
1

177

11. String Search

• The goal is to find the first occurrence of a pattern P of length m
in a text T of length n. Pattern P and text T can be sequences of
any kind, not necessarily character sequences:

found' = (∃ i | 1 ≤ i ≤ n–m+1 • match(i,m)) ∧
(found' ⇒ 1 ≤ i' ≤ n–m +1 ∧ match(i',m) ∧ nomatch(i'–1)

where
match(i,k) = (P[1..k] = T[i..i+k–1])
nomatch(i) = (∀ i | 1 ≤ k ≤ i • ¬match(i,m))

• Chapter 34 in CLR presents three algorithms (Naive, Knuth-Morris-
Pratt, Boyer-Moore) using the theory of finite state machines.
Here we partly follow an alternative presentation of Wirth,
Algorithms and Data Structures, Prentice-Hall, 1986, pp 56 - 69. A
copy of that part of the book is in the library.

178

Naive String Search …

• The most straightforward solution is to start comparing P with T at
position 1 and in case of mismatch shift the position of P:

i ← 0 ; found ← false
while ¬found ∧ i + m ≤ n do
w invariant: nomatch(i)
i ← i + 1
found ← match(i, m)

• For the invariant, we observe that nomatch(0) holds initially and
that nomatch(i–1) and ¬match(i,m) implies nomatch(i). The loop
terminates with the postcondition (assuming m ≤ n):

nomatch(i) ∧ ((¬found ∧ i+m > n) ∨ (found ∧ i+m ≤ n ∧ match(i,m))

t1 t2 … ti ti+1 … ti+m–1 … tn

p1 p2 … pm
shift

jiang
Highlight

2

179

… Naive String Search

• The statement found ← match(i,m) needs to be refined to a loop:
i ← 0 ; found ← false
while ¬found ∧ i + m ≤ n do
w invariant: nomatch(i)
i ← i + 1 ; j ← 0
while j < m ∧ P[j + 1] = T[i + j] do
w invariant: match(i,j)
j ← j + 1

found ← j = m

180

Analysis of Naive String Search

• In the average case, if the characters are drawn from an alphabet
with two or more characters and occur randomly, we can expect a
mismatch after less than two comparisons (cf. analysis of table
search and linear search and CRL exercise 34.1-4). Hence an upper
bound of the average number of comparisons is

2 (n – m + 1)
which makes an average case running time of O(n – m).

• For the worst case, suppose P consists of m–1 characters "a"
followed by character "b" and
– T consists of n characters "a", or
– T consists of n – 1 characters "a" followed by "b".

In both cases, (n – m + 1) m comparisons are necessary, making a
running time of Θ((n – m + 1) m).

jiang
Highlight

jiang
Highlight

3

181

Improving Naive String Search …

• The idea is to use the information provided by a partial match to
avoid further comparisons which cannot possibly succeed:

Text

Pattern

Shifted Pattern

Shifted Again

Text

Pattern

Shifted Pattern

... a b c ...

a b d

b

... a b c ...

a

a b d

b

182

… Improving Naive String Search

Text

Pattern

Shifted Pattern

Shifted Again

Text

Pattern

Shifted Pattern

... a a c ...

a a d

a a d

a a d

... a b c a

a b c

b d ...

a b c

a b c a b c

jiang
Text Box
In other words, we could shift faster and make fewer comparisons if we know the repetitive structure of the pattern!

jiang
Text Box
d

jiang
Text Box
b

jiang
Text Box
 a

jiang
Text Box
 a

jiang
Text Box

jiang
Text Box

jiang
Text Box

jiang
Text Box
d

jiang
Text Box
d

4

183

Structure of Knuth-Morris-Pratt Search …

T

P

• At each position i in the text T, we compare T[i] with one or more
elements of P;

• The index i used for comparisons with T[i] is either incremented by
one or remains the same; it is never decremented.

• The index j used for comparisons with P[j+1] is either incremented
by one or decremented by a value such that it becomes greater
than or equal to zero.

... a b c ...

a b d

i

j j+1

184

… Structure of Knuth-Morris-Pratt Search

• The outer loop is responsible for incrementing i by one and, in case
of a match, incrementing j by one. The inner loop is responsible for
shifting P to the right, if possible:

i ← 0 ; j ← 0
while j < m ∧ i < n do
w invariant: nomatch(i–j) ∧ match(i–j+1, j)
i ← i+1
while j > 0 ∧ P[j+1] ≠ T[i] do

j ← D
if P[j+1] = T[i] then

j ← j+1
found ← (j = m)

• D is still unspecified. However, we note that if D < j, then the
assignment j ← D will shift P to the right! If D = 0, then the
pattern is shifted beyond its current position.

jiang
Text Box
 D[1..m]: int j <-- D[j]

jiang
Highlight

5

185

Determining Maximal Shifts

• The idea of D is that it depends only on the pattern P and the
position j, where 1 ≤ j ≤ m. Hence it can be represented by D = d[j],
where d is an array of type:

d : array [1..m] of integer

• For example, for P = "ababc" we have
d[1] = 0, d[2] = 0, d[3] = 1, d[4] = 2, d[5] = 0

• In general, d[j] is the length of the longest prefix of P[1..j] which is
also a suffix of P[1..j]:

d[j] = max{k | 0 ≤ k < j ∧ P[1..k] = P[j–k+1..j]}

• Computing d amounts to searching strings, for which we can use
Knuth-Morris-Pratt search itself.

for P="ababa"?for P="ababa"?

186

Knuth-Morris-Pratt Search

w compute d
d[1] ← 0
k ← 0
for j ← 2 to m

while k > 0 ∧ P[k+1] ≠ P[j] do
k ← d[k]

if P[k+1] = P[j] then
k ← k+1

d[j] ← k
w search for P
i ← 0 ; j ← 0
while j < m ∧ i < n do

i ← i+1
while j > 0 ∧ P[j+1] ≠ T[i] do

j ← d[j]
if P[j+1] = T[i] then

j ← j+1
found ← (j = m)

jiang
Text Box
......abcdefgx....... abcdefgy... j = 7 abcd... d[j] = 3

jiang
Text Box
How would you analyze this algorithm? How many comparisons would it require in the worst case?

jiang
Highlight

jiang
Highlight

jiang
Text Box
 abaaaabaab... d[9] = 4 d[4] = 1 abaaa... d[10] = 4+1 = 5? ab... d[10] = d[4]+1 = 2?

jiang
Text Box
//d[j-1] = k//

6

187

Principle of Boyer-Moore Search

• Knuth-Morris-Pratt search yields a genuine benefit only in the case
of a partial mismatch, which is comparatively rare. Boyer-Moore
Search improves also the average case.

• The idea is to start comparing the pattern with the text at the end
of the pattern. In case of a mismatch, the pattern can immediately
be shifted to the right by a precomputed number of positions.
Example where the compared characters are underlined:

Hoola-Hoola girls like Hooligans
Hooligan
 Hooligan
 Hooligan
 Hooligan
 Hooligan

188

Structure of Boyer-Moore Search

• Let match(i,j) mean that when P[1] is shifted over T[i], then all
elements to the right of P[j] match the corresponding ones in T; let
nomatch(i) mean that there is no complete match up to T[i]:

match(i, j) = (P[j + 1 .. m] = T[i + j .. i + m – 1])
nomatch(i) = (∀ k | 1 ≤ k ≤ i • ¬match(i, 0))

• i ← m
while i ≤ n do
w invariant: nomatch(i – m)
j ← m ; k ← i
while j > 0 ∧ P[j] = T[k] do
w invariant: match(i – m + 1, j) ∧ i - m = k – j
j ← j – 1 ; k ← k – 1

if j = 0 then
return k + 1

i ← i + d[T[i]]

7

189

Maximal Shifts

• d[x] is defined to be the rightmost occurrence of character x in P
from the end (not including the last character):

(∀ k | m – d[x] < k < m • P[k] ≠ x)

• For example, if P = "abc", then
d[a] = 2, d[b] = 1, d[c] = 3, d[x] = 3 for all x ≠ a, b, c

• If P = "aab", then
d[a] = 1, d[b] = 3, d[x] = 3 for all x ≠ a, b

• If P = "aba", then
d[a] = 2, d[b] = 1, d[x] = 3 for all x ≠ a, b

190

Boyer-Moore Search

• Boyer-Moore-Search (P, T)
 for each character x do

d[x] ← m
for j ← 1 to m – 1 do

d[P[j]] ← m – j
i ← m
while i ≤ n do

j ← m ; k ← i
while j > 0 ∧ P[j] = T[k] do

j ← j – 1 ; k ← k – 1
if j = 0 then

return k + 1
i ← i + d[T[i]]

What is the best
and worst case
running time?

What is the best
and worst case
running time?

8

191

Comparison of String Search Algorithms

• Let m be the length of the pattern and n the length of the text.
We assume that the size of the alphabet is a constant (otherwise
we would need to add the size to the running time of Boyer-Moore).
We are interested in the average and worst case running times in
case when the pattern does not occur in the text :

Naive Knuth-Morris-Pratt Boyer-Moore
average Θ(n) Θ(n + m) Θ(n / m)
worst Θ(n m) Θ(n + m) Θ(n * m)

• Combination of Knuth-Morris-Pratt and Boyer-Moore is possible by
building tables d1 and d2, respectively, and taking the larger shift
of both. This way we achieve Θ(n / m) in average and Θ(n + m) in the
worst case. However, the additional bookkeeping makes the gain
questionable in practice.

