
Stealthy Adversarial Perturbations Against
Real-Time Video Classification Systems

Shasha Li∗, Ajaya Neupane∗, Sujoy Paul∗, Chengyu Song∗,
Srikanth V. Krishnamurthy∗, Amit K. Roy Chowdhury∗ and Ananthram Swami†

∗University of California Riverside, {sli057, ajaya, spaul003}@ucr.edu, {csong, krish}@cs.ucr.edu, amitrc@ece.ucr.edu
†United States Army Research Laboratory, ananthram.swami.civ@mail.mil

Abstract—Recent research has demonstrated the brittleness of
machine learning systems to adversarial perturbations. However,
the studies have been mostly limited to perturbations on images
and more generally, classification tasks that do not deal with
real-time stream inputs. In this paper we ask ”Are adversarial
perturbations that cause misclassification in real-time video
classification systems possible, and if so what properties must they
satisfy?” Real-time video classification systems find application
in surveillance applications, smart vehicles, and smart elderly
care and thus, misclassification could be particularly harmful
(e.g., a mishap at an elderly care facility may be missed). Video
classification systems take video clips as inputs and these clip
boundaries are not deterministic. We show that perturbations that
do not take “the indeterminism in the clip boundaries input to the
video classifier” into account, do not achieve high attack success
rates. We propose novel approaches for generating 3D adversarial
perturbations (perturbation clips) that exploit recent advances in
generative models to not only overcome this key challenge but
also provide stealth. In particular, our most potent 3D adversarial
perturbations cause targeted activities in video streams to be
misclassified with rates over 80%. At the same time, they also
ensure that the perturbations leave other (untargeted) activities
largely unaffected making them extremely stealthy. Finally, we
also derive a single-frame (2D) perturbation that can be applied
to every frame in a video stream, and which in many cases,
achieves extremely high misclassification rates.

I. INTRODUCTION

Deep Neural Networks (DNN) based real-time video classi-
fication systems are being increasingly deployed in real world
scenarios. Examples of applications include video surveil-
lance [42], self driving cars [21], health-care [52], etc. To
elaborate, video surveillance systems capable of automated
detection of “targeted” human activities or behaviors (e.g.,
accident, violence), can trigger alarms (upon detection) and
drastically reduce information workloads on human operators.
Without the assistance of DNN-based classifiers, human oper-
ators will need to simultaneously monitor footage from a large
number of video sensors. This can be a difficult and exhausting
task, and comes with the risk of missing behaviors of interest
and slowing down decision cycles. In self-driving cars, video
classification has been used to understand pedestrian actions
and make navigation decisions [21]. Similar applications can
be envisaged in the Army Next Generation Combat Vehicle

(NGCV). Real-time video classification systems have also been
deployed for automatic “fall detection” in elderly care facili-
ties [52], and detection of abnormal actions around automated
teller machines [47]. All of these applications directly relate
to the physical security or safety of people and property. Thus,
stealthy attacks on such real-time video classification systems
are likely to cause unnoticed pecuniary loss and compromise
personal safety. Note that while objects can be detected or
distinguished by examining the individual frames in a video
(akin to object detection on images), many activities can only
be recognized or distinguished by considering a sequence of
frames holistically (i.e., a clip consisting of multiple frames).

Recent studies have shown that virtually all DNN-
based systems are vulnerable to well-designed adversarial
inputs [10], [29], [30], [39], [43], which are also referred
to as adversarial examples. Szegedy et al. [43], showed that
adversarial perturbations that are hardly perceptible to humans
can cause misclassification in DNN-based image classifiers.
Goodfellow et al. [11], analyzed the potency of realizing
adversarial samples in the physical world. Moosavi et al. [29],
and Mopuri et al. [32], introduced the concept of “image-
agnostic” perturbations. Recent efforts by Hosseini et al. [15],
and Wei et al. [54], explore adversarial perturbations on videos.
However, they are limited in that their attack models do not
work on real-time video classification systems (more details in
§ IX).

The high level question that we try to address in this
paper is: “Is it possible to launch stealthy attacks against
DNN-based real-time video classification systems by adding
adversarial perturbations on a video stream, and if so how?”
In contrast with the aforementined prior work, attacking a real-
time video classifier poses new challenges that were not all
previously identified or addressed. First, because video streams
are collected in real-time, the corresponding perturbations also
need to be generated on-the-fly with the same frame rate
which can be extremely computationally intensive. Second,
to make the attack stealthy, attackers would want to add
perturbations on the video in such a way that they will only
cause misclassification for the targeted (possibly malicious)
activities, while keeping the classification of other activities
unaffected. In a real-time video stream, since the activities
change across time, it is hard to identify online and in one-
shot [8], the target frames on which to add perturbations
(and thereby ensure that the other untargeted activities are not
affected). Third, real-time video classifiers use video clips (a
set of frames) as inputs [8], [47] (i.e., as video is captured, it is
broken up into clips and each clip is fed to the classifier). This

Network and Distributed Systems Security (NDSS) Symposium 2019
24-27 February 2019, San Diego, CA, USA
ISBN 1-891562-55-X
https://dx.doi.org/10.14722/ndss.2019.23202
www.ndss-symposium.org



introduces two additional hyper-parameters viz., the length of
a clip and the boundaries (i.e., beginning and ending) of a
clip. Even if attackers are aware of the length of each clip, it
is hard to predict the boundaries of the clips as they are non-
deterministic. This is problematic because when the attacker
generated perturbations are applied to the wrong frame within
a clip (i.e., perturbation for frame 1 of a clip being applied
to frame 2 of that clip), the perturbations may not work as
expected. (Please see Figure 4 and the associated discussion
for more details).

In this paper, our first objective is to investigate how
to generate adversarial perturbations against real-time video
classification systems by overcoming the above challenges. We
resolve the real-time challenge by using universal perturba-
tions (UP) [29]. UPs are universal in the sense that a UP is
not specific to one input example, but works on any input
example from the same distribution as that of the training
data. Universal perturbations affect the classification results
by using just a (single) set of perturbations generated off-line.
Because they work on unseen inputs, they preclude the need
for intensive on-line computations to generate perturbations
for every incoming video clip. To generate such universal
perturbations, we leverage generative DNN models.

However, adding universal perturbations to all clips of the
video can cause misclassification of all the activities in the
video stream. This may expose the attack since the results
may be abnormal (e.g., many people performing rare actions).
It may even cause activities from other classes to be mis-
classified as the target class. To make the attack stealthy,
we introduce the novel concept of dual purpose universal
perturbations, which we define as universal perturbations
which only cause misclassification of activities belonging to
the target class, while minimizing, or ideally, having no effect
on the classification results for activities belonging to the other
classes.

Dual purpose perturbations by themselves do not provide
high success rates because of the nondeterminism of the clip
boundaries. To be more specific, let l be the length of a
clip input to the classifier, and p = {p1, p2, . . . , pl} be the
perturbations for a clip of frames x = {f1, f2, . . . , fl}; then
input x′ = {f1 ⊕ p1, f2 ⊕ p2, . . . , fl ⊕ pl}, where ⊕ denotes
pixel-wise addition, would yield misclassification but other
combinations like x′′ = {f1 ⊕ pl, f1 ⊕ p1, . . . , fl ⊕ pl−1}
(where pl in the latter expression refers to the last frame in
the previous clip) may not cause misclassification. To solve
this problem, we introduce a new type of perturbation that
we call the Circular Universal Dual Purpose Perturbation (C-
DUP). The C-DUP is a 3D perturbation which is effective on a
video stream even in the presence of a temporal misalignment
between the perturbation clips and the input video clips.
Specifically, any cyclic permutations of a C-DUP perturbation
clip are also still valid perturbations. For example, both {f1⊕
pl, f2⊕p1, . . . , fl⊕pl−1} and {f1⊕pl−1, f2⊕pl, . . . , fl⊕pl−2}
can cause expected misclassification. Because of this property,
C-DUP works even if the sequential concatenation of two
broken up parts of two consecutive perturbation clips, is added
to an input video clip as a perturbation clip. To generate C-
DUPs, we make significant changes to the baseline generative
model used to generate universal perturbations. In particular,
we add a new unit to generate circular perturbations, that is

placed between the generator and the fixed discriminator (as
discussed later). We demonstrate that the C-DUP is very stable
and effective in achieving real-time stealthy attacks on video
classification systems.

Finally, to better understand the effect of the temporal
dimension, we also investigate the feasibility of attacking the
classification systems using a simple and light 2D perturbation
(frame level instead of clip level) which is applied across all
the frames of a video. By tweaking our generative model, we
are able to generate such perturbations which we name as
2D Dual Purpose Universal Perturbations (2D-DUP). These
perturbations work well on a sub-set of videos, but not all. We
will discuss the reasons for this when we describe these 2D
attacks in § VI-D.

Our Contributions: In brief, our contributions are:

• We provide a comprehensive analysis of the challenges in
crafting adversarial perturbations for real-time video clas-
sifiers. We empirically identify what we call the boundary
effect phenomenon in generating adversarial perturbations
against video streams (see § VI-B). In a nutshell, the
boundary effect arises because of the nondeterminism of
the boundaries of the clips input to the video classification
system.

• We design and develop a generative framework to craft two
types of stealthy adversarial perturbations against real-time
video classifiers, viz., the circular dual purpose universal
perturbation (C-DUP) and the 2D dual purpose universal
perturbation (2D-DUP). These perturbations are agnostic to
(a) the content the video streams capture (i.e., are universal)
and (b) the clip boundaries within the streams.

• We demonstrate the potency of our adversarial perturbations
using two different video datasets. In particular, the UCF101
dataset captures coarse-grained activities (human actions
such as applying eye makeup, bowling, drumming) [41]. The
Jester dataset captures fine-grained activities (hand gestures
such as sliding hand left, sliding hand right, turning hand
clockwise, turning hand counterclockwise) [7]. We are able
to launch stealthy attacks on both datasets with over a 80 %
misclassification rate, while ensuring that the other classes
are correctly classified with relatively high accuracy.

II. BACKGROUND

In this section, we provide the background relevant to
our work. Specifically, we discuss how a real-time video
classification system works and what standard algorithms are
currently employed for action recognition.

A. Real-time video-based classification systems

DNN based video classification systems are being increas-
ingly deployed in real-world scenarios. Examples include fall
detection in elderly care [9], abnormal event detection on
campuses [49], [50], security surveillance for smart cities
[51], and self-driving cars [21], [22]. Given an input real-
time video stream, which may contain one or more known
actions, the goal of a video classification system is to correctly
recognize the sequence of the performed actions. Real-time
video classification systems commonly use a sliding window

2



Fig. 1: This figure [8] illustrates the score curves computed
by a video classifier with a sliding window for every class.
Real-time video classification systems use these score curves
to do online action recognition.

to extract video clips and use the clips as inputs to a classifier
to analyze the video stream [8], [47]. The classifier computes
an output score for each class in each sliding window. The
sliding window moves with a stride. Moving in concert with
the sliding window, one can generate “score curves” for each
action class. Note that the scores for all the action classes
evolve with time. The score curves are then smoothed (to
remove noise) as shown in Figure 1. With the smoothed
score curves, the on-going actions are predicted online. From
the figure one can see that, the real-time video classification
system is fooled if one can make the classifier output a low
score for the true class in each sliding window; with this, the
true actions will not be recognized.

B. The C3D classifier

Convolutional neural networks (CNNs) are being increas-
ingly applied in video classification. Among these, spatio-
temporal networks like C3D [46] and two-stream networks
like I3D [6] outperform other network structures [13], [14].
However, two-stream networks require optical flow extraction
as preprocessing. Without the requirement of non-trivial pre-
processing on the video stream, spatio-temporal networks are
more efficient and suitable for real-time applications; among
these, C3D is the start-of-art model [13].

Given its desirable attributes and popularity, without loss
of generality, we use the C3D model as our attack target in
this paper. The C3D model is based on 3D ConvNet (a 3D
convolutional neural network or CNN) [20], [46], [48], which
is very effective in modeling temporal information (because
it employs 3D convolution and 3D pooling operations). The
architecture and hyperparamters of C3D are shown in Figure 2.
The input to the C3D classifier is a clip consisting of 16
consecutive frames. This means that upon using C3D, the
sliding window size is 16. Both the height and the width
of each frame are 112 pixels and each frame has 3 (RGB)
channels. The last layer of C3D is a softmax layer that provides
a classification score with respect to each class.

III. THREAT MODEL AND DATASETS

In this section, we describe our threat model. We also
provide a brief overview of the datasets we chose for validating
our attack models.

A. Threat model

We consider a white-box model for our attack, i.e., the
adversary has access to the training datasets used to train
the video classification system, and has knowledge of the
deep neural network model used in the real-time classification
system. We assume that the datasets are trusted. We also
assume that the adversary is capable of injecting perturbations
in the real-time video stream. In particular, we assume the
adversary to be a man-in-the-middle that can intercept and
add perturbations to streaming video [25], or that it could have
previously installed a malware that is able to add perturbation
prior to classification [34].

We assume that the adversaries seek to be stealthy i.e.,
they want the system to only misclassify malicious actions
without affecting the recognition of the other actions. So, we
consider two attack goals. First, given a target class, we want
all the clips from this class to be misclassified by the real-time
video classifier. Second, for all the clips from other (non-target)
classes, we want the classifier to correctly classify them.

We point out here that a man-in-the-middle attacker will
be unable to simply replace the streaming video with static
frames or pre-recorded video and yet achieve the required
stealthiness. This is because of two reasons. First, the attacker
has no a priori knowledge about “when” a targeted action
occurs. For example, an attacker with malicious intent may
want to misclassify the action of an elderly person falling down
at a smart elderly care center that is monitored by multiple
cameras (e.g., [37]). Since the attacker does not know when
and where exactly an elderly person will fall down, it has
to replace the video streams from all the cameras with the
pre-recorded video of elderlies doing something else (e.g.,
walking) for extended periods or ideally all the time. However,
it is hard to guarantee that the replaced videos are visually
similar to the real-time environment (e.g., people and their
actions, weather) and replaying videos out of context may
be noticeable. In addition, it is possible that the attacker
may be capable of delaying the video by a short period to
inject targeted perturbations against specific activities; how-
ever, while such an approach can eliminate universal and
stealth requirements, it cannot overcome the boundary effect
and cannot obviate the corresponding computation needed for
online perturbation generation. Second, the attacker also has to
replace the actions of multiple people involved at the facility
captured with the multiple cameras. In other words, a large
number of replacement videos capturing a large set of people
at the facility will be necessary. If the replaced videos show
the same person at different locations, or people who are not at
the facility, this will be noticeable. Applying perturbations on
the video will enable the attacker to stealthily misclassify only
the specific activity relating to the falling an elderly, keeping
all other actions unaffected. Furthermore, the imperceptibility
of these perturbations will not cause any human operator to
notice anything overtly wrong.

3



Fig. 2: The C3D architecture [46]. C3D net has 8 convolution, 5 max-pooling, and 2 fully connected layers, followed by a
softmax output layer. All 3D convolution kernels are 3× 3× 3 with a stride [46] of 1 in both spatial and temporal dimensions.
The number of filters is shown in each box. The 3D pooling layers are represented as pool1 to pool5. All pooling kernels are
2× 2× 2, except for pool1, which is 1× 2× 2. Each fully connected layer has 4096 output units.

B. Our datasets

We use the human action recognition dataset UCF-101
[41] and the hand gesture recognition dataset 20BN-JESTER
dataset (Jester) [7] to validate our attacks on video classifica-
tion systems. We use these two datasets because they represent
two kinds of classification, i.e., coarse-gained and fine-grained
action classification.

The UCF 101 dataset: The UCF 101 dataset used in our
experiments is the standard dataset collected from Youtube.
It includes 13320 videos from 101 human action categories
(e.g., applying lipstick, biking, blow drying hair, cutting in the
kitchen etc.). The videos collected in this dataset have varia-
tions in camera motion, appearance, background, illumination
conditions etc. Given the diversity it provides, we consider
the dataset to validate the feasibility of our attack model on
coarse-gained actions. There are three different (pre-existing)
splits [41] in the dataset; we use split 1 for both training and
testing, in our experiments. The training set includes 9,537
video clips and the testing set includes 3,783 video clips.

The Jester dataset: The 20BN-JESTER dataset (Jester) is
a recently collected dataset with hand gesture videos. These
videos are recorded by crowd-sourced workers performing 27
kinds of gestures (e.g., sliding hand left, sliding two fingers
left, zooming in with full hand, zooming out with full hand
etc.). We use this dataset to validate our attack with regard
to fine-grained actions. Since this dataset does not currently
provide labels for the testing set, we withhold a subset of the
training set as our validation set and use the validation set for
testing. The training set has 148,092 short video clips and our
testing set has 14,787 short video clips.

IV. GENERATING PERTURBATIONS FOR REAL-TIME VIDEO
STREAMS

From the adversary’s perspective, we first consider the
challenge of attacking a real-time video stream. In brief,
when attacking an image classification system, the attackers
usually take the following approach. First, they obtain the
target image that is to be attacked with its true label. Next,
they formulate a optimization problem wherein they try to
compute the ”minimum” noise that is to be added (towards
imperceptibility) in order to cause a mis-classification of the
target. The formulation takes into account the function of the
classifier, the input image, and its true label. Backpropagation
is commonly used to solve this optimization problem [11],
[24], [27].

In the context of real-time video classification, the video is
not available to the attackers a priori. Thus, they will need to
create perturbations that can effectively perturb an incoming

(a) GAN Architecture

(b) Our Architecture

Fig. 3: We use a GAN-like architecture for the generative
model. However, our architecture is different from GAN in
the following aspects: 1) The discriminator is a pre-trained
classifier we attack, whose goal is to classify videos, and not
to distinguish between the natural and synthesized inputs; 2)
The generator generates perturbations, and not direct inputs
to the discriminator, and the perturbed training inputs are
fed to discriminator; 3) The learning objective is to let the
discriminator misclassify the perturbed inputs.

video stream, whenever a target class is present. Generation of
online perturbations based on an incoming video stream would
have an associated cost of O(f×b×n) where, f is frame rate,
b is cost of one backpropagation on the DNN, and n is the
number of backpropagations needed to solve the optimization
problem.

Our approach is to compute the perturbations offline and
apply them online, and thus, the online computation cost is
O(1). Since we cannot predict what is captured in the video,
we need perturbations which work with unseen inputs. A
type of perturbation that satisfies this requirement is called
the Universal Perturbation (UP), which has been studied in
the context of generating adversarial samples against image
classification systems [29], [32]. In particular, Mopuri et al.,
have developed a generative model that learns the space of
universal perturbations for images using a GAN-like architec-
ture. Inspired by this work, we develop a similar architecture,
but make modifications to suit our objective. Our goal is to

4



generate adversarial perturbations that fool the discriminator
instead of exploring the space for diverse UPs. In addition, we
retrofit the architecture to handle video inputs. Our architecture
is depicted in Figure 3b. It consists of three main components:
1) a 3D generator which generates universal perturbations
(clips); 2) a post-processor, which for now does not do
anything but is needed to solve other challenges described
in subsequent sections; and 3) a pre-trained discriminator for
video classification, viz., the C3D model described in § II-B.

The 3D generator in our model is configured to use 3D
deconvolution layers and provide 3D outputs as shown in
Figure 8. Specifically, it generates a clip of perturbations,
whose size is equal to the size of the video clips taken as input
by the C3D classifier. To generate universal perturbations, the
generator first takes a noise vector z from a latent space. Next,
It maps z to a perturbation clip p, such that, G(z) = p. It then
adds the perturbations on a training clip x (denote the set of
inputs from the training class as X) to obtain the perturbed
clip x + p. Let c(x) be the true label of x. This perturbed
clip is then input to the C3D model which outputs the score
vector Q(x + p) (for the perturbed clip). The classification
should ensure that the highest score corresponds to the true
class (c(x) for input x) in the benign setting. Thus, the attacker
seeks to generate a p such that the C3D classifier outputs a
low score to the c(x)th element in the Q vector (denoted as
Qc(x)) for x+p. In other words, this means that after applying
the perturbation, the probability of mapping x to class c(x) is
lower than the probability that it is mapped to a different class
(i.e., the input activity is not correctly recognized).

We seek to make this perturbation clip p “a universal
perturbation”, i.e., adding p to any input clip belonging to the
target class would cause misclassification. This means that we
seek to minimize the sum of the cross-entropy loss over all
the training data as per Equation 1. Note that the lower the
cross-entropy loss, the higher the divergence of the predicted
probability from the true label [17].

minimize
G

∑
x∈X
− log[1−Qc(x)(x+G(z)] (1)

When the generator is being trained, for each training
sample, it obtains feedback from the discriminator and adjusts
its parameters to cause the discriminator to misclassify that
sample. It tries to find a perturbation that works for every
sample from the distribution space known to the discriminator.
At the end of this phase, the attacker will have a generator
that outputs universal perturbations which can cause the mis-
classification on any incoming input sample from the same
distribution (as that of the training set). However, as discussed
next, just applying the universal perturbations alone will not
be sufficient to carry out a successful attack. In particular, the
attack can cause unintended clips to be misclassified as well,
which could compromise our stealth requirement as discussed
next in §V.

V. MAKING PERTURBATIONS STEALTHY

Blindly adding universal perturbations will affect the clas-
sification of clips belonging to other non-targeted classes. This
may raise alarms, especially if many of these misclassifications

are mapped on to rare actions. Thus, while causing the target
class to be misclassified, the impact on the other classes
must be imperceptible. This problem can be easily solved
when dealing with image recognition systems since images
are self-contained entities, i.e., perturbations can be selectively
added to target images only. However, video inputs change
temporally and an action captured in a set of composite frames
may differ from that in the subsequent frames. It is thus hard
to a priori identify (choose) the frames relating to the target
class, and add perturbations specifically to them. For example,
consider a case with surveillance in a grocery store. If attackers
seek to misclassify an action related to shoplifting and cause
this action to go undetected, they are unlikely to have precise
knowledge of the exact time when the action will occur and
be captured by the video activity recognition system. Adding
universal perturbations blindly in this case, could cause mis-
classifications of other actions (e.g., other benign customer
actions may be mapped onto shoplifting actions thus triggering
alarms). A similar example may be construed with respect to
the elderly care system described in § III-A; here, the attacker
has no way of knowing a priori when an elderly falls.

Since it is hard (or even impossible) to a priori identify
the frame(s) that capture the intended actions and choose them
for perturbation, the attackers need to add perturbations to each
frame. However, to make these perturbations furtive, they need
to ensure that the perturbations added only mis-classify the
target class while causing other (non-targeted) classes to be
classified correctly. We name this unique kind of universal
perturbations as “Dual-Purpose Universal Perturbations” or
DUP for short.

In order to realize DUPs, we have to guarantee that for
the input clip xt, if it belongs to the target class (denote the
set of inputs from the target class as T ), the C3D classifier
returns a low score with respect to the correct class c(xt), i.e.,
Qc(xt). For all input clips xs that belong to other (non-target)
classes (denote the set of inputs from non-target classes as S,
thus, S = X − T ), the model returns high scores with regard
to their correct mappings (Qc(xs)). To cause the generator to
output DUPs, we refine the optimization problem in Equation 1
as shown in Equation 2:

minimize
G

λ×
∑
xt∈T

− log[1−Qc(xt)(xt +G(z))]

+
∑
xs∈S

− log[Qc(xs)(xs +G(z))]
(2)

The first term in the equation again relates to minimizing
the cross-entropy of the target class, while the second term
maximizes the cross-entropy relating to each of the other
classes. The parameter λ is the weight applied with regard
to the misclassification of the target class. For attacks where
stealth is more important, we may use a smaller λ to guarantee
that the emphasis on the misclassification probability of the
target class is reduced while the classification of the non-target
classes are affected to the least extent possible.

VI. IMPACT OF NONDETERMINISTIC CLIP BOUNDARIES

In this section, we first discuss why directly applying exist-
ing methods to generate perturbations against video streams do

5



(a) Misalignment when the starting position of a clip input to the
classifier, is not aligned with what the attacker assumes. Because
of this, the perturbation added to input clip X1 is a concatenation
of two partial perturbations from P1 and P2.

(b) Misalignment can occur even if the starting position is aligned
when a small stride is used. Here, the stride of the sliding window
is half the clip size. This causes a misalignment because of
which, the perturbation added to input clip X2 is a concatenation
of two partial perturbations from P1 and P2.

Fig. 4: Two cases that can potentially cause misalignment
between perturbation clips and the input clips to the classifier.
The first parts of both figures represent the temporal sequence
of generated perturbation clips. The lower parts of both figures
capture the temporal sequence of input clips tested by the video
classifier and the perturbation clips added to them.

not work. Subsequently, we propose a new set of perturbations
that do work (and are very effective) on video streams.

A. Misalignment due to Nondeterministic Clip Boundaries

The input to the video classifier is a clip composed of
a sequence of frames. Given any input clip, the previously
described attack methods (UP and DUP) can generate a
perturbation clip that can be added to that input clip. As
discussed in § II-A, an input clip is controlled by a sliding
window which in turn is defined by three hyper-parameters:
the window size l, the sliding stride o, and the starting position
fstart. Because fstart is non-deterministic, the clip boundaries
of an input to the classifier in a real-time video classification
system are also nondeterministic. As a result, even for white-
box attackers, they cannot know a priori the clip boundaries
(the consecutive frames in a video stream belonging to an input
clip) used by the video classifier.

The nondeterminism in the clip boundaries is likely to
cause a misalignment between the perturbation clips generated
by the attacker and the input clips used by the classifier.
Figure 4 depicts two cases where misalignment happens even
with the attacker-friendly white-box scenario. The first row
shows three perturbation clips P1, P2 and P3 generated by
the attacker 1. The second row shows three input clips X1,
X2 and X3 used by the classifier. The clips in the two

1For UP and DUP, P1 = P2 = P3.

sequences are not aligned because the starting point of the
sliding window is different from that of the perturbation clip.
Consequently, the perturbation applied to input clip X1 is
actually a concatenation of the latter part of P1 and the first
part of P2 (a perturbation P ′1).

In a second case, as shown in Figure 4b, the perturbation
clip P2 and the input clip X2 are not aligned because the stride
of the sliding window is smaller than the window size. This
smaller stride is commonplace in video classification systems
as discussed in [6], [8], [46], [47].

B. The Boundary Effect

Because C3D utilizes a 3D CNN, we find via empirical
experiments that when there is a misalignment between the
perturbation clip and the input clip, it can cause significant
degradations in the attack success rates, even for universal
perturbations. For example, considering Figure 4a, the DUP
P1 should work on any input clip; however, the actual applied
perturbation clip P ′1 (which is the concatenation of two partial
broken up perturbations) is less likely to work. We refer to
this phenomenon as the boundary effect.

To formalize the boundary effect problem,
let us consider a video stream represented by
{. . . , fi−2, fi−1, fi, fi+1, fi+2, . . . } where, fi represents
the ith frame. The perturbation genererated by G to cause
a misclassification of the clip {fi, fi+1, . . . , fi+l−1} (say
{p1, p2, . . . , pl}) will be different from the one generated
for a temporally staggered clip {fi−1, fi, . . . , fi+l−2}
(true for previously designed perturbations including
UP and DUP). In other words, the perturbed clip
{fi−1 ⊕ p1, f1 ⊕ p2, . . . , fi+l−2 ⊕ pl} is unlikely to be
effective in achieving misclassification.

To exemplify this problem, we perform extensive evalua-
tions of existing established methods with regard to attacking
the C3D model. In particular, we use the APIs from the
CleverHans repository [35] to generate video perturbations. We
experiment with several methods from CleverHans, including
the most recent ones (e.g., CarliniWagnerL2 and DeepFool).
The results presented in the paper are based on the basic
iteration method [24] with default parameters and all the videos
in the UCF-101 testing set. We point out here that results based
on all the other methods in the repository are very similar.
We consider different boundaries for the clips in the videos
(temporally staggered versions of the clips) and generate
perturbations for each staggered version. Note that the sliding
window size for C3D is 16 and thus, there are 16 staggered
versions. We choose a candidate frame, and compute the
correlations between the perturbations added in the different
staggered versions. Specifically, the perturbations are tensors
and the normalized correlation between two perturbations is
the inner product of the unit-normalized tensors representing
the perturbations.

We represent the average normalized correlations in the
perturbations (computed across all frames in the testing set) for
two locations in the matrix shown in Figure 5. The row index
and the column index represent the location of the frames in
the two staggered clips. For example, the entry corresponding
to {7, 7} represents the case where the frame considered was
the 7th frame in the two clips, (actually, here it is the same

6



clip). In this case, clearly the correlation is 1.00. However,
we see that the correlations are much lower if the positions
of the same frame in the two clips (two staggered versions)
are different. As an example, consider the entry {5, 9} which
corresponds to the case where a frame is the fifth position
in clip 1, and the same frame is at the ninth position in clip
2: the average normalized correlation between the two added
perturbations is 0.39, which indicates that the perturbations
that CleverHans adds in the two cases are quite different.

Fig. 5: The average normalized correlation matrix computed
with perturbations generated using the basic iteration API from
CleverHans. The rows and columns represent the location of
a frame in the two clips. The value represents the correlation
between perturbations on the same frame but generated when
that frame located in different positions (indicated by the row
and column indices) in the two temporally staggered clips.

Fig. 6: Magnitude of perturbation on each frame: The abscissa
is the frame position, and the ordinate is the magnitude
of average perturbation on the frame. (The attack seeks to
misclassify a given video clip from UCF 101 dataset.)

In Figure 6, we show the average magnitude of perturba-
tions added (over all frames and all videos), when the target
frame is at different locations within a clip. The abscissa
depicts the frame position, and the ordinate represents the
magnitude of the average perturbation. While the difference
in the magnitude of perturbations added to two frames that
are close to each other in terms of position (e.g., adjacent
frames) within the clip, is small (this is because such frames
are similar), the magnitude of perturbations added to frames
that are distant in terms of location could potentially be quite
different (because such frames could be quite dissimilar).

Fig. 7: Attack success rate when there is mismatch. The
abscissa is the offset between the clip generating perturbation
and the clip tested. The ordinate is the attack success rate.
(Attack aims to misclassify a given video clip from UCF 101
dataset.)

Fig. 8: This figure illustrates the Generator and Roll for
generating C-DUP. 1) The generator takes a noise vector
as input, and outputs a perturbation clip with 16 frames.
Note that the number of temporal dimensions with the
C3D model is 16. The output size for each layer is
shown as temporal dimension×horizontal spatial dimension×
vertical spatial dimension × number of channels. 2) The roll
part shifts the perturbation clip by some offset. The figure
shows one example where we roll the front black frame to the
back.

We further showcase the impact of the boundary effect by
measuring the degradation in attack efficacy due to mismatches
between the anticipated start point when the perturbation is
generated and the actual start point when classifying the clip
(as shown in Figure 4a). Figure 7 depicts the results. The
abscissa is the offset between the generated (intended) pertur-
bation clip and the input clip used in classification. We can see
that as the distance between the two start points increases, the
attack success rate initially degrades but increases again as the
the tested perturbation clip (a concatenation clip) is closer or
more similar (has a better overlap) to the intended perturbation
clip. For example, if the offset is 15, the perturbation clip added
(concatenation clip) is offset by a single frame compared to
the original (intended) perturbation clip.

C. Circular Dual-Purpose Universal Perturbation

To cope with the boundary effect, we develop a novel
extension to the generative DNN model to significantly modify
the DUPs proposed in § V to compose what we call “Circular

Dual-Purpose Universal Perturbations (C-DUP).”

7



Fig. 9: This figure illustrates the Generator and Tile for
generating 2D-DUP. 1) The generator takes a noise vector as
input, and outputs a single-frame perturbation. 2) The tile part
constructs a perturbation clip by repeating the single-frame
perturbation generated 16 times.

Let us suppose that the size of the sliding window is
16. Then, the DUP clip P includes 16 frames (of pertur-
bation), denoted by {p1, p2, . . . , p16}. Since P is a clip of
universal perturbations, we launch the attack by repeatedly
adding perturbations on each consecutive clip consisting of
16 frames, in the video stream. One can visualize that we are
generating a perturbation stream which can be represented as
{p1, p2, . . . , p15, p16, p1, p2, . . . }. Now, our goal is to guaran-
tee that the perturbation stream works regardless of the clip
boundaries chosen by the classifier. Towards this, we need to
ensure that any sequential concatenation of partial perturbation
clips (the last part of the first clip and the first part of the
second clip) results in a valid perturbation. It is easy to see
that for this to hold true, we need any cyclic or circular shift
of the DUP clip to be a valid DUP perturbation too. In other
words, we require the perturbation clips {p16, p1, . . . , p15},
{p15, p16, . . . , p14}, . . . , all to be valid perturbations. We
emphasize here that UP and DUP do not have the cyclic
property and thus, a sequential concatenation of parts of two
consecutive UP or DUP clips will “not” be a valid perturbation.

To formalize, we define a permutation function Roll(p, o)
which yields a cyclic shift of the original DUP per-
turbation by an offset o. In other words, when using
{p1, p2, . . . , p16} as input to Roll(p, o), the output is
{p16−o, p16−o+1, . . . , p16, p1, . . . , p16−o−1}. Now, for all val-
ues of o ∈ {0, 15}, we need po = Roll(p, o) to be a valid
perturbation clip as well. Towards achieving this requirement,
we use a post-processor unit which applies the roll function
between the generator and the discriminator. This post pro-
cessor is captured in the complete architecture as shown in
Figure 3b.

The details of how the generator and the roll unit operate
in conjunction are depicted in Figure 8. As before, the 3D
generator (G) takes a noise vector as input and outputs a
sequence of perturbations (as a perturbation clip). Note that the
final layer is followed by a tanh non-linearity which constrains
the perturbation generated to the range [-1,1]. The output is
then scaled by ξ. Doing so restricts the perturbation’s range
to [−ξ, ξ]. Following the work in [29], [32], the value of ξ
is chosen to be 10 towards making the perturbation quasi-
imperceptible. The roll unit then “rolls” (cyclically shifts) the
perturbation p by an offset in {0, 1, 2, . . . 15}. Figure 8 depicts
the process with an offset equal to 1; the black frame is rolled
to the end of the clip. By adding the rolled perturbation clip
to the training input, we get the perturbed input. As discussed

earlier, the C3D classifier takes the perturbed input and outputs
a classification score vector. As before, we want the true class
scores to be (a) low for the targeted inputs and (b) high for
other (non-targeted) inputs. We now modify our optimization
function to incorporate the roll function as follows.

minimize
G∑

o=1,2···w
{λ×

∑
xt∈T

− log[1−Qc(xt)(xt +Roll(G(z), o))]

+
∑
xs∈S

− log[Qc(xs)(xs +Roll(G(z), o))]}

(3)

The equation is essentially the same as Equation 2, but we
consider all possible cyclic shifts of the perturbation output by
the generator.

D. 2D Dual-Purpose Universal Perturbation

We also consider a special case of C-DUP, wherein we
impose an additional constraint which is that “the perturbations
added to all frames are the same.” In other words, we seek
to add a single-frame 2D perturbation on each frame which
can be seen as a special case of C-DUP with p1 = p2 =
· · · = p16. We call this kind of C-DUP as 2D-DUP. 2D-DUP
allows us to examine the effect of the temporal dimension
in generating adversarial perturbations on video inputs. 2D-
DUP is light-weight compared to C-DUP in terms of both
transmission and storage costs. In addition, 2D-DUP allows
other attack possibilities besides the man-in-the-middle case,
an example being physically adding transparent foil (to add
perturbation) onto the camera lens.

The generator in this case will output a single-frame
perturbation instead of a sequence of perturbation frames as
shown in Figure 9. This is a stronger constraint than the
circular constraint, which may cause the attack success rate
to decrease (note that the cyclic property still holds).

We denote the above 2D perturbation as p2d. The pertur-
bation clip is then generated by simply creating copies of the
perturbation and tiling them to compose a clip. The 2D-DUP
clip is now ptile = {p2d, p2d, . . . , p2d} (Figure 9). Thus, given
that the attack objective is the same as before, we simply
replace the Roll(p, o) function with a Tile function and our
problem formulation now becomes:

minimize
G2D

λ×
∑
xt∈T

−log[1−Qc(xt)(xt + Tile(G2D(z)))]

+
∑
xs∈S

−log[Qc(xs)(xs + Tile(G2D(z)))]

(4)

VII. EVALUATIONS

In this section, we showcase the efficacy of the perturba-
tions generated by our proposed approaches on both the UCF-
101 and Jester datasets.

8



Fig. 10: DUP on UCF-101

Fig. 11: C-DUP on UCF-101

Fig. 12: C-DUP on Jester for T1 = {slding hand right}

Fig. 13: C-DUP on Jester for T2 = {shaking hand}

A. Experimental Setup

Discriminator set-up for our experiments: We used the C3D
classifier as our discriminator. The discriminator is then used
to train our generator. For our experiments on the UCF101
dataset, we use the C3D model available in the Github repos-
itory [44]. This pre-trained C3D model achieves an average
clip classification accuracy of 91.8% on the UCF101 dataset in
benign settings (i.e., no adversarial inputs). For the experiments
on the Jester dataset, we fine-tune the C3D model from the
Github repository [44]. First, we change the output size of
the last fully connected layer to 27, since there are 27 gesture
classes in Jester. We use a learning rate with exponential decay

[57] to train the model. The starting learning rate for the last
fully connected layer is set to be 10−3 and 10−4 for all the
other layers. The decay step is set to 600 and the decay rate
is 0.9. The fine-tuning phase is completed in 3 epochs and
we achieve a clip classification accuracy of 90.03% in benign
settings.

Generator set-up for our experiments: For building our
generators, we refer to the generative model used by Vondrik
et al. [53], which has 3D deconvolution layers.

For generators for both C-DUP and 2D-DUP, we use five
3D de-convolution layers [4]. The first four layers are followed
by a batch normalization [18] and a ReLU [33] activation

9



function. The last layer is followed by a tanh [19] layer. The
kernel size for all 3D de-convolutions is set to be 3 × 3 × 3.
To generate 3D perturbations (i.e., sequence of perturbation
frames), we set the kernel stride in the C-DUP generator to
1 in both the spatial and temporal dimensions for the first
layer, and 2 in both the spatial and temporal dimensions for the
following 4 layers. To generate a single-frame 2D perturbation,
the kernel stride in the temporal dimension is set to 1 (i.e.,
2D deconvolution) for all layers in the 2D-DUP generator,
and the spatial dimension stride is 1 for the first layer and
2 for the following layers. The numbers of filters are shown
in brackets in Figure 8 and Figure 9. The input noise vector
for both generators are sampled from a uniform distribution
U [−1, 1] and the dimension of the noise vector is set to be
100. For training both generators, we use a learning rate with
exponential decay. The starting learning rate is 0.002. The
decay step is 2000 and the decay rate is 0.95. Unless otherwise
specified, the weight balancing the two objectives, i.e., λ, is
set to 1 to reflect equal importance between misclassifying the
target class and retaining the correct classification for all the
other (non-target) classes.

Technical Implementation: All the models are implemented
in TensorFlow [1] with the Adam optimizer [23]. Training was
performed on 16 Tesla K80 GPU cards with the batch size set
to 32. The code is available at https://github.com/sli057/Video-
Perturbation.git.

Dataset setup for our experiments: On the UCF-101 dataset
(denoted UCF-101 for short), different sets of target class T are
tested. We use T = {apply lipstick} for presenting the results
in the paper. Experiments using other target sets also yield
similar results. UCF-101 has 101 classes of human actions in
total. The target set T contains only one class while the “non-
target” set S = X − T contains 100 classes. The number of
training inputs from the non-target classes is approximately
100 times the number of training inputs from the target class.
Directly training with UCF-101 may cause a problem due to
the imbalance in the datasets containing the target and non-
target classes [26]. Therefore, we under-sample the non-target
classes by a factor of 10. Further, when loading a batch of
inputs for training, we fetch half the batch of inputs from the
target set and the other half from the non-target set in order
to balance the inputs.

For the Jester dataset, we also choose different sets of target
classes. We use two target sets T1 = {sliding hand right} and
T2 = {shaking hands} as our representative examples because
they are exemplars of two different scenarios. Since we seek
to showcase an attack on a video classification system, we care
about how the perturbations affect both the appearance infor-
mation and temporal flow information, especially the latter.
For instance, the ‘sliding hand right’ class has a temporally
similar class ‘sliding two fingers right;’ as a consequence, it
may be easier for attackers to cause clips in the former class
to be misclassified as the later class (because the temporal
information does not need to be perturbed much). On the other
hand, ‘shaking hands’ is not temporally similar to any other
class. Comparing the results of these two target sets could
provide some empirical evidence on the impact of the temporal
flow on our perturbations. Similar to UCF-101, the number
of inputs from the non-target classes is around 26 times the

number of inputs from the target class (since there are 27
classes in total and we only have one target class in each
experiment). So we under-sample the non-target inputs by a
factor of 4. We also set up the environment to load half of the
inputs from the target set and the other half from the non-target
set, in every batch during training.

Metrics of interest: For measuring the efficacy of our per-
turbations, we consider two metrics. First, the perturbations
added to the videos should be quasi-imperceptible. Second,
the attack success rate for the target and the non-target classes
should be high. We define attack success rates as follows:

• The attack success rate for the target class is the misclassi-
fication rate.
• The attack success rate for the other classes is the correct

classification rate.

B. Stealth with DUP

Recalling the discussion in §V, one can expect that UP
would cause inputs from the target class to be misclassified,
but also significantly affect the correct classification of the
other non-target inputs. On the other hand, one would expect
that DUP would achieve a stealthy attack, which would not
cause much effect on the classification of non-target classes.

By testing on UCF-101 with ”apply lipstick” as the target
class, we observe that with UP, ”archery” is misclassified
as “swing,” “baby crawling” is misclassified as “cutting in
kitchen,” “biking” is misclassified as “golf swing,” and so on.
We find that only 45.2% of the video clips from non-target
classes are classified correctly, i.e., the attack success rate for
non-target inputs is only 45.2%. This violates the stealthiness
needed to successfully launch an attack. However, DUP does
not affect the classification of non-target inputs much; the
non-target attack success rate is 88.03%. At the same time,
both UP and DUP work well on target inputs, which means
the perturbed target clips are misclassified at high rate. DUP
achieves a attack success rate of 84.49 % for target inputs
and UP achieves 84.01%. These results are obtained under
the assumption that clip boundaries are exactly known while
performing the attack. Given the inferior performance of UP
on non-target inputs (i.e., in preserving stealth), we do not
consider it any further in our evaluations.

C. Showcasing C-DUP

In this subsection, we discuss the results of the C-DUP
perturbation attack. We use DUPs as our baselines.

1) Experimental Results on UCF101:

Visualizing the perturbations: The perturbation clip gen-
erated by the DUP model is shown in Figure 10 and the
perturbation clip generated by C-DUP model is shown in
Figure 11. The visualizations of all perturbations are scaled
from [0,10] to [0,255]. We observe that the perturbation from
DUP manifests an obvious disturbance among the frames. With
C-DUP, the perturbation frames look similar, which implies
that C-DUP does not perturb the temporal information by
much, in UCF101.

10



Impact of misalignment and C-DUP performance: Based
on the discussion in §VI, we expect that DUP would work
well only when the perturbation clip is well-aligned with the
start point of each input clip to the classifier; and the attack
success rate would degrade as the misalignment increases. We
expect C-DUP would overcome the misalignment effect and
provide a better overall attack performance (even with temporal
misalignment).

Case study: We perform a case study to showcase the
impact of the misalignment. We consider one ”apply lipstick”
video clip for our case study. When DUP and C-DUP are
added to this clip without any offset (no misalignment) i.e., the
clip is in the form [f1, f2, · · · , f16], both perturbed clips are
misclassified to ”apply eye makeup”. When there is an offset of
8, meaning that DUP and C-DUP are added to the clip in the
form [f9, f10, · · · , f16, f1, · · · , f8], DUP fails to misclassify
the clip while C-DUP still successfully misclassifies it. In fact,
we observe that C-DUP works for all offsets from 0 to 15 while
DUP only works when the offset = 0, 1, 2, 15, on this input
clip.

Aggregate results: The attack success rates with DUP and
C-DUP, on the UCF-101 test set, are shown in Figure 14a
and Figure 14b. The x axis is the misalignment between the
perturbation clip and the input clip to the classifier. Figure 14a
depicts the average attack success rate for inputs from the
target class. We observe that when there is no misalignment,
the attack success rate with DUP is 84.49%, which is in fact
slightly higher than C-DUP. However, the attack success rate
with C-DUP is significantly higher when there is misalign-
ment. Furthermore, the average attack success rate across all
alignments for the target class with C-DUP is 84%, while with
DUP it is only 68.26%. This demonstrates that C-DUP is more
robust against misalignment.

Figure 14b shows that, with regard to the classification
of inputs from the non-target classes, C-DUP also achieves a
performance slightly better than DUP when there is mismatch.
The average attack success rate (across all alignments) with C-
DUP is 87.52% here, while with DUP it is 84.19%.

2) Experimental Results on Jester:

Visualizing the perturbations: Visual representations of
the C-DUP perturbations for the two target sets, T1 =
{sliding hand right} and T2 = {shaking hands} are shown in
Figure 12 and Figure 13. The perturbation clip has 16 frames,
and we present a visual representation of the first 8 frames
for compactness. We notice that compared to the perturbation
generated on UCF-101 (see Figure 11). there is a more
pronounced evolution with respect to Jester. We conjecture that
this is because UCF-101 is a coarse-grained action dataset in
which the spatial (appearance) information is dominant. As
a consequence, the C3D model does not extract/need much
temporal information to perform well. However, Jester is a
fine-grained action dataset where temporal information plays
a more important role. Therefore, in line with expectations,
we find that in order to attack the C3D model trained on the
Jester dataset, more significant evolutions of the perturbations
on the frames in a clip are required (i.e., more changes in the
temporal dimension).

Attack success rate: To showcase a comparison of the mis-
classification rates with respect to the target class between the
two schemes (DUP and C-DUP), we adjust the weighting fac-
tor λ such that the classification accuracy with respect to non-
target classes are similar. By choosing λ = 1.5 for DUP and
1 for C-DUP, we are able to achieve this. The attack success
rates for the above two target sets are shown in Figure 14c
and Figure 14d, and Figure 14e and Figure 14f, respectively.
We see that with respect to T1 = {sliding hand right}, the
results are similar to what we observe with UCF101. The
attack success rates for C-DUP are a little lower than those for
DUP when the offset is 0. This is to be expected since DUP is
tailored for this specific offset. However, C-DUP outperforms
DUP when there is a misalignment. The average success rate
for C-DUP is 85.14% for the target class and 81.03% for the
other (non-target) classes. The average success rate for DUP
is 52.42% for the target class and 82.36% for the other (non-
target) classes.

Next we consider the case with T2 = {shaking hands}. In
general, we find that both DUP and C-DUP achieve relatively
lower success rates especially with regard to the other (non-
target) classes. As discussed in §VII-A, unlike in the previous
case where ‘sliding two fingers right’ is temporally similar
to ‘sliding hand right’, no other class is temporally similar
to ‘shaking hand’. Therefore it is harder to achieve misclas-
sification. The attack success rates with the two approaches
for the target class are shown in Figure 14e. We see that C-
DUP significantly outperforms DUP in terms of attack efficacy
because of its robustness to temporal misalignment (i.e., the
boundary effect). The average attack success rate for the target
class with C-DUP is 79.03% while for DUP it is only 57.78%.
Overall, our C-DUP outperforms DUP in being able to achieve
a better attack success rate for the target class. We believe that
although stealth is affected to some extent, it is still reasonably
high.

D. Effectiveness of 2D-DUP

The visual representations of the perturbations with C-DUP
show that perturbations on all the frames are visually similar.
Thus, we ask if it is possible to add “the same perturbation”
on every frame and still achieve a successful attack. In other
words, will the 2D-DUP perturbation attack yield performance
similar to the C-DUP attack ?

1) Experimental Results on the UCF101 Dataset:

Visual impact of the perturbation: We present a sequence
of original frames and its corresponding perturbed frames in
Figure 15. Original frames are displayed in the first row and
perturbed frames are displayed in the second row. We observe
that the perturbation added to the frames is quasi-imperceptible
to human eyes (similar results are seen with C-DUP but are
omitted in the interest of compactness).

Attack success rate: By adding 2D-DUP on the video clip,
we achieve an attack success rate of 87.58% with respect to
the target class and an attack success rate of 83.37% for the
non-target classes. Recall that the average attack success rates
with C-DUP were 87.52% and 84.00%, respectively. Thus, the
performance of 2D-DUP seems to be on par with that of C-
DUP on the UCF101 dataset. This demonstrates that C3D is

11



(a) Attack success rate on UCF-101 for target class
’applying lipstick’. The baseline accuracy of attack success rate
without perturbation is 4.5%.

(b) Attack success rate on UCF-101 for other non-target classes
(all except ’applying lipstick’). The baseline accuracy of attack
success rate without perturbation is 91.8%.

(c) Attack success rate on Jester for target class
’sliding hands right’.The baseline accuracy of attack success rate
without perturbation is 12.9%.

(d) Attack success rate on Jester for non-target classes (all
excepet ’sliding right’). The baseline accuracy of attack success
rate without perturbation is 90.4%.

(e) Attack success rate on Jester for target class
’shaking hand’. The baseline accuracy of attack success rate
without perturbation is 6.3%.

(f) Attack success rate on Jester for non-target classes (all except
’shaking hand’). The baseline accuracy of attack success rate
without perturbation is 89.9%.

Fig. 14: Attack success rates for DUP and C-DUP along with the offset of mismatch

vulnerable even if the same 2D perturbation generated by our
approach is added to every frame.

2) Experimental Results on Jester Dataset:

Attack success rate: For T1 = {sliding hand right}, the attack
success rate for the target class is 84.64% and the attack
success rate for the non-target classes is 80.04%. This shows
that 2D-DUP is also successful on some target classes in the
fine-grained, Jester action dataset.

For the target set T2, the success rate for the target class
drops to 70.92%, while the success rate for non-target class
is 54.83%. This is slightly degraded compared to the success

rates achieved with C-DUP (79.03% and 57.78% respectively),
but is still reasonable. This degradation is due to more signif-
icant temporal changes in this case (unlike in the case of T1)
and a single 2D perturbation is less effective in manipulating
these changes. In contrast, because the perturbations within
C-DUP evolve, they are much more effective in achieving the
misclassification of the target class.

VIII. DISCUSSION

Black box attacks: In this work we assumed that the adversary
is fully aware of the DNN being deployed (i.e., white box
attacks). We argue that this is reasonable given that this is one

12



Fig. 15: Visualizing images after adding 2D dual purpose universal perturbation: Original frames are displayed in the first row and
perturbed frames are displayed in the second row. The perturbation added to the frames in the second row is mostly imperceptible
to the human eye.

of the first efforts on generating adversarial perturbations on
real-time video classification systems. However, in practice the
adversary may need to determine the type of DNN being used
in the video classification system, and so a black box approach
may be needed. Given recent studies on the transferability of
adversarial inputs [36], we believe black box attacks are also
feasible. We will explore this in our future work.

Context dependency: Second, the approach that we developed
does not account for contextual information, i.e., consistency
between the misclassified result and the context. While in
some cases with a limited set of classes (e.g., actions possible
at an elderly care facility), this may be not matter, in some
other cases a loss in context may cause a human operator to
notice discrepancies. For example, if the context relates to a
baseball game, a human overseeing the system may notice an
inconsistency when the action of hitting a ball is misclassified
into applying makeup. Similarly, because of context, if there is
a series of actions that we want to misclassify, inconsistency in
the misclassification results (e.g., different actions across the
clips) may also raise an alarm. For example, let us consider
a case where the actions include running, kicking a ball,
and applying make up. While the first two actions can be
considered to be reasonable with regard to appearing together
in a video, the latter two are unlikely. Generating perturbations
that are consistent with the context of the video is a line of
future work that we will explore and is likely to require new
techniques. In fact, looking for consistency in context may be
a potential defense, and we will also examine this in depth in
the future.

Data Augmentation: We point out here that for both UPs and
DUPs, the training set included all possible strides (data aug-
mentation). Unfortunately, the issues relating to the boundary
effect cannot be solved by data augmentation. In particular,
recall that the misalignment due to the nondeterminism in clip
boundaries input to the classifier cause the perturbation clips
added by the attacker to be broken up. While UPs are effective
on any video clip, concatenations of broken up UPs are no

longer UPs and thus, are not effective.

Defenses: In order to defend against the attacks against video
classification systems, one can try some existing defense
methods in image area, such as feature squeezing [55], [56] and
ensemble adversarial training [45] (although their effectiveness
is yet unknown). Considering the properties of video that were
discussed, we envision some exclusive defense methods for
protecting video classification systems below, which we will
explore in future work.

One approach is to examine the consistency between the
classification of consecutive frames (considered as images)
within a clip, and between consecutive clips in a stream. A
sudden change in the classification results could raise an alarm.
However, while this defense will work well in cases where the
temporal flow is not pronounced (e.g., the UCF101 dataset), it
may not work well in cases with pronounced temporal flows.
For example, with respect to the Jester dataset, with just an
image it may be hard to determine whether the hand is being
moved right or left.

The second line of defense may be to identify an object that
is present in the video, e.g., a soccer ball in a video clip that
depicts a kicking action. We can use an additional classifier to
identify such objects in the individual frames that compose the
video. Then, we can look for consistency with regard to the
action and the object, e.g., a kicking action can be associated
with a soccer ball, but cannot be associated with a make up kit.
Towards realizing this line of defense, we could use existing
image classifiers in conjunction with the video classification
system. We will explore this in future work.

IX. RELATED WORK

There is quite a bit of work [2], [3], [16] on investigating
the vulnerability of machine learning systems to adversarial in-
puts. Researchers have shown that generally, small magnitude
perturbations added to input samples, change the predictions
made by machine learning models. Most efforts, however, do
not consider real-time temporally varying inputs such as video.

13



Unlike these efforts, our study is focused on the generation of
adversarial perturbations to fool DNN based real-time video
action recognition systems.

The threat of adversarial samples to deep-learning systems
has also received considerable attention recently. There are
several papers in the literature (e.g., [10], [11], [29], [30],
[39]) that have shown that the state-of-the-art DNN based
learning systems are also vulnerable to well-designed adver-
sarial perturbations [43]. Szegedy et al.show that the addition
of hardly perceptible perturbation on an image, can cause
a neural network to misclassify the image. Goodfellow et
al. [11] analyze the potency of adversarial samples available
in the physical world, in terms of fooling neural networks.
Moosavi-Dezfooli et al. [29]–[31] make a significant contri-
bution by generating image-agnostic perturbations, which they
call universal adversarial perturbations. These perturbations
can cause all natural images belonging to target classes to be
misclassified with high probability.

There are very few recent studies [15], [54] which explore
the feasibility of adversarial perturbation on videos. Hosseini
et al. [15] attack the Google Cloud Video Intelligence API,
which makes decisions only based on the first frame of every
second of the video, by inserting images/perturbing frames at
the rate of one frame per second. This attack method cannot
be generalized to the common case where video classification
systems use sequences of consecutive frames to perform activ-
ity recognition. In addition, the authors assume that the starting
frame used by the API is known to the attacker, which in real-
time applications is not deterministic (and thus, is unknown).
Wei et al. [54] attack the video recognition system by adding
perturbations only on the first few consecutive frames in a
video clip. However, unlike our attack, these attacks do not
work on practical real-time video classification systems when
the boundaries of video clips are not known.

GANs or generative adversarial networks have been em-
ployed by Goodfellow et al. [10] and Radford et al. [38]
in generating natural images. Mopuri et al. [32] extend a
GAN architecture to train a generator to model universal
perturbations for images. Their objective was to explore the
space of the distribution of universal adversarial perturbations
in the image space. We significantly extend the generative
framework introduced by Mopuri et al. [32]. In addition,
unlike their work which focused on generating adversarial
perturbations for images, our study focuses on the generation
of effective perturbations to attack videos.

The feasibility of adversarial attacks against other types of
learning systems including face-recognition systems [28], [39],
[40], voice recognition systems [5] and malware classification
systems [12], has been studied. However, these studies do not
account for the unique input characteristics that are present in
real-time video activity recognition systems.

X. CONCLUSIONS

In this paper, we investigate the problem of generating
adversarial samples for attacking video classification systems.
We identify three key challenges that will need to be addressed
in order to generate such samples namely, generating perturba-
tions in real-time, making the perturbations stealthy and deal-
ing with the intedeterminism of video clip boundaries that are

input to a real-time video classifier. We exploit recent advances
in generative models, extending them significantly to solve
these challenges and generate very potent adversarial samples
against video classification systems. We perform extensive
experiments on two different datasets one of which captures
coarse-grained actions (e.g., applying make up) while the other
captures fine-grained actions (hand gestures). We demonstrate
that our approaches are extremely potent, achieving around 80
% attack success rates in both cases. We also discuss possible
defenses that we propose to investigate in future work.

ACKNOWLEDGMENTS

We would like to thank the anonymous reviewers for their
valuable feedback on this paper. This work was partially sup-
ported by the U.S. Army Research Laboratory Cyber Security
Collaborative Research Alliance under Cooperative Agreement
Number W911NF-13-2-0045. The views and conclusions con-
tained in this document are those of the authors, and should
not be interpreted as representing the official policies, either
expressed or implied, of the Army Research Laboratory or
the U.S. Government. The U.S. Government is authorized to
re-produce and distribute reprints for Government purposes,
notwithstanding any copyright notation hereon.

REFERENCES

[1] M. Abadi, P. Barham, J. Chen, Z. Chen, A. Davis, J. Dean, M. Devin,
S. Ghemawat, G. Irving, M. Isard et al., “Tensorflow: A system for
large-scale machine learning.” in OSDI, vol. 16, 2016, pp. 265–283.

[2] B. Biggio, I. Corona, D. Maiorca, B. Nelson, N. Šrndić, P. Laskov,
G. Giacinto, and F. Roli, “Evasion attacks against machine learning
at test time,” in Joint European conference on machine learning and
knowledge discovery in databases. Springer, 2013, pp. 387–402.

[3] B. Biggio, G. Fumera, and F. Roli, “Pattern recognition systems under
attack: Design issues and research challenges,” International Journal
of Pattern Recognition and Artificial Intelligence, vol. 28, no. 07, p.
1460002, 2014.

[4] D. S. Biggs, “3d deconvolution microscopy,” Current Protocols in
Cytometry, pp. 12–19, 2010.

[5] N. Carlini, P. Mishra, T. Vaidya, Y. Zhang, M. Sherr, C. Shields,
D. Wagner, and W. Zhou, “Hidden voice commands.” in USENIX
Security Symposium, 2016, pp. 513–530.

[6] J. Carreira and A. Zisserman, “Quo vadis, action recognition? a new
model and the kinetics dataset,” in 2017 IEEE Conference on Computer
Vision and Pattern Recognition (CVPR). IEEE, 2017, pp. 4724–4733.

[7] J. Dataset, “Humans performing pre-defined hand actions,” https://20bn.
com/datasets/jester, 2016, [Online; accessed 30-April-2018].

[8] S. R. Fanello, I. Gori, G. Metta, and F. Odone, “One-shot learning
for real-time action recognition,” in Iberian Conference on Pattern
Recognition and Image Analysis. Springer, 2013, pp. 31–40.

[9] H. Foroughi, B. S. Aski, and H. Pourreza, “Intelligent video surveil-
lance for monitoring fall detection of elderly in home environments,”
in Computer and Information Technology, 2008. ICCIT 2008. 11th
International Conference on. IEEE, 2008, pp. 219–224.

[10] I. Goodfellow, J. Pouget-Abadie, M. Mirza, B. Xu, D. Warde-Farley,
S. Ozair, A. Courville, and Y. Bengio, “Generative adversarial nets,” in
Advances in neural information processing systems, 2014, pp. 2672–
2680.

[11] I. J. Goodfellow, J. Shlens, and C. Szegedy, “Explaining and harnessing
adversarial examples (2014),” arXiv preprint arXiv:1412.6572.

[12] K. Grosse, N. Papernot, P. Manoharan, M. Backes, and P. McDaniel,
“Adversarial perturbations against deep neural networks for malware
classification,” arXiv preprint arXiv:1606.04435, 2016.

[13] J. Gu, Z. Wang, J. Kuen, L. Ma, A. Shahroudy, B. Shuai, T. Liu,
X. Wang, G. Wang, J. Cai et al., “Recent advances in convolutional
neural networks,” Pattern Recognition, 2017.

14

https://20bn.com/datasets/jester
https://20bn.com/datasets/jester


[14] S. Herath, M. Harandi, and F. Porikli, “Going deeper into action
recognition: A survey,” Image and vision computing, vol. 60, pp. 4–
21, 2017.

[15] H. Hosseini, B. Xiao, A. Clark, and R. Poovendran, “Attacking auto-
matic video analysis algorithms: A case study of google cloud video
intelligence api,” in Proceedings of the 2017 on Multimedia Privacy
and Security. ACM, 2017, pp. 21–32.

[16] L. Huang, A. D. Joseph, B. Nelson, B. I. Rubinstein, and J. Tygar, “Ad-
versarial machine learning,” in Proceedings of the 4th ACM workshop
on Security and artificial intelligence. ACM, 2011, pp. 43–58.

[17] X. Huang, Y. Li, O. Poursaeed, J. Hopcroft, and S. Belongie, “Stacked
generative adversarial networks,” in IEEE Conference on Computer
Vision and Pattern Recognition (CVPR), vol. 2, 2017, p. 4.

[18] S. Ioffe and C. Szegedy, “Batch normalization: Accelerating deep
network training by reducing internal covariate shift,” arXiv preprint
arXiv:1502.03167, 2015.

[19] B. L. Kalman and S. C. Kwasny, “Why tanh: choosing a sigmoidal
function,” in Neural Networks, 1992. IJCNN., International Joint Con-
ference on, vol. 4. IEEE, 1992, pp. 578–581.

[20] A. Karpathy, G. Toderici, S. Shetty, T. Leung, R. Sukthankar, and
L. Fei-Fei, “Large-scale video classification with convolutional neural
networks,” in Proceedings of the IEEE conference on Computer Vision
and Pattern Recognition, 2014, pp. 1725–1732.

[21] H. Kataoka, Y. Satoh, Y. Aoki, S. Oikawa, and Y. Matsui, “Temporal and
fine-grained pedestrian action recognition on driving recorder database,”
Sensors, vol. 18, no. 2, p. 627, 2018.

[22] H. Kataoka, T. Suzuki, S. Oikawa, Y. Matsui, and Y. Satoh, “Drive
video analysis for the detection of traffic near-miss incidents,” arXiv
preprint arXiv:1804.02555, 2018.

[23] D. P. Kingma and J. Ba, “Adam: A method for stochastic optimization,”
arXiv preprint arXiv:1412.6980, 2014.

[24] A. Kurakin, I. Goodfellow, and S. Bengio, “Adversarial machine learn-
ing at scale,” arXiv preprint arXiv:1611.01236, 2016.

[25] K. Lab, “Man-in-the-middle attack on video surveillance systems,”
https://securelist.com/does-cctv-put-the-public-at-risk-of-cyberattack/
70008/, Defcon,2014, [Online; accessed 30-April-2018].

[26] R. Longadge and S. Dongre, “Class imbalance problem in data mining
review,” arXiv preprint arXiv:1305.1707, 2013.

[27] A. Madry, A. Makelov, L. Schmidt, D. Tsipras, and A. Vladu, “Towards
deep learning models resistant to adversarial attacks,” arXiv preprint
arXiv:1706.06083, 2017.

[28] M. McCoyd and D. Wagner, “Spoofing 2d face detection: Machines see
people who aren’t there,” arXiv preprint arXiv:1608.02128, 2016.

[29] S.-M. Moosavi-Dezfooli, A. Fawzi, O. Fawzi, and P. Frossard, “Univer-
sal adversarial perturbations,” in Computer Vision and Pattern Recog-
nition (CVPR), 2017 IEEE Conference on. IEEE, 2017, pp. 86–94.

[30] S. M. Moosavi Dezfooli, A. Fawzi, and P. Frossard, “Deepfool: a simple
and accurate method to fool deep neural networks,” in Proceedings of
2016 IEEE Conference on Computer Vision and Pattern Recognition
(CVPR), no. EPFL-CONF-218057, 2016.

[31] K. R. Mopuri, U. Garg, and R. V. Babu, “Fast feature fool: A data
independent approach to universal adversarial perturbations,” arXiv
preprint arXiv:1707.05572, 2017.

[32] K. R. Mopuri, U. Ojha, U. Garg, and R. V. Babu, “Nag: Network for
adversary generation,” arXiv preprint arXiv:1712.03390, 2017.

[33] V. Nair and G. E. Hinton, “Rectified linear units improve restricted
boltzmann machines,” in Proceedings of the 27th international confer-
ence on machine learning (ICML-10), 2010, pp. 807–814.

[34] Z. Net, “Surveillance cameras sold on Amazon in-
fected with malware,” https://www.zdnet.com/article/
amazon-surveillance-cameras-infected-with-malware/, ZD Net,2016,
[Online; accessed 30-April-2018].

[35] N. Papernot, N. Carlini, I. Goodfellow, R. Feinman, F. Faghri,
A. Matyasko, K. Hambardzumyan, Y.-L. Juang, A. Kurakin, R. Sheats-
ley et al., “cleverhans v2. 0.0: an adversarial machine learning library,”
arXiv preprint arXiv:1610.00768, 2016.

[36] N. Papernot, P. McDaniel, and I. Goodfellow, “Transferability in ma-
chine learning: from phenomena to black-box attacks using adversarial
samples,” arXiv preprint arXiv:1605.07277, 2016.

[37] R. Planinc, A. Chaaraoui, M. Kampel, and F. Flrez-Revuelta, “Computer
vision for active and assisted living,” pp. 57–79, 01 2016.

[38] A. Radford, L. Metz, and S. Chintala, “Unsupervised representation
learning with deep convolutional generative adversarial networks,”
arXiv preprint arXiv:1511.06434, 2015.

[39] M. Sharif, S. Bhagavatula, L. Bauer, and M. K. Reiter, “Accessorize to
a crime: Real and stealthy attacks on state-of-the-art face recognition,”
in Proceedings of the 2016 ACM SIGSAC Conference on Computer and
Communications Security. ACM, 2016, pp. 1528–1540.

[40] ——, “Adversarial generative nets: Neural network attacks on state-of-
the-art face recognition,” arXiv preprint arXiv:1801.00349, 2017.

[41] K. Soomro, A. R. Zamir, and M. Shah, “Ucf101: A dataset of
101 human actions classes from videos in the wild,” arXiv preprint
arXiv:1212.0402, 2012.

[42] W. Sultani, C. Chen, and M. Shah, “Real-world anomaly detection in
surveillance videos,” arXiv preprint arXiv:1801.04264, 2018.

[43] C. Szegedy, W. Zaremba, I. Sutskever, J. Bruna, D. Erhan, I. Goodfel-
low, and R. Fergus, “Intriguing properties of neural networks,” arXiv
preprint arXiv:1312.6199, 2013.

[44] C. Tensorflow, “C3D Implementation,” https://github.com/hx173149/
C3D-tensorflow.git, 2016, [Online; accessed 30-April-2018].

[45] F. Tramèr, A. Kurakin, N. Papernot, D. Boneh, and P. McDaniel,
“Ensemble adversarial training: Attacks and defenses,” arXiv preprint
arXiv:1705.07204, 2017.

[46] D. Tran, L. Bourdev, R. Fergus, L. Torresani, and M. Paluri, “Learning
spatiotemporal features with 3d convolutional networks,” in Computer
Vision (ICCV), 2015 IEEE International Conference on. IEEE, 2015,
pp. 4489–4497.

[47] V. Tripathi, A. Mittal, D. Gangodkar, and V. Kanth, “Real time security
framework for detecting abnormal events at atm installations,” Journal
of Real-Time Image Processing, pp. 1–11, 2016.

[48] G. Varol, I. Laptev, and C. Schmid, “Long-term temporal convolutions
for action recognition,” IEEE transactions on pattern analysis and
machine intelligence, 2017.

[49] U. C. Vision, “Case Study: Elementary Scholl in Taiwai,” https://news.
umbocv.com/case-study-taiwan-elementary-school-13fa14cdb167.

[50] ——, “Umbo Customer Case Study NCHU,” https://news.umbocv.com/
umbo-customer-case-study-nchu-687356292f43.

[51] ——, “Umbo’s Smart City Featured on
CBS Sacramento,” https://news.umbocv.com/
umbos-smart-city-featured-on-cbs-sacramento-26f839415c51.

[52] ——, “Case Studies,” https://news.umbocv.com/case-studies/home,
2016, [Online; accessed 30-April-2018].

[53] C. Vondrick, H. Pirsiavash, and A. Torralba, “Generating videos with
scene dynamics,” in Advances In Neural Information Processing Sys-
tems, 2016, pp. 613–621.

[54] X. Wei, J. Zhu, and H. Su, “Sparse adversarial perturbations for videos,”
arXiv preprint arXiv:1803.02536, 2018.

[55] W. Xu, D. Evans, and Y. Qi, “Feature squeezing: Detecting adversarial
examples in deep neural networks,” arXiv preprint arXiv:1704.01155,
2017.

[56] ——, “Feature squeezing mitigates and detects carlini/wagner adversar-
ial examples,” arXiv preprint arXiv:1705.10686, 2017.

[57] M. D. Zeiler, “Adadelta: an adaptive learning rate method,” arXiv
preprint arXiv:1212.5701, 2012.

15

https://securelist.com/does-cctv-put-the-public-at-risk-of-cyberattack/70008/
https://securelist.com/does-cctv-put-the-public-at-risk-of-cyberattack/70008/
https://www.zdnet.com/article/amazon-surveillance-cameras-infected-with-malware/
https://www.zdnet.com/article/amazon-surveillance-cameras-infected-with-malware/
https://github.com/hx173149/C3D-tensorflow.git
https://github.com/hx173149/C3D-tensorflow.git
https://news.umbocv.com/case-study-taiwan-elementary-school-13fa14cdb167
https://news.umbocv.com/case-study-taiwan-elementary-school-13fa14cdb167
https://news.umbocv.com/umbo-customer-case-study-nchu-687356292f43
https://news.umbocv.com/umbo-customer-case-study-nchu-687356292f43
https://news.umbocv.com/umbos-smart-city-featured-on-cbs-sacramento-26f839415c51
https://news.umbocv.com/umbos-smart-city-featured-on-cbs-sacramento-26f839415c51
https://news.umbocv.com/case-studies/home

	Introduction
	Background
	Real-time video-based classification systems
	The C3D classifier

	Threat Model and Datasets
	Threat model
	Our datasets

	Generating perturbations for real-time video streams
	making perturbations stealthy
	Impact of Nondeterministic Clip Boundaries
	Misalignment due to Nondeterministic Clip Boundaries
	The Boundary Effect
	Circular Dual-Purpose Universal Perturbation
	2D Dual-Purpose Universal Perturbation

	Evaluations
	Experimental Setup
	Stealth with DUP
	Showcasing C-DUP
	Experimental Results on UCF101
	Experimental Results on Jester

	Effectiveness of 2D-DUP
	Experimental Results on the UCF101 Dataset
	Experimental Results on Jester Dataset


	Discussion
	Related Work
	Conclusions
	References

