11. String Search

The goal is to find the first occurrence of a pattern P of length m
in a text T of length n. Pattern P and text T can be sequences of
any kind, not necessarily character sequences:
found' = ($i | 1£i fn-m+1 + match(im)) U
(found' P 1£i'£n-m+1Umatch(i',m) Unomatch(i'-1)
where
match(i k)
nomatch(i)

(P[1..k] = TTi..i+k-1])
(" i|1£kEi-match(i,m))

Chapter 34 in CLR presents three algorithms (Naive, Knuth-Morris-
Pratt, Boyer-Moore) using the theory of finite state machines.
Here we partly follow an alternative presentation of Wirth,
Algorithms and Data Structures, Prentice-Hall, 1986, pp 56 - 69. A
copy of that part of the book is in the library.

177

Naive String Search ...

The most straightforward solution is to start comparing P with T at
position 1 and in case of mismatch shift the position of P:

e

— it e T - b

i- 0;found - false
while ~found Ui+ m £ ndo
D> invariant: nomatch(i)
i~ i+1
found = match(i, m)

It [t] . [[t

For the invariant, we observe that nomatch(0) holds initially and
that nomatch(i-1) and ~match(i,m) implies nomatch(i). The loop
terminates with the postcondition (assuming m £ n):

nomatch(i) U ((-found U i+m > n) U (found U i+m £ nU match(i,m))
178

jiang
Highlight

.. Naive String Search

The statement found = match(i,m) needs to be refined to a loop:
i~ 0; found - false
while -found Ui + m £ ndo
> invariant: nomatch(i)
i-i+l1;j- 0
while j<m UP[j+1]= T[i + j]1 do
D> invariant: match(i,j)
Jm i+l
found = j=m

179

Analysis of Naive String Search

In the average case, if the characters are drawn from an alphabet
with two or more characters and occur randomly, we can expect a
mismatch after less than two comparisons (cf. analysis of table
search and linear search and CRL exercise 34.1-4). Hence an upper
bound of the average number of comparisons is

2(n-m+1)
which makes an average case running time of O(n - m).

For the worst case, suppose P consists of m-1 characters "a"
followed by character "b" and

- T consists of n characters "a", or

- T consists of n -1 characters "a" followed by "b".
In both cases, (n - m + 1) m comparisons are necessary, making a
running time of Q((n - m + 1) m).

180

jiang
Highlight

jiang
Highlight

Improving Naive String Search ...

+ The idea is to use the information provided by a partial match to
avoid further comparisons which cannot possibly succeed:

Text | lalb]c].]
Pattern a6]d]]
Shifted Pattern [alb|d]| |
Shifted Again lalofd] |
Text | lalb]c].]
Pattern lalb|d]]
Shifted Pattern lalb|d]|]

181

.. Improving Naive String Search

Text [fafafec].]

Pattern n“n
Shifted Pattern nn“
Shifted Again ““n

Text |...|a|b|c|a|b|d|...|
Pattern |a|b|c|a|b|c|
Shifted Pattern |a|b|c|a|b|c|

In other words, we could shift faster and make fewer
comparisons if we know the repetitive structure of the pattern! 182

jiang
Text Box
In other words, we could shift faster and make fewer comparisons if we know the repetitive structure of the pattern!

jiang
Text Box
d

jiang
Text Box
b

jiang
Text Box
 a

jiang
Text Box
 a

jiang
Text Box

jiang
Text Box

jiang
Text Box

jiang
Text Box
d

jiang
Text Box
d

Structure of Knuth-Morris-Pratt Search ..

T [fafbfc].]
P [afb|d]
IE!

At each position i in the text T, we compare T[i] with one or more
elements of P;

The index i used for comparisons with T[i] is either incremented by
one or remains the same; it is never decremented.

The index j used for comparisons with P[j+1] is either incremented
by one or decremented by a value such that it becomes greater
than or equal to zero.

183

.. Structure of Knuth-Morris-Pratt Search

The outer loop is responsible for incrementing i by one and, in case
of a match, incrementing j by one. The inner loop is responsible for
shifting P to the right, if possible:

i- 0 . J - 0
while j<m Ui<ndo
> invariant: nomatch(i-j) U match(i-j+1, j)

i- il D[1..m]: int
while j >0 UP[j+1]* T[i] do

j- D j <-- D[]
if P[j+1] = T[i] then

gt

found = (j=m)

D is still unspecified. However, we note that if D < j, then the
assignment j = D will shift P to the right! If D = O, then the

pattern is shifted beyond its current position.
184

jiang
Text Box
 D[1..m]: int

 j <-- D[j]

jiang
Highlight

Determining Maximal Shifts |

The idea of D is that it depends only on the pattern P and the
position j, where 1 £ j£ m. Hence it can be represented by D = d[j],
where d is an array of type:

d:array [1..m] of integer

For example, for P = "ababc" we have for P="ababa"?
d[1]=0,d[2]=0,d[3]=1,d[4]=2,d[5]=0

In general, d[j]is the length of the longest prefix of P[1..jlwhichis |f...... abcdefy.......
also a suffix of P[1..j]: abodefgy =7
d[j] = max{k | O £ k < JUP[1..k] = P[j-k+1..j]} abal... d[j] =3

Computing d amounts to searching strings, for which we can use
Knuth-Morris-Pratt search itself.

185

| Knuth-Morris-Pratt Search |
aba@aba®... d[9]=4 d[4]=1
E[lcloin pcl)”e i abaa... d[10]=4+1=5?
ko 0 ab... d[10]=d[4]+1
forj- 2tom =27
while k>0 UP[k+1]* P[j] do J1d[j-1] = Ki/
k- d[k]
if P[k+1] = P[j] then
k- k+l
dijl- k
> search for P
i=- 0; J -0
while j<m Ui<ndo How would you analyze
i- vl this algorithm?How
while j >0 UP[j+1]* T[i]do manycomparisons
i~ dij] wouldit requirein the
if P[j+1] = T[i] then worstcase?
i
foundJ—- (:jl =m) 186

jiang
Text Box
......abcdefgx.......
 abcdefgy... j = 7
 abcd... d[j] = 3

jiang
Text Box
How would you analyze this algorithm? How many comparisons would it require in the worst case?

jiang
Highlight

jiang
Highlight

jiang
Text Box
 abaaaabaab... d[9] = 4 d[4] = 1
 abaaa... d[10] = 4+1 = 5?
 ab... d[10] = d[4]+1
 = 2?

jiang
Text Box
//d[j-1] = k//

Principle of Boyer-Moore Search

Knuth-Morris-Pratt search yields a genuine benefit only in the case
of a partial mismatch, which is comparatively rare. Boyer-Moore
Search improves also the average case.

The idea is to start comparing the pattern with the text at the end
of the pattern. In case of a mismatch, the pattern can immediately
be shifted to the right by a precomputed number of positions.
Example where the compared characters are underlined:

Hool a- Hool a girls |ike Hooligans

Hool i gan
Hool i gan
Hool i gan
Hool i gan
Hool i gan

187

Structure of Boyer-Moore Search |

Let match(i,j) mean that when P[1] is shifted over T[i], then all
elements to the right of P[j] match the corresponding ones in T; let
nomatch(i) mean that there is no complete match up to T[il:
match(i,j) = (P[j+1.m]l=T[i+j..i+m-1])
nomatch(i) = (" k| 1£KkEi--match(i, 0))

i= m
while i £ndo
D> invariant: nomatch(i - m)
jomik-i
while j >0 UP[j] = T[k] do
> invariant: match(i-m+1, j)Ui-m=k- |
joj-1:k= k-1

if j=0 then
return k + 1
i~ i+ d[T[il]

188

| Maximal Shifts

d[x] is defined to be the rightmost occurrence of character x in P
from the end (not including the last character):

(" klm-d[x]<k<m-P[k]?! x)

For example, if P = "abc", then

dla]l=2,d[b]=1,d[c]=3,d[x]=3forallx® a,b,c

If P ="aab", then

dlal=1,d[b]=3,d[x]=3 forallxt a,b

If P ="aba", then

dla]=2,d[b]=1,d[x]=3 forallx* a,b

189

Boyer-Moore Search

Boyer-Moore-Search (P, T)

for each character x do
dix]- m

forj- 1tom-1do
d[P[jl]-~ m-j

= m

while i £ndo
jomik-i
while j > 0 UP[j]= T[k] do

J7j-1:;k= k-1

if j= 0 then
return k + 1
i~ i+ d[TLN

What is the best
and worst case
running time?

190

Comparison of String Search Algorithms

Let m be the length of the pattern and n the length of the text.
We assume that the size of the alphabet is a constant (otherwise
we would need to add the size to the running time of Boyer-Moore).
We are interested in the average and worst case running times in
case when the pattern does not occur in the text :

Naive Knuth-Morris-Pratt Boyer-Moore
average Q(n) Q(n + m) Q(n/ m)
worst Q(n'm) Q(n+m) Q(n*m)

Combination of Knuth-Morris-Pratt and Boyer-Moore is possible by
building tables d1 and d2, respectively, and taking the larger shift
of both. This way we achieve Q(n / m) in average and Q(n + m) in the
worst case. However, the additional bookkeeping makes the gain
questionable in practice.

191

