11. String Search

• The goal is to find the first occurrence of a pattern P of length m in a text T of length n. Pattern P and text T can be sequences of any kind, not necessarily character sequences:

found' = (i | 1 i n-m+1 · match(i,m))
(found' 1 i' n-m +1 match(i',m) nomatch(i'-1)
where
match(i,k) = (P[1..k] = T[i..i+k-1])

```
nomatch(i) = (i | 1 k i - match(i,m))
```

• Chapter 34 in CLR presents three algorithms (Naive, Knuth-Morris-Pratt, Boyer-Moore) using the theory of finite state machines. Here we partly follow an alternative presentation of Wirth, Algorithms and Data Structures, Prentice-Hall, 1986, pp 56 - 69. A copy of that part of the book is in the library.

... Naive String Search

```
The statement found
                            match(i,m) needs to be refined to a loop:
•
       i
           0; found
                      false
       while -found i + m n do
         \triangleright invariant: nomatch(i)
         i i+1;j
                        0
         while j < m P[j+1] = T[i+j] do
             \triangleright invariant: match(i,j)
             j
                j + 1
         found
                 j = m
```


Knuth-Morris-Pratt Search				
⊳ <mark>compute d</mark> d[1] 0 k 0 for i 2 to m		abaaaabaab abaaa ab	d[9] = 4 d d d[10] = 4 + d d[10] = d[4] = 2?	l[4] = 1 -1 = 5? 4]+1
while k > 0 P[k+1] P k d[k] if P[k+1] = P[j] then k k+1 d[j] k ▷ search for P	?[j] do	//d[j-1] = k//		
i 0; j 0 while j < m i < n do i i+1 while j > 0 P[j+1] T j d[j] if P[j+1] = T[i] then i i+1	[i] do	How w this alg many c would i worst c	ould you and orithm? Hoy omparisons t require in ase?	alyze w the
found (j = m)			1	86

 Let match(i,j) mean that when P[1] is shifted over elements to the right of P[i] match the correspon 	T[i], then all
nomatch(i) mean that there is no complete match	up to T[i]:
match(i, j) = (P[j + 1 m] = T[i + j i + m - 1]))
nomatch(i) = (k 1 k i·¬match(i,0))	
, i m	
while i n do	
⊳ invariant: nomatch(i - m)	
jm;ki	
while j > 0 P[j] = T[k] do	
▷ invariant: match(i - m + 1, j) i - m = k - j	j
j j-1;k k-1	
if j = 0 then	
return k + 1	
i i + d[T[i]]	
	18
	10

Maximal Shifts

•	d[x] is defined to be the rightmost occurrence of character x in P
	from the end (not including the last character):
	(k m - d[x] < k < m · P[k] x)

- For example, if P = "abc", then
 d[a] = 2, d[b] = 1, d[c] = 3, d[x] = 3 for all x a, b, c
- If P = "aab", then
 d[a] = 1, d[b] = 3, d[x] = 3 for all x a, b
- If P = "aba", then
 d[a] = 2, d[b] = 1, d[x] = 3 for all x a, b

Ve assum ve would r Ve are int ase when	he length of e that the s need to add terested in the patterr	f the pattern and n the l ize of the alphabet is a the size to the running t the average and worst co n does not occur in the to	ength of the text. constant (otherwise ime of Boyer-Moore) ase running times in ext :
	Naive	Knuth-Morris-Pratt	Boyer-Moore
verage	(n)	(n + m)	(n / m)
orst	(n m)	(n + m)	(n * m)
	Ve assum ve would r Ve are in [.] ase when verage vorst	Ve assume that the s ve would need to add Ve are interested in ase when the pattern Naive verage (n) vorst (n m)	Ve assume that the size of the alphabet is a diverge and worst constrained to add the size to the running the average and worst constrained in the average and worst const as when the pattern does not occur in the term of term of the term of the term of the term of term of the term of the term of t