes Equation 1 for the largest item in L. After opening the
bin, we again try to pack the item as a whole (line 17). If not, we
pack the item’s largest partition subject to the bin capacity.

The above algorithm is repeated multiple times for different se-
lections of bin capacities. Here, we adopt an approach similar to
binary search. We first determine an upper bound (UB) on the bin
height. Clearly, the maximum bin height occurs when all items are
assigned to the bin that maximizes Equation 1 (i.e, the worst bin).
For the lower bound (LB), we initially pick a loose bound where
all items are packed in a single magical bin that has the aggre-
gate processing capability and the aggregate bandwidth of all bins;
there are no other bins. This magical bin represents the ideal case
where the inputs are partitioned without the executable cost. Af-
ter determining these initial bounds, we execute Algorithm 1 with

C = (LB+UB)
2

. If the algorithm succeeds packing all items with
bin capacity C, we let UB = C. If the algorithm cannot find a fea-
sible packing with the initial C, we let LB = C. The algorithm is

then repeatedly executed with C = (LB+UB)
2

, until the algorithm
succeeds with the minimum C. Here, the binary search simply re-
duces the search space for the minimum bin capacity, with which
the algorithm packs all the items.

When CWC determines the schedule as described above, it starts
copying the relevant executables and the input partitions to each
phone. This is done on a per-partition basis; the next assigned task
to the phone is copied only after the phone completes executing its
last assigned task. When the phones inform the central server about
a task completion, they report the partial results together with the
time it takes to locally execute the assigned task. As described in
Section 4, CWC uses such execution reports to update its prediction
on execution times of tasks. If the same task is assigned to the same
phone in the future (albeit with a different input partition), CWC
uses the updated prediction for scheduling.

Handling Failures: In CWC’s task execution cycle, some phones
may naturally fail while executing a given task. In our setting, the
term failure can correspond to a variety of cases. For example,
when a phone is plugged off the charger, we treat it as a failed node
since continuing to execute a CPU-intensive task on it would drain
the battery (a critical concern for CWC). In CWC, such failures are
communicated back to the central server whenever possible (i.e.,
when the phone still has a network connection), and the execution
can be resumed from the point where it failed (details of task state
migration are in Section 6). We call these class of failures where
the phone maintains a connection with the server “online failures”.
Other scenarios may include harder failures, in which the phone
loses its connection to the server (e.g., wireless driver suddenly
crashes or the network connection is dropped), and thus, cannot
report its failed state back to the central server (the description of
detecting such failures at the central server is again deferred to Sec-
tion 6). We call this class of failures “offline failures”.

Assume that at time instant A, we compute a schedule X . With
X , each phone i has a set of tasks Xi that it will execute as time
progresses. CWC starts copying the executable and input partitions
in Xi to i one task at a time and waits for i to either report a com-
pletion or a failure. If no report is received for the last copied task,
say lasti (due to an offline failure), CWC marks i as failed and
inserts lasti and all the remaining tasks in Xi to a list FA that con-
tains all failed tasks after A. If i reports completion, CWC simply
copies the next task in Xi and again waits for reports. If on the
other hand, i reports failure for lasti, the report contains additional
information: (a) how much of the input was processed by i by the
failure instance, and (b) what was the intermediate (partial) result
associated with the processing. CWC still inserts lasti (and all that
remains in Xi) in FA, but now lasti is inserted with only the part of
the input not processed by i (and the intermediate results are saved).
Now assume that we have a new schedule to be computed at time
instant B. Some new tasks have entered the system at this point
and are awaiting scheduling. Now, CWC computes a schedule for
all such new tasks and FA combined. The reason that we avoid im-
mediate re-scheduling of tasks in FA and wait until B is to account
for the possibility that failed phones may re-enter the system after a
short period of unavailability (e.g., the user plugs her phone to the
charger after a few minutes or the connectivity is restored). Note
that this is in contrast with typical MapReduce architectures, where
failures may result in long periods of unavailability [39].

6. IMPLEMENTATION AND EVALUATION
Our testbed consists of 18 Android phones with varying network

connectivity and CPU speeds. The network interfaces vary from
WiFi (both 802.11a and 802.11g are considered) to EDGE, 3G and
4G. The CPU clock speeds vary from 806 MHz to 1.5 GHz. Each
phone registers with a central server and reports its CPU clock
speed. We measure bi values (bandwidth to each smartphone i)
with the iperf tool. The phones host the CWC software, which
maintains a persistent TCP connection with the server and permits



dynamic task execution as instructed by the scheduler. To maintain
long-lived flows, we use the SO_KEEPALIV E option in the
connection sockets as well as implement custom application layer
keep-alive messages. The latter also serve as a means of detecting
offline failures. If a phone fails to respond to a preset number of
keep-alive requests from the server, it is marked as failed. In our
implementation, the keep-alive message period is 30 seconds and
the number of response failures tolerated, is 3.

Several techniques exist to migrate failed tasks and resume their
state on a target machine; for example, the authors in [40] mod-
ify the Android virtual machine (VM) itself to migrate the state of
execution but this requires changes to the original Android VM.
To make it more user and developer friendly, we ported JavaGO
– a Java program migration library [41] to the Android. JavaGO
is based on a “source-code-level” transformation technique, where
the JavaGo translator takes the user program as input and outputs
the migratory Java code. The translated code can run on any Java
interpreter and can be compiled by any Just-in-Time (JIT) compiler.
JavaGo provides flexibility by allowing programmers to annotate
their code using three added language constructs to the Java lan-
guage, namely go, undock and migratory. The go statement speci-
fies the IP address of the machine where the failed application will
be resumed. The undock construct specifies the area to be migrated
in the execution stack while migratory construct declares which
methods are migratory so that only those methods are modified by
the JavaGo compiler. In CWC, we translate the annotated java task
files with JavaGo translator to produce the migratory .jar task
file. In case of a failure, the state of a task is saved and transmitted
to the central server (via the go construct). Our server records the
transmitted state but does not itself resume the computation at that
state. At the next scheduling instant, the server sends the recorded
state of each failed task to a newly assigned phone, which then re-
sumes the task. Details on migration can be found in [41].

The server is implemented as a multi-threaded Java NIO server.
Non-blocking threads allow the server to concurrently copy data
to a phone while reading the completion reports of other phones.
We host the server on a small Amazon EC2 instance to show its
lightweight implementation and economical viability. The small
instance is the default configuration offered by EC2. It offers one
virtual core with 1.7 GB of memory, which represent a machine
that is far less capable than state-of-the-art workstations. Currently,
Amazon charges 8 cents per hour for a small Linux instance. This
clearly shows that the lightweight central server in CWC incurs
very small cost for a typical enterprise (although the exact value
may change over time).

Prototype Evaluation: In evaluating CWC, we use a variety of
tasks. The first task involves counting the occurrences of prime
numbers in an input file. The second task is to count the number of
occurrences of a word in the input file and the third task is to blur
the pixels in a photo. While we are able to directly use the desktop
Java versions of the first two tasks, doing this was not possible for
the photo blurring task. The challenge relates to the lack of compat-
ibility between the graphics classes on the desktop Java virtual ma-
chine and the Dalvik virtual machine in Android. While the code
works on JVM, the reflection class loader on Android complained
about the part of the code that reads the pixels from the image file
(in particular BufferedImage class does not exist in Android). To
eliminate the phone’s reading the pixels directly from the image,
we do the following modification. We first pre-process the pictures
to read the pixels (at the central server) and create text files that
contain a pixel value in each of its lines. Each phone was able to
process the text files as before. After this, the server re-creates each
photo from the blurred pixels returned by each phone.

Figure 11: Map of the phone locations.

Comparison with simple practical schedulers: At the server, we
also implement simpler alternatives to CWC. The first alternative
splits each breakable job into |P| pieces without accounting for the
different bandwidth and CPU speeds of phones in P . The atomic
jobs are assigned to phones in a round-robin manner (phone 1 gets
atomic job 1 and so on). In the second alternative, both breakable
and atomic jobs are assigned in a round-robin manner.

Setup: We distribute our 18 phones in three houses (the loca-
tions are shown in Fig. 11). In two of these houses, we have a
802.11g WiFi network and an abundance of interfering residential
access points using the 2.4 GHz band. In the third house, we have
a 802.11a WiFi AP without interference from neighboring APs. Of
the 6 phones we place in each house (phones are plugged to power
outlets), we associate 2 phones with the WiFi AP and 4 phones are
configured to use varying cellular technologies (from the slowest
EDGE to the fastest 4G). Before running the CWC scheduler, we
initiate iperf sessions from each phone to the EC2 server and log the
measured data rate in KBps (the inverse of this value is used as bi).
The workload comprises of the following. We have 50 instances of
task 1 (counting primes) with varying input data sizes, we have 50
instances of task 2 (counting word occurrences) with varying input
sizes and, 50 variable size photos to be blurred (atomic task 3).

Results: In the first experiment, we run our greedy scheduler fol-
lowed by the two alternate scheduling strategies described above;
we do not consider phone failures. Fig.12(a) presents the task ex-
ecution timeline for a select set of phones. We do not show the
plots for every phone for better visualization (the patterns are sim-
ilar across the phones). The vertical black stripes in a phone’s
timeline correspond to the time intervals where the phone is re-
ceiving the task executable and the corresponding input partition
from the server. The white regions correspond to the time intervals
where the phone executes the task locally. From Fig. 12(a), we
observe that while some phones (2 and 9) finish their tasks earlier
than others, the load is well balanced for most of the phones (4, 12,
13, 14 complete at similar time instants). Phones 2 and 9 finished
early because of a mismatch between the expected speedup and the
measured speedup (recall Fig. 6 in Section 5). In particular, these
phones are faster than what is indicated by their CPU clock speeds
and thus, finish earlier than the scheduler’s prediction. We see that
the difference in the completion times between the earliest phone
(2 finishes at around 900 seconds) and the last phone (12 finishes
at around 1100 seconds) is ≈20% of the makespan. In addition,
our scheduler’s predicted makespan of 1120 seconds was only 20
seconds more than the actual makespan of 1100 seconds. Fig.12(b)
shows the CDF of the number of input partitions for each of the



2

4

9

12

13

14

 0  300  600  900  1200

Time (sec)

P
h
o
n
e
 In

d
e
x

(a) Timeline of CWC’s task exe-
cution

 0

 0.2

 0.4

 0.6

 0.8

 1

 0  1  2  3

Number of Splits

C
D

F

(b) CDF of the number of input
partitions

0

1

6

7

8

13

14

 0  300  600  900 1200 1500

Time (sec)

P
h
o
n
e
 In

d
e
x

x--> 7, 13, 14

x--> 0, 7, 8, 14

(c) CWC failure recovery time-
line

Figure 12: Our greedy scheduler produces very few input partitions (b) and provides support for failure recovery (c).

150 tasks considered. An input partition of 0 indicates that the task
was atomically assigned to a single phone. While 33% of the tasks
by definition cannot be partitioned (the photo tasks are atomic),
we observe that our scheduler preserves atomicity for most of the
tasks (≈90%) and thus, significantly reduces the aggregation cost
at the server. In contrast, we observe that the equal split strategy
had a makespan of 1720 seconds, and produced a large number of
input partitions since each breakable task is split into |P| pieces.
While the round-robin strategy avoided excessive input partitions,
it achieved a makespan of 1805 seconds. In summary, our greedy

scheduler is around 1.6x faster than the alternative schedulers and

it achieves this while with almost negligible aggregation costs.

In Fig. 12(c), we plot the timeline for a different run of the
above experiment. Here, we introduce failures by unplugging three
phones (phones 1, 6 and 17) at random instances during task ex-
ecution (the plot again shows a subset of phones). As discussed
in Section 5, in the next round of scheduling, our scheduler re-
schedules tasks from previously failed phones across the remaining
set of phones. The x marks on Fig. 12(c) indicate the assignment of
the failed tasks of a phone. The shaded task executions depict the
execution of re-scheduled tasks. We observe that phone 1’s tasks
were partitioned across phones 7, 13 and 14. On the other hand,
phone 6’s failed tasks were re-scheduled across phones 0, 7, 8 and
14. Since phone 6 failed at the very beginning of its schedule, it had
more tasks to be re-scheduled. Our scheduler mainly chose faster
phones (phones 0, 7 and 8 completed ahead of time in the original
schedule) to re-schedule these failed tasks. Overall, re-scheduling
failed tasks required 113 seconds after the original makespan.

Benchmarking the Scheduler: Next, we try to get a lower
bound on the makespan to benchmark the performance of our al-
gorithm. This requires optimally solving the quadratic integer pro-
gram formulated in Section 5, which is NP-hard owing to the inte-
gral nature. While the integral part can be relaxed by allowing the
variables uij and lij to take fractional values and hence producing a
loose lower bound, we still cannot use standard LP solvers to com-
pute the bound owing to the quadratic nature. To address this, we
can re-formulate the problem by transforming the first constraint to∑

j
uij ∗ (Ej ∗ bi) + lij ∗ (bi + cij) ≤ T , where now uij applies

only to the first term. However, to prevent the solution from allo-
cating jobs to a phone (lij > 0) without accounting for the ship-
ping cost of its executable (uij = 0), we add another constraint
(1 − uij)lij = 0, ∀i, j. The latter can now easily be relaxed

Figure 13: Comparison of the makespans of the greedy sched-

uler and the solution to the relaxed problem.

as lij ≤ Lj ∗ uij , thereby resulting in an LP relaxation, which
can be solved to obtain a loose lower bound (smaller makespan
than optimal due to relaxation) on the solution. Thus, we have
Trelaxed ≤ Toptimal ≤ Tcwc, where T is the makespan produced
by each of these solutions.

To understand how close we are to the optimal, we input var-
ious combinations of tasks and bandwidth profiles and solve the
problem with (a) our greedy scheduler and (b) using the relaxed
formulation above. We simulate the solutions by generating ran-
dom bi values between 1 and 70 milliseconds (the minimum and
maximum values measured in our experiments). We consider the
same set of 150 tasks and we get the cij values from the phones in
our testbed. We generate 1000 random configurations and for each
configuration, we first obtain the makespan for the relaxed formu-
lation and subsequently we obtain the makespan produced by our
greedy scheduler. Fig. 13 shows the CDF (over random configura-
tions) of these makespans. It is seen that the median makespan of
our greedy scheduler is approximately 18% worse than the relaxed
formulation’s solution.

7. CONCLUSIONS
In this paper, we envision building a distributed computing in-

frastructure using smartphones for the enterprise. Our vision is
based on several compelling observations including (a) enterprises
provide their employees with smartphones in many cases, (b) the
phones are typically unused when being charged, and (c) such an
infrastructure could potentially yield significant cost benefits to the
enterprise. We articulate the technical challenges in building such
an infrastructure. We address many of them to design CWC, a
framework that supports such an infrastructure. We have a pro-



totype implementation of CWC on a testbed of 18 Android phones.
Using this implementation, we demonstrate both the viability and
efficacy of various components within CWC.
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