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Abstract. Due to alternative splicing events in eukaryotic species, the
identification of mRNA isoforms (or splicing variants) is a difficult prob-
lem. Traditional experimental methods for this purpose are time con-
suming and cost ineffective. The emerging RNA-Seq technology provides
a possible effective method to address this problem. Although the ad-
vantages of RNA-Seq over traditional methods in transcriptome analysis
have been confirmed by many studies, the inference of isoforms from mil-
lions of short sequence reads (e.g., Illumina/Solexa reads) has remained
computationally challenging. In this work, we propose a method to calcu-
late the expression levels of isoforms and infer isoforms from short RNA-
Seq reads using exon-intron boundary, transcription start site (TSS) and
poly-A site (PAS) information. We first formulate the relationship among
exons, isoforms, and single-end reads as a convex quadratic program, and
then use an efficient algorithm (called IsoInfer) to search for isoforms.
IsoInfer can calculate the expression levels of isoforms accurately if all
the isoforms are known and infer novel isoforms from scratch. Our exper-
imental tests on known mouse isoforms with both simulated expression
levels and reads demonstrate that IsoInfer is able to calculate the expres-
sion levels of isoforms with an accuracy comparable to the state-of-the-art
statistical method and a 60 times faster speed. Moreover, our tests on
both simulated and real reads show that it achieves a good precision and
sensitivity in inferring isoforms when given accurate exon-intron bound-
ary, TSS and PAS information, especially for isoforms whose expression
levels are significantly high.

1 Introduction

Transcriptome study (or transcriptomics) aims to discover all the transcripts and
their quantities in a cell or an organism under different external environmental
conditions. A large amount of work has been devoted to transcriptomics, which
includes the international projects EST [1, 2], FANTOM [3], and ENCODE [4,
5]. Many technologies have been introduced in recent years including array-based
experimental methods such as tiling arrays [6], exon arrays [7], and exon-junction



arrays [8, 9], and tag-based approaches such as MPSS [10, 11], SAGE [12, 13],
CAGE [14, 15], PMAGE [16], and GIS [17]. However, due to various constraints
intrinsic to these technologies, the speed of advance in transcriptomics is far
from being satisfactory, especially on eukaryotic species because of widespread
alternative splicing events.

Applying next generation sequencing technologies to transcriptomes, the re-
cently developed RNA-Seq technology is quickly becoming an important tool in
functional genomics and transcriptomics. It can be used to identify all genes and
exons and their boundaries [18, 19] and to study gene functions and perform tran-
scriptome analysis [20]. For example, based on an unannotated genomic sequence
and millions of short reads from RNA-Seq, [21] developed a general method for
the discovery of a complete transcriptome, including the identification of coding
regions, ends of transcripts, splice junctions, splice site variations, etc. Their ap-
plication of the method to S.cerevisiae (yeast) showed a high degree of agreement
with the existing knowledge of the yeast transcriptome. Besides yeast [22, 18],
RNA-Seq has been applied to the transcriptome analysis of mouse [23, 24] and
human [25, 26]. These results demonstrate that RNA-Seq is a powerful quantita-
tive method to sample a transcriptome deeply at an unprecedented resolution.
Moreover, DNA sequencing technologies are under fast development. Some of
them now could provide long reads, paired-end reads, DNA-strand-sequencing of
mRNA transcripts, etc. See [27] for a comprehensive analysis of the advantages
of RNA-Seq over traditional methods in genome-wide transcriptome analysis,
and the challenges faced by this technology.

Very recently, several methods have been proposed to characterize the expres-
sion level of each transcript [28, 29] using RNA-Seq data. In [28], the authors
showed that short (single-end or paired-end) read sequences cannot theoreti-
cally guarantee a unique solution to the transcriptome reconstruction problem
(i.e., the reconstruction of all expressed isoforms and their expression levels) in
general even if the reads are sampled perfectly according to the length of each
transcript (without random distortions and noise). However, under the same
assumption, the authors also showed that paired-end reads could help recon-
struct the transcripts uniquely and determine their expression levels for most
of the currently known isoforms of human, and single-end reads could allow us
to determine the expression levels correctly if all the isoforms are known. How-
ever, these results are mostly of theoretical interest because sequence read data
are random in nature and may contain noise in practice. [29] presented a more
practical way to estimate the expression levels of known isoforms. The method
uses maximum likelihood estimation followed by importance sampling from the
posterior distribution.

The availability of all the isoforms is the basis of the accurate estimation of
isoform expression levels [29], which could be used to infer all splicing variants
quantitatively and qualitatively. The variations in isoform expression levels and
splicing are important for many studies, e.g., the study of diseases [30, 31] and
drug development [32]. A lot of effort has been devoted to the identification of
transcripts/isoforms from the more traditional EST, cDNA data. Instead of a
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comprehensive review, we will just name a few results below. To enumerate all
possible isoforms, a core ingredient is the splicing graph [33, 34]. A predetermined
parameter “dimension” decides how many transcripts are compared simultane-
ously. The parameter is usually fixed to two, but recently, [34] extended the
method to arbitrary dimensions. There are several methods that assemble tran-
scripts from EST data using the splicing graph and its variations [35, 36]. Newly
proposed experimental methods in [37, 38] could be used to identify new iso-
forms. However, it is still unclear whether these methods can be applied in a
large scale.

RNA-Seq has shown great success in transcriptome analysis, but it has not
been used to infer isoforms. Although it is straightforward to infer the existence
of novel isoforms from RNA-Seq data that exhibit novel transcribed regions
[24, 6], it is not so obvious how to use RNA-Seq data to infer the existence of
novel isoforms in known transcribed regions, because the observed reads could
be sampled from either known or unknown isoforms. The problem has remained
challenging for two reasons. The first is that RNA-Seq reads are usually very
short. The second is due to the randomness and biases of the reads sampled from
all the transcripts. In fact, to our best knowledge, there has been no published
work to computationally infer isoforms from (realistic) short RNA-Seq reads.

Due to the high combinatorial complexity of isoforms of genes with a (mod-
erately) large number of exons, the inference of isoforms from short reads (and
other available biological information) should be realistically divided into two
sub-problems. The first is to discover all the exon-intron boundaries as well as
the transcription start site (TSS) and poly-A site (PAS) of each isoform. As
mentioned above, there are several effective methods for detecting exon-intron
boundaries from RNA-Seq read data [18, 19]. The identification of TSS’s and
PAS’s is an indispensable part of many large genomics projects [3, 4]. The tech-
nology of GIS-PET (Gene Identification Signature Paired-End Tags) can also
be used to identify TSS-PAS pairs [17, 39]. The second sub-problem is to find
combinations of exons that can properly explain the RNA-Seq data, given the
exon-intron boundary and TSS-PAS pair information.

In this paper, we are concerned with the second sub-problem in isoform infer-
ence. Assuming that the exon-intron boundary and TSS-PAS pair information
is given, we propose a method (called IsoInfer) to infer isoforms from short
RNA-Seq reads (e.g., Illumina/Solexa data). Although our method works for
single-end data and data with both single-end and paired-end reads, we will use
single-end reads as the primary source of data and paired-end reads as a sec-
ondary data which can be used to filter out false positives. We formulate the
relationship among exons, isoforms, and single-end reads as a convex quadratic
program, and design an efficient algorithm to search for isoforms. Our method
can calculate the expression levels of isoforms accurately if all the isoforms are
known. To demonstrate this, we have compared IsoInfer with the simple count-
ing method in [40, 41] and the method in [29] on simulated expression levels and
reads, and found that our method is much more accurate than the simple count-
ing method and has a comparable accuracy as the method in [29] but is 60 times
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faster. Most importantly, IsoInfer can infer isoforms from scratch when they are
sufficiently expressed, by trying to find a minimum set of isoforms to explain the
read data. Our experimental tests on both simulated and real reads show that
it is possible to infer the precise combination of exons in a sufficiently expressed
isoform from RNA-Seq short read data with a reasonably good accuracy, when
accurate exon-intron boundary and TSS-PAS pair information is provided. To
our best knowledge, this is the first computational method to infer isoforms from
short RNA-Seq reads. Due to the page limit, some proofs and tables are omitted
in this extended abstract but can be found in the full paper [42]

2 Methods

2.1 Assumptions and terminology

Traditionally, only five types of alternating splicing (AS) events have been pro-
posed, including exon skipping, mutually exclusive exons, intron retention, alter-
native donor and acceptor sites [43]. However, these events are not adequate to
describe complex AS events as more experimental knowledge has become avail-
able [44]. In this work, we describe isoforms or AS events in a much general way,
which is referred to as a “bit matrix” in [44].

Fig. 1. Expressed segments. Every exon-intron boundary introduces a boundary of
some segment. Every expressed segment is a part of an exon.

The exon-intron boundaries of a gene divide the gene into disjoint segments,
as shown in Figure 1. A segment is expressed if it has mapped reads. Thus, every
expressed isoform consists of a subset of expressed segments. Two segments are
adjacent if they are adjacent in the reference genome (i.e., they share a common
boundary). For example, in Figure 1, s2 and s3 are adjacent but s1 and s2 are
not. Any two segments may form a segment junction which is not necessarily an
exon junction in the traditional sense. For example, s2 and s3 form a segment
junction, which is not an exon junction. In the following, “junction” refers to
“segment junction” unless otherwise stated.

As stated in the introduction, we first assume that exon-intron boundaries are
known. Our second assumption is that the short reads are uniformly randomly
sampled from all the expressed isoforms (i.e., mRNA transcripts). We have to
further assume that the short reads have been mapped to the referenced genome.
The mapping of RNA-Seq reads can be done by many recent tools, e.g., Bowtie
[45], Maq [46], SOAP [47], RNA-MATE [48] and mrFAST [49]. The mapping of
multi-reads (i.e., reads that match several locations of the reference genome) is
addressed in [24, 50]. We will use Bowtie in our work due to its efficiency and
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accuracy. The last assumption concerns paired-end reads, which will be stated
in section 2.3.

2.2 Quadratic programming formulation

G denotes the set of all the genes. Each g gene defines a set of expressed segments
Sg = {s1, s2, . . . , s|Sg|} (given exon-intron boundaries), where the expressed seg-
ments are sorted according to their positions in the reference genome. The junc-
tions on this gene are all the pairs of expressed segments (si, sj), 1 ≤ i < j ≤ |Sg|.
The length of segment si is li. Denote the set of all known isoforms of this gene
as Fg. Each isoform f ∈ Fg consists of a subset of expressed segments. The ex-
pression level (i.e., the number of reads per base) of isoform f is denoted by xf .
The sum of the length of all transcripts, weighted by their expression levels, over
all genes, is L0 = C ·

∑
g∈G

∑
e∈f,f∈Fg

lexf , for some constant C that defines the
linear relationship between the expression level and the number of transcripts
corresponding to an isoform. C can be inferred from data as shown in [24].

From now on, we will consider a fixed gene g and omit the subscript g when
there is no ambiguity. Let M be the total number of single-end reads mapped to
the reference genome and di the number of reads falling into expressed segment
si. Under the uniform sampling assumption, di is the observed value of a random
variable (denoted as ri) that follows the binomial distribution B(M,pi), where
pi = Cyili/L0 and yi =

∑
si∈f

xf . Because M is usually very large, pi is very
small and Mpi is sufficiently large in most cases, the binomial distribution can be
approximated by a normal distribution N(µi, σ

2
i ), with µi = Mpi, σ

2
i = Mpi(1−

pi) ≈ Mpi = µi, similar to the approximation in [29]. Therefore, the random
variables ri−µi

σi
, for every expressed segment si, follow the same distribution

approximately. Define ǫi = |ri − µi|. Then, the variable ǫ
σi

also follows the same
distribution approximately for every si.

Let L1 denote the length of a single-end read. In order to map reads to
junctions, we will also think of each junction (si, sj) as a segment of length
2L1 − 2, consisting of the last L1 − 1 bases of si and the first L1 − 1 bases
of sj . Denote the set of the junctions as J = {s|S|+1, s|S|+2, . . . , s|S|+|J|}. The
relationship among the expressed segments of gene g, its expressed isoforms,
and the single-end reads mapped to each expressed segment and junction can
be captured by the following quadratic program (QP):

min z =
∑
si∈S∪J

( ǫiσi
)2

s.t.
∑
si∈f

xf li + ǫi = di, si ∈ S ∪ J
xf ≥ 0, f ∈ F

where σi is the standard deviation in the normal distribution N(µi, σ
2
i ) and will

be empirically estimated from di.
Note that if each ri follows the normal distribution strictly, then the random

variables ǫi
σi

is i.i.d. and thus the solution of the above QP would correspond to
the maximum likelihood estimation of the xf ’s if each σi is fixed [51], and the ob-
jective function z is a random variable obeying the χ2 distribution with freedom
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|S|+ |J |. This QP can be easily shown to be a convex QP by a simple transfor-
mation and solved in polynomial time by a public program QuadProg++ which
implements the dual method of Goldfarb and Idnani [52] for convex quadratic
programming. Since σi is unknown, we substitute

√
di for σi as an approxi-

mation. Let QPsolver denote the above algorithm for solving the convex QP
program. Given S, F, and di’s, QPsolver returns the values of xi’s and z.

When the isoforms in F are given, minimizing the objective function means
to find a combination of the expression level (xf ) of each isoform in F such that
the observed values (di’s) can be explained the best. In this case, the value of
the objective function serves as an indicator of whether the isoforms in F can
explain the observed data. More specifically, p-value(z) denotes the probability
of P (Z ≥ z), where Z is a random variable following the χ2 distribution with
freedom |S| + |J |. We empirically choose a cutoff of 0.05. If p-value(z) is less
than 0.05 we conclude that F cannot explain d.

2.3 Paired-end reads

Figure 2(left) illustrates some concepts concerning paired-end reads. A paired-
end read consists of a pair of short (single-end) reads separated by a gap. The
figure also defines the read length, span, start position, center position and end
position of a paired-end read. If the span of a paired-end read is a random variable
following some probability distribution h(x), then three possible strategies for
generating paired-end reads will be considered in this paper.

– Strategy (a): The start position of a paired-end read is uniformly and randomly
sampled from all the expressed isoforms. Then the span of this paired-end is gen-
erated following the distribution h(x). If the end position of this paired-end read
falls out of the isoform, the paired-end read is truncated such that the end position
of this read is at the end of the isoform.

– Strategy (b): The center position of a paired-end read is uniformly and randomly
sampled from all the expressed isoforms. Then the span of this paired-end is gener-
ated following the distribution h(x). This strategy has been adopted in [53]. Again,
if the start (or end) position of this paired-end read falls out of the isoform, the
paired-end read is truncated such that the start (or end, respectively) position of
this read is at the start (or end, respectively) of the isoform.

– Strategy (c): The end position of a paired-end read is uniformly and randomly sam-
pled from all the expressed isoforms. Then the span of this paired-end is generated
following the distribution h(x). If the start position of this paired-end read falls
out of the isoform, the paired-end read is truncated such that the start position of
this read is at the start of the isoform.

Let w1, w2, w3 be the lengths of three consecutive intervals on an isoform as
shown in Figure 2(right). When any of the strategies (a-c) is applied to generate
a certain number of paired-end reads, the following Theorem 1 gives a non-trivial
upper bound on the probability of not observing any reads with start positions
in the first interval and end positions in the third interval.
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Fig. 2. Left: A paired-end read consisting of two short reads of length L2 that are
separated by a gap. Right: Three consecutive intervals on an isoform.

Theorem 1 Suppose that the expression level of this isoform is α RPKM (i.e.,
reads per kilobase of exon model per million mapped reads [24]), and the span of
each paired-end read follows some distribution h(x). If M paired-end reads are
generated by any of the strategies (a-c), the probability that there are no paired-
end reads that have start positions in the first interval and end positions in the
third interval is upper bounded by

PM,h,α(w1, w2, w3) = (1 − P0)
M ≈ e−MP0

where P0 = 10−9α
∑

0≤i<w1

∫ u(i)

l(i)
h(x)dx, l(i) = w1 − i + w2, and u(i) = w1 −

i+ w2 + w3.

2.4 Valid isoforms

For a gene with expressed segments S = {s1, s2, . . . , s|S|}, an isoform f of this
gene can be expressed as a binary vector with length |S|. The ith element f [i]
of f is 1 if and only if expressed segment si is contained in f . Denote the set
of all possible binary vectors with n elements as B(n). Similarly, a single-end or
paired-end short read that is mapped to a subset S′ ⊆ S of expressed segments
can be represented as a binary vector r ∈ B(|E|) such that r[i] = 1 if and
only if si ∈ E′. A subset E′ of expressed segments is supported by single-end or
paired-end reads if there is at least one single-end or paired-end read r such that
r[i] = 1, i ∈ E′.

Although single-end reads, paired-end reads, and TSS-PAS information data
do not provide exact combinations of expressed segments of isoforms, they can
be used to eliminate many isoforms from consideration. Each of these types of
data provides some information that can be used to define a condition which
will be satisfied by all isoforms inferred by our algorithm (to be described in the
next subsection).

– Junction information. A junction (si, sj) is on an isoform f if f [i] = f [j] = 1 and
f [k] = 0, i < k < j. If si and sj are adjacent, then junction (si, sj) is an adjacent

junction. An isoform satisfies condition I if all the non-adjacent junctions on this
isoform are supported by single-end short reads. In practice, most sufficiently ex-
pressed isoforms satisfy this condition. For example, when 40 millions single-end
reads with length 30bps are mapped, the probability of an isoform with expression
level 6 RPKM satisfying condition I is 99.3% and 92.8%, if this isoform contains
10 and 100 exons, respectively. See Theorem 2 below for the details.

– Start-end segment pair information. For an isoform f , expressed segment si is
the start expressed segment of f if f [i] = 1 and f [j] = 0, 1 ≤ j < i. Expressed
segment si is the end expressed segment of f if f [i] = 1 and f [j] = 0, i < j ≤ |S|.
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The TSS-PAS pair information describes the start and end expressed segments
of each isoform and will be referred to as the start-end segment pair data. An
isoform satisfies condition II if the start-end segment pair of this isoform appears
in the given set of start-end segment pairs. If the TSS-PAS pair information is
missing, then any expressed segment can theoretically be the start or end expressed
segment. However, in this case, many short (and thus unrealistic) isoforms could
be introduced, which will make isoform inference difficult. Therefore, when the
TSS-PAS pair information is missing, we allow an expressed segment si to be the
start (or end) expressed segment of any isoform if there is no expressed segment sj

with j < i (or i < j) such that junction (sj , si) (or (si, sj), respectively) is adjacent
or supported by some read.

– Paired-end read data. A pair of expressed segments (si, sj), i < j on an isoform
f is an informative pair if f [i] = f [j] = 1 and PM,h,α(li + L2 − 1, gi,j , lj + L2 −
1) < 0.05, assuming that the span of a paired-end read follows some probability
distribution h(x), the expression level of this isoform is α RPKM and M paired-end
reads have been mapped. Here, L2 is the read length of a paired-end read, gi,j =
P

i<k<j
lkf [k], and PM,h,α is defined in Theorem 1. According to the theorem, if

(si, sj) is informative, then the probability that there are no paired-end reads with
start positions in segment si and end positions in segment sj is less than 0.05.
A triple of expressed segments (si, si+1, sj), i + 1 < j is an informative triple if
f [i] = f [i + 1] = f [j] = 1 and PM,h,α(L2 − 1, gi,j , lj + L2 − 1) < 0.05. Similarly,
(si, si+1, sj), j < i is an informative triple if PM,h,α(L2−1, gj,i+1, lj+L2−1) < 0.05.
An isoform satisfies condition III if every informative pair or triple on this isoform
is supported by paired-end reads. A larger α makes this condition more stringent.
Because in many cases, two isoforms can only be distinguished by a pair or triple of
segments, it is necessary to require that every informative pairs or triple (instead
of some of them) are supported by paired-end reads.

Note that while the junction information is always available given the single-
end read data and exon-intron boundary information, the start-end segment pair
information and paired-end read data are not necessarily always available. We
define an isoform as valid if it satisfies conditions I, II and/or III whenever the
corresponding types of data are provided. The following theorem gives a lower
bound on the probability that type I condition is satisfied by an isoform.

Theorem 2 Under the uniform sampling assumption, the probability that an
isoform f consisting of t exons with expression level x RPKM satisfies type I
condition is at least (1−e−xL1M/109

)t−1, where e is the base of natural logarithm,
M the number of single-end reads mapped, and L1 the length of single-end reads.

2.5 Isoform inference algorithm

We now describe our algorithm, IsoInfer, for inferring isoforms. The algorithm
uses the following types of data: the reference genome, single-end short reads,
exon-intron boundaries, TSS-PAS pairs, gene boundary information from the
reference genome annotation, and paired-end short reads. The first three pieces
of information (i.e., the reference genome, exon-intron boundaries and single-end
short reads) are required in the algorithm. If TSS-PAS pairs are not provided,
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gene boundaries would be required. The flow of data processing in IsoInfer is
illustrated in Figure 3. The third step of the algorithm requires an external tool
(e.g., Bowtie [45]) to map the short reads to the reference genome and junction
sequences. In the fifth step, any two segments that are adjacent or supported
by a junction read will be clustered together. Note that, such a cluster may
contain expressed segments from more than one gene or contain only a subset
of expressed segments from a single gene, but these cases do not happen very
often. Furthermore, in each cluster, if there is a sequence of consecutive ex-
pressed segments such that every internal segment has no non-adjacent junction
with any other expressed segment other than its left or right neighbor in the se-
quence, then we will combine the expressed segments into a single segment. This
compression will be important because it reduces the problem size drastically
for some isoforms containing a very large number of expressed segments. The
details of the clustering and compression step are straightforward and omitted.

Fig. 3. The flow of data processing in algorithm IsoInfer.

In the following, we give more details of the last step in IsoInfer, i.e., in-
ferring isoforms. Each cluster of expressed segments defines an instance of the
isoform inference problem. Denote such an instance as I(S,R, T, d), where S =
{s1, s2, . . . , s|S|} is the set of expressed segments in the cluster, R the set of short
(single-end and paired-end) reads mapped to the segments in the cluster, T the
set of start-end segment pairs, and d a function such that d(i), si ∈ S, denotes
the number of single-end reads mapped to segment si and d(i, j), 1 ≤ i < j ≤ |S|,
denotes the number of single-end reads mapped to junction (si, sj).

The inference procedure is summarized in Algorithm 1. It first enumerates
all the valid isoforms in step 1. However, for a cluster with a large number of
expressed segments and isoforms, the number of valid isoforms could be too
large to be enumerated efficiently even though conditions I, II and/or III could
be used to filter out many invalid isoforms. Therefore, the algorithm enumerates
valid isoforms with high expression levels first, where the expression level of an
isoform is defined by the least number of single-end reads on any junction of
the isoform. The enumeration terminates when a preset number (denoted as γ)
of valid isoforms are enumerated. The parameter γ is used to avoid the rare
cases that the number of valid isoforms is too large to be handled by subsequent
steps of IsoInfer. We set γ = 1000 by default based on our empirical knowledge
of the real data considered in section 4. For example, over 97.5%, 98.5%, and
99% cases, the number of valid isoforms is no more than 1000 in the tests on
mouse brain, liver and muscle tissues, respectively, when the exact boundary
and TSS-PAS information is extracted from the UCSC knownGene table. The
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impact of the omitted isoforms is minimized because highly expressed isoforms
are enumerated first.

A short read r is validated by a set of isoforms if the set contains an isoform
f such that f [i] = 1 when r[i] = 1. A start-end segment pair is validated by a set
of isoforms if this pair is the start-end segment pair of some f in the set. A set
of isoforms is a feasible solution of I(S,R, T, d) if every read in R and start-end
segment pair in T are validated by the set. Due to possible noise in sequencing
and the incompleteness of the enumeration of valid isoforms in step 1, it may
happen that some reads or start-end segment pairs are not supported by the
set of isoforms F enumerated in step 1. Step 2 of the algorithm removes such
invalidated reads and start-end segment pairs to make F feasible.

Algorithm 1 IsoformInference. Given an instance I(S,R, T, d), the algorithm
infers a set of isoforms to explain the read data.

1: Among all segment junctions of an isoform f , denote m(f) as the minimum number
of single-end reads mapped to any of these junctions. Enumerate all the valid
isoforms f in the descending order of m(f) until a preset number (γ) of valid
isoforms is obtained. Denote the set of all the enumerated valid isoforms as F .

2: Remove all the short reads and start-end segment pairs that are not validated by
F .

3: for 5 ≤ u ≤ β do

4: w(f)← 0 for f ∈ F .
5: for 0 ≤ m ≤ |S| − u do

6: n← m + u.
7: V (m,n) ← BestCombination(I(m,n)).
8: For each v ∈ V (m,n), define G(v) = {f |f ∈ F, f (m,n) = v} and for each

f ∈ G(v), let w(f) = w(f) + 1/|G(v)|.
9: end for

10: Sort F by w in increasing order.
11: for f ∈ F do

12: if w(f) < 1 and F − {f} is a feasible solution of I then

13: F ← F − {f}.
14: end if

15: end for

16: end for

17: w′(f)← 1/w(f) for f ∈ F .
18: Solve the weighted set cover instance (U, C, w′), where U = R∪T, C = {Sf |f ∈ F},

and r ∈ Sf if r is validated by f for r ∈ U for each f ∈ F by the branch-and-bound
method implemented in GNU package GLPK. Return the set of the valid isoforms
corresponding to the optimal solution of set cover.

To find a subset of valid isoforms to explain the data, a simple idea is to try all
possible combinations of the valid isoforms in F and find a minimum combination
that can explain all the short reads, as done in procedure BestCombination (i.e.,
Algorithm 2). The procedure BestCombination gradually increases the number
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of valid isoforms considered and enumerates all possible combinations of such a
number of isoforms until a preset condition is met.

Algorithm 2 BestCombination. Given an instance I(S,R, F, d), find a “best”
subset of F such that the read data can be explained by enumerating all possible
subsets of F .
1: for 1 ≤ i ≤ |S| do

2: p← 0 and F ′ ← ∅.
3: for each F ′′ ⊂ F where |F ′′| = i and F ′′ is a feasible solution of I do

4: {z, x} ←QPsolver(I(S, F ′′, d)).
5: if p < p-value(z) then

6: p← p-value(z) and F ′ ← F ′′.
7: end if

8: end for

9: if p ≥ 0.05 then

10: Return F ′.
11: end if

12: end for

However, it is often infeasible to enumerate all possible combinations of the
valid isoforms of a given size. When this happens, we decompose an the instance
into some sub-instances. In each sub-instance, only a subset of expressed seg-
ments are considered. More specifically, for an instance I(S,R, F, d), where F is
the set of valid isoforms enumerated, a sub-instance I(m,n) = I(S(m,n), R(m,n),
d(m,n), F (m,n)), 0 ≤ m < n ≤ |S|, is defined concerning the subset S(m,n) =
{sm+1, . . . , sn} of expressed segments of S. It is formally defined as follows. For
each f ∈ B(|S|), define f (m,n) ∈ B(n−m) and f (m,n)[i] = f [i+m], 1 ≤ i ≤ n−m.
In other words, f (m,n) denotes the sub-vector of f spanning the interval [m+1, n].
Let F (m,n) = {f (m,n)|f ∈ F}, R(m,n) = {r(m,n)|r ∈ R}, d(m,n)(i) = d(i+m), 1 ≤
i ≤ n−m, and d(m,n)(i, j) = d(i+m, j +m), 1 ≤ i < j ≤ n−m. Note that the
start-end segment information is not needed in sub-instances.

The parameter β appearing in step 3 controls the maximum size of a sub-
instance. Larger sub-instances make the results of procedure BestCombination
more reliable. However, the execution time of BestCombination increases expo-
nentially with the number of valid isoforms which grows with the size of the
sub-instance. Therefore, instead of a fixed size, a set of sub-instance sizes from
the interval [5, β] are attempted. For a fixed sub-instance size, BestCombination
is executed on each sub-instance of the size in step 7. According to the results
of BestCombination, each valid isoform is assigned a weight in Step 8 which
roughly indicates the frequency that the isoform appears in the combinations
found by BestCombination. A subset of valid isoforms with weights less than 1
are removed in steps 11-15 without making F infeasible.

In steps 17 and 18 of the algorithm, a weighted set cover instance is con-
structed such that an optimal solution implies a subset of valid isoforms with
a minimum total weight such that all the short reads and start-end segments
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can be explained. The set cover problem can be solved by using the branch-and-
bound method implemented in GNU package GLPK, since it involves only small
instances.

3 Simulation test results

We test IsoInfer on mouse genes. The reference genomic sequence and known
isoforms of all mouse genes are downloaded from UCSC (mm9, NCBI Build
37) [54]. All exon-intron boundaries of the known isoforms are extracted. This
dataset contains 26,989 genes and 49,409 isoforms. 16,392 (60.7%) of the genes
have only one isoform and 59 (0.2%) of the genes have more than 10 isoforms.
5830 (21.6%) of the genes have only one exon and 384 (1.4%) of the genes have
more than 40 exon-intron boundaries. For the simulation study, only genes with
at least two known isoforms are used, which result in 10,595 genes. We further
extract all the start-end segments and randomly generate relative expression
levels of every isoform. Although it would be natural to assume that expression
levels follow a uniform distribution, it is reported in [55–57] that the expression
levels of isoforms tend to obey a log-normal distribution. Therefore, we consider
three types of distributions.

– Base10: For each isoform, a random number r following the standard normal
distribution is generated and then 10r is assigned as the relative expression
level of this isoform.

– Base2: For each isoform, a random number r following the standard normal
distribution is generated and then 2r is assigned as the relative expression
level of this isoform.

– Uniform: For each isoform, a random number r uniformly generated from
[0,1] is assigned as the relative expression level of this isoform.

Then 40M single-end and 10M paired-end short reads are randomly generated
according to the relative expression levels of the isoforms. In the simulation, we
assume that the span of a paired-end read is a random variable obeying the
normal distribution N(µ, σ2) [58] so we could evaluate the impact of the mean
and deviation of the spans of paired-end reads on the performance of IsoInfer.
Note that IsoInfer does not depend on this assumption and works for paired-end
reads drawn from any distribution.

Finally, IsoInfer is used to recover all the known isoforms using the start-
end segments and single-end and paired-end reads. In the simulation, the read
lengths of single-end and paired-end reads are 25bps and 20bps, respectively.
The parameter α is set to 1 RPKM, β = 7 and γ = 1000. We consider three
measures of the performance, sensitivity, effective sensitivity and precision. A
known isoform is recovered if it is in the output of IsoInfer. Sensitivity is defined
as the number of recovered isoforms divided by the number of all known iso-
forms. Specificity is defined as the number of recovered isoforms divided by the
number of isoforms inferred. Since IsoInfer only intends to infer isoforms that
are sufficiently expressed, it is useful to consider how many sufficiently expressed
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isoforms are recovered by the algorithm. Since Theorem 2 shows that an isoform
with a sufficiently high expression level is likely to satisfy condition I (i.e., all its
exon-intron junctions are supported by the read data) with high probability, we
define effective sensitivity as the number of recovered isoforms divided by the
number of known isoforms whose exon-intron junctions are supported by the
read data.

3.1 Calculation of expression levels

To estimate the effectiveness of our QP formulation, we randomly generate
Base10 expression levels and single-end short reads on the known mouse isoforms
and check whether it can recover the correct expression levels of the known iso-
forms. For an isoform f with expression level xf and calculated expression level

x′f , the relative difference
|x′

f−xf |

xf
is used to measure the accuracy of calculation.

A simple and widely used method of calculating expression levels of isoforms is
based on counting reads mapped to its unique exons and exon junctions [41, 40].
Clearly, this simple strategy fails if the isoform does not have any unique ex-
ons or exon junctions. We compare our method with the simple method (simply
denoted as Uniq in this paper) and the method based on maximum likelihood es-
timation (MLE) and importance sampling (IS) [29]. The comparison is depicted
in Figure 4.
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Fig. 4. Comparison of the accuracies of different methods in estimating isoform expres-
sion levels. The Y-axis shows the percentage of isoforms whose estimated/calculated
expression levels are within a certain relative difference range from the truth. 10 million
reads (left) and 80 million reads (right) are sampled in each of the figures.

The comparison shows that MLE followed by IS (MLE+IS) is the most accu-
rate and Uniq is the worst. IsoInfer achieves comparable performances with MLE
(followed by IS). An advantage of MLE+IS is that it also provides a 95% confi-
dence interval for each expression level estimation. On the other hand, IsoInfer
calculates the expression levels much faster than MLE+IS does (3 minutes vs 3
hours for all mouse genes on a standard desktop PC). The efficiency of IsoInfer
makes the search for novel isoforms possible.
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3.2 The influence of the distribution of expression levels

In this section, we analyze the influence of the distribution of expression levels
on the performance of IsoInfer in inferring isoforms. The distribution of the
span of paired-end reads are fixed as the normal distribution N(300, 302). The
sensitivities and precisions grouped by number of known isoforms per gene are
depicted in Figure 5.

The overall sensitivities and precisions of IsoInfer on (Base10, Base2, Uni-
form) expression levels are (39.7%,75.0%,72.5%) and (79.3%,82.1%,81.3%), re-
spectively. The sensitivities for Base10 expression levels are much lower than
those for Base2 and Uniform expression levels, because a large faction of the
isoforms are not significant expressed. The effective sensitivity of three cases
are 83.5%, 77.4% and 77.4%, respectively. Figure 5 gives detailed sensitivity,
effective sensitivity and precision of IsoInfer on genes with a certain number
of isoforms. The high effective sensitivity shown in the figure is also confirmed
by the sensitivity results on different expression levels, also given in Figure 5
which shows that isoforms with high expression levels are identified with high
sensitivities. For example, for Base10 expression levels, isoforms with expression
level above 3 (or 6) RPKM are identified with sensitivity above 56.0% (or 81.0%,
respectively).
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Fig. 5. The sensitivity (top left), effective sensitivity (top right) and precision (bottom
left) of IsoInfer on genes with a certain number of isoforms when different distributions
of expression levels are generated. The bottom right graph shows the sensitivity of
IsoInfer on different expression levels when different distributions of expression level
are applied. In the graph, the expression levels are log2 transformed. Expression level
x corresponds to 25 · 2x RPKM. The vertical line corresponds to expression level 1/8
= 3.125 RPKM.
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Fig. 6. The sensitivity (top left), effective sensitivity (top right) and precision (bottom
left) of IsoInfer on genes with a certain number of isoforms when different combinations
of type I, II and III data are provided. The bottom right graph shows the sensitivity
of IsoInfer on different expression levels when different combinations of type I, II and
III data are used. Again, the expression levels are log2 transformed. Expression level x
corresponds to 25 · 2x RPKM. The vertical line corresponds to expression level 1/8 =
3.125 RPKM.

3.3 The importance of start-end expressed segment pairs

As mentioned before, single-end short reads are necessary for our algorithm
but start-end segment pairs and paired-end reads are optional. To estimate the
importance of the last two pieces of information, we compare the results when
different types of data are available. Four combinations are possible, denoted as
I, I+II, I+III, and I+II+III, where I, II and III correspond to single-end reads
(which provide the junction information), start-end segment pairs and paired-
end data, respectively. The combination I+III means that the single-end and
paired-end read data are available but not the start-end segment pairs. In the
simulation, Base10 expression levels are generated and the span distribution of
paired-end reads is fixed as N(300, 302). Figure 6 shows that start-end segment
pairs are much more important than paired-end reads for our algorithm. For
example, the sensitivities and precisions for combinations I+II and I+III are
(38.9%,78.5%) and (29.5%,16.5%), respectively.

3.4 The influence of span distribution

The span of paired-end reads follows the normal distribution N(µ, σ2). We run
IsoInfer on different combinations of µ and σ. On each combination, 10 million
pair-end reads are randomly generated. Since start-end segment pairs are much
more important than paired-end reads, as shown in the above subsection, the
span distribution should not have a significant influence on the inference results
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when start-end segment pairs are available. This is confirmed by Tables 3 and
4 given in [42]. The precision and sensitivity of IsoInfer vary by at most 1.5%
when different span distributions are applied.

The above small effect of paired-end read data on the performance of IsoInfer
is because the parameter α is set to 1. When a large α is applied, IsoInfer trades
sensitivity for precision. For example, when the span distribution of paired-end
read is fixed as N(300, 302), if α is set to 1, the sensitivity and precision on genes
with at least 8 isoforms are 40.2% and 74.0%, respectively. The two measures will
change to 35.4% and 78.1%, respectively, when α is set to 20. The performance
of IsoInfer when α is set to different values is shown in Tables 5 and 6 of [42].

4 Recovery of known isoforms from real reads

The evaluation uses the following four data sets: (1) known mouse isoforms down-
loaded from UCSC [54], which contains 49,409 transcripts, (2) mouse mRNAs
expressed in various tissues downloaded from UCSC containing 228,779 mR-
NAs, (3) RNA-Seq data from brain, liver and skeletal muscle tissues of mouse
[24], which contains 47,781,892, 44,279,807 and 38,210,358 single-end reads for
brain, liver and muscle, respectively, and (4) 104,710 exon junctions that were
predicted by TopHat from the above RNA-Seq data for mouse brain tissue [19].

As in the simulation tests, on a specific tissue, one can only expect that
isoforms with expression levels above a certain threshold can be detected by
RNA-Seq experiments, so as to be inferred by IsoInfer. Given a set of mapped
reads, an isoform is said to be theoretically expressed if each exon except for
the first and last one of this isoform has expression level at least 1 RPKM and
every exon junction on this isoform is supported by short reads. (Note that this
does not really guarantee that the isoform is actually expressed.) The expres-
sion levels of the first and last exons are ignored here because of the possible
3′ and 5′ sampling biases in RNA-Seq [27, 24]. The theoretically expressed iso-
forms among known mouse isoforms and mRNAs are used as benchmarks. Note
that the benchmarks change when different tissues are considered, because the
expression levels of isoforms change from tissue to tissue.

We have done two group of tests. The first one is to use the TSS-PAS pair
and exon-intron boundary information from the known mouse isoforms and/or
mRNAs from UCSC and RNA-Seq short reads to infer isoforms. The predicted
isoforms are compared with the theoretically expressed isoforms in the corre-
sponding benchmark. An isoform is recovered by IsoInfer if one of isoforms in-
ferred by IsoInfer matches this isoform precisely (i.e., the two isoforms contain
exactly the same set of exons with exactly the same boundaries). The inference
results are shown in Table 1. These results demonstrate that when accurate exon-
intron boundary and TSS-PAS pair information is provided, IsoInfer achieves a
reasonably good precision, and the precision increases as the size of the bench-
mark increases. When known mouse isoforms are used, IsoInfer achieves decent
effective sensitivities (i.e., 72.9% for brain, 82.2% for liver and 83.0% for muscle).
Because mRNAs were collected from different sources and tissues, a large frac-
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tion of them may not really be expressed in a specific tissue. Therefore, effective
sensitivity of IsoInfer drops when mRNAs are used as the benchmark.

Table 1. The performance of IsoInfer when different exon-intron boundary and TSS-
PAS pair information and corresponding benchmarks are used. Here, “Union” means
that the exon-intron boundary and TSS-PAS pair information is extracted from both
known mouse isoforms and mRNAs and the benchmark is the union of the known
mouse isoforms and mRNAs.

Known isoforms mRNAs Union

Tissue Brain Liver Muscle Brain Liver Muscle Brain Liver Muscle

#Theoretically expressed 18521 12411 11723 87178 72594 69086 101392 82199 78298

Specificity 0.493 0.592 0.627 0.572 0.670 0.712 0.591 0.697 0.737

Effective sensitivity 0.729 0.822 0.830 0.328 0.352 0.366 0.335 0.365 0.381

The second test measures the performance of IsoInfer when the exact exon-
intron boundary information is unavailable. The test uses exon-intron boundaries
predicted by TopHat from the RNA-Seq read data on the mouse brain tissue and
the TSS-PAS pair information extracted from the known mouse isoforms and/or
mRNAs. The test results are shown in Table 2. Although it is reported in [19] that
over 80% of the exon junctions predicted by TopHat are also exon junctions in the
UCSC known mouse isoforms, the inference result on the known mouse isoforms
is much worse than the result when exact exon-intron boundary information
is provided. On the other hand, when mRNA is used as the benchmark, the
exon-intron boundaries provided by TopHat lead IsoInfer to a more aggressive
prediction (and thus achieving a better effective sensitivity).

In each of the above tests, the last three steps of IsoInfer shown in Figure 3
took less than 80 minutes on an Intel P8600 processor.

Table 2. The performance of IsoInfer when the exon-intron boundary information is
extracted from the exon junctions predicted by TopHat. These results are all on the
mouse brain tissue. The TSS-PAS pair information is extracted from the known mouse
isoforms and/or mRNAs, depending on the benchmark. Again, “Union” means that
the TSS-PAS pair information is extracted from both known mouse isoforms and the
benchmark is the union of the known mouse isoforms and mRNAs.

Known isoforms mRNAs Union

Specificity 0.240 0.362 0.378

Effective sensitivity 0.496 0.532 0.508
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Appendix

The proof of Theorem 1

Proof. For simplicity, we assume that the distributions involved in the following
proof are discrete. Let q(x) be the probability that the span of a randomly
generated paired-end read is x, and p(x) the probability of a uniformly randomly
selected position from all isoforms being at position x on the given isoform. Every
paired-end read can be represented by its start (or center or end) position and
span uniquely. Denote the set of all possible start positions as Ψ and the set of all
possible spans as Ω. Let V ⊂ Ψ×Ω defines the set of paired-end reads that have
start positions in the first interval and end positions in the third interval. Under
strategy (a), the probability of a uniformly randomly generated paired-end read
being in V is:

Pa =
∑
ψ∈Ψ

(
∑

ω|(ψ,ω)∈V

q(ω))p(ψ)

=
∑

(ψ,ω)∈V

q(ω)α/109

Similarly, we define the set of possible center positions of paired-end reads as
Ψ ′. Let V ′ ⊂ Ψ ′ ×Ω define the set of paired end reads that have start positions
in the first interval and end positions in the third interval. Under strategy (b),
the probability of a uniformly randomly generated paired-end read being in V ′

is:
Pb =

∑
(ψ,ω)∈V ′

q(ω)α/109

Because |{ψ|(ψ, ω) ∈ V ′}| = |{ψ|(ψ, ω) ∈ V }| for ω ∈ Ω, we have Pa = Pb. The
argument is also applicable to case when strategy (c) is applied.

When strategy (a) is applied and the end position of the third interval is
not the end position of the given isoform, if the start position of a uniformly
randomly generated paired-end read is i, 0 ≤ i < w1 in the first interval, then
the probability of the end position of this paired-end read being in the third
interval is

pi = P (X ≤ u(i)) − P (X ≤ l(i)) =

∫ u(i)

l(i)

h(x)dx

where l(i) = w1 − i+w2, u(i) = w1 − i+w2 +w3. When the end position of the
third interval is the end position of the given isoform and strategy (a) is applied,
we have

pi = P (X ≤ +∞) − P (X ≤ l(i)) =

∫ +∞

l(i)

h(x)dx ≥
∫ u(i)

l(i)

h(x)dx

Because the start position of a paired-end read is uniformly randomly selected,

Pa = 10−9α
∑

0≤i<w1

pi ≥ 10−9α
∑

0≤i<w1

∫ u(i)

l(i)

h(x)dx = P0
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BecauseM paired-end reads are generated, the probability that none of the reads
have start positions in the first interval and end positions in the third interval
is (1 − Pa)

M ≤ (1 − P0)
M = PM,h,α(w1, w2, w3) ≈ e−MP0 .

Similar arguments hold when strategies (b) and (c) are applied to generate
the reads. �

The proof of Theorem 2

Proof. If expression level of y RPKM of the isoform f corresponds to one tran-
script of f , the total number of the expressed transcripts of f is x/y. Based on the
definition of RPKM, y = (106 ·103)/L0 = 109/L0, where L0 is the total length of
all the expressed transcripts with duplications. For any junction, the probability
of a read falling into this junction is xL/yL0. So, the probability that none of

the reads fall into this junction is (1−xL/yL0)
M ≈ e−xLM/yL0 = e−xLM/109

. In
order for this isoform to be valid, each of the t−1 junctions contains at least one
read. Therefore, the probability of this isoform being valid is (1−e−xLM/109

)t−1.
Note that the sequencing noise does not decrease the above probability although
it may provide some spurious junction reads. �

Table 3. Sensitivities for various span distributions grouped by the number of isoforms
per gene. Here, “No PE reads” means that no paired-end reads are applied. The first
column lists various combinations of the mean and standard deviation in the span
(normal) distributions considered. The corresponding effective sensitivities range from
63.4% to 97.4%.

#isoforms per gene 2 3 4 5 6 7 ≥ 8

No PE reads 0.392 0.402 0.392 0.383 0.374 0.346 0.391

300, 10 0.393 0.406 0.402 0.391 0.385 0.357 0.402

300, 30 0.393 0.407 0.404 0.392 0.386 0.362 0.402

300, 50 0.393 0.407 0.402 0.393 0.385 0.366 0.402

300, 100 0.393 0.408 0.404 0.395 0.385 0.359 0.405

1100, 110 0.387 0.401 0.399 0.395 0.392 0.363 0.403

3000, 300 0.392 0.404 0.403 0.400 0.390 0.366 0.413
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Table 4. Specificities for various span distributions grouped by the number of iso-
forms per gene. The first column lists various combinations of the mean and standard
deviation in the span (normal) distributions considered.

#isoforms per gene 2 3 4 5 6 7 ≥ 8

No PE reads 0.893 0.824 0.774 0.732 0.704 0.638 0.733

300, 10 0.897 0.830 0.784 0.738 0.717 0.648 0.740

300, 30 0.897 0.831 0.786 0.739 0.718 0.657 0.740

300, 50 0.897 0.830 0.784 0.740 0.714 0.663 0.737

300, 100 0.896 0.830 0.786 0.743 0.713 0.649 0.740

1100, 110 0.896 0.829 0.782 0.739 0.720 0.657 0.729

3000, 300 0.896 0.828 0.776 0.741 0.709 0.648 0.736

Table 5. Sensitivities grouped by the number of isoforms per gene when α is set to
various values.

#isoforms per gene 2 3 4 5 6 7 ≥ 8

α =1 0.393 0.407 0.404 0.392 0.386 0.362 0.402

2 0.379 0.390 0.388 0.373 0.374 0.347 0.389

3 0.375 0.381 0.381 0.363 0.362 0.332 0.381

4 0.370 0.376 0.375 0.355 0.356 0.325 0.377

5 0.368 0.371 0.371 0.353 0.353 0.325 0.375

6 0.364 0.367 0.366 0.348 0.349 0.324 0.374

7 0.363 0.364 0.363 0.344 0.347 0.323 0.370

8 0.361 0.362 0.361 0.342 0.345 0.323 0.370

9 0.360 0.361 0.360 0.340 0.344 0.323 0.367

10 0.359 0.361 0.358 0.340 0.343 0.323 0.367

20 0.350 0.350 0.340 0.327 0.332 0.306 0.354

Table 6. Specificities grouped by the number of isoforms per gene when α is set to
various values.

#isoforms per gene 2 3 4 5 6 7 ≥ 8

α =1 0.897 0.831 0.786 0.739 0.718 0.657 0.740

2 0.895 0.833 0.785 0.738 0.721 0.664 0.738

3 0.897 0.835 0.786 0.741 0.724 0.659 0.741

4 0.898 0.838 0.792 0.741 0.730 0.662 0.751

5 0.900 0.842 0.797 0.749 0.734 0.668 0.757

6 0.900 0.845 0.797 0.750 0.738 0.675 0.762

7 0.901 0.844 0.797 0.749 0.742 0.686 0.766

8 0.902 0.845 0.799 0.748 0.747 0.696 0.772

9 0.902 0.847 0.803 0.752 0.752 0.698 0.771

10 0.902 0.849 0.804 0.754 0.754 0.703 0.774

20 0.905 0.853 0.804 0.758 0.760 0.697 0.781
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