11. String Search

- The goal is to find the first occurrence of a pattern P of length m in a text T of length n. Pattern P and text T can be sequences of any kind, not necessarily character sequences:

$$
\text { found }^{\prime}=(\exists i \mid 1 \leq i \leq n-m+1 \cdot \operatorname{match}(i, m)) \wedge
$$

(found' $\Rightarrow 1 \leq i^{\prime} \leq n-m+1 \wedge \operatorname{match}\left(i^{\prime}, m\right) \wedge$ nomatch $\left(i^{\prime}-1\right)$
where
$\operatorname{match}(i, k)=(P[1 . . k]=T[i . . i+k-1])$
$\operatorname{nomatch}(\mathrm{i})=(\forall \mathrm{i} \mid 1 \leq \mathrm{k} \leq \mathrm{i} \cdot \neg \operatorname{match}(\mathrm{i}, \mathrm{m}))$

- Chapter 34 in CLR presents three algorithms (Naive, Knuth-MorrisPratt, Boyer-Moore) using the theory of finite state machines. Here we partly follow an alternative presentation of Wirth, Algorithms and Data Structures, Prentice-Hall, 1986, pp 56-69. A copy of that part of the book is in the library.

Naive String Search

- The most straightforward solution is to start comparing P with T at position 1 and in case of mismatch shift the position of P :

\dagger_{1}	t_{2}	...	\dagger_{i}	t_{i+1}	...	$\dagger_{i+m-1} \mid$...	t_{n}
				P_{2}	...	P_{m}		
$\mathrm{i} \leftarrow 0$; found \leftarrow false								
while found $^{\wedge} \mathrm{i}+\mathrm{m} \leq n$ do								
\checkmark invariant: nomatch(i)								
$\mathrm{i} \leftarrow \mathrm{i}+1$								
found \leftarrow match (i, m)								

- For the invariant, we observe that nomatch(0) holds initially and that nomatch $(i-1)$ and \neg match (i, m) implies nomatch (i). The loop terminates with the postcondition (assuming $m \leq n$):

$$
\text { nomatch }(i) \wedge((\neg \text { found } \wedge i+m>n) \vee(\text { found } \wedge i+m \leq n \wedge \text { match }(i, m))
$$

Naive String Search

- The statement found \leftarrow match (i, m) needs to be refined to a loop:
$\mathrm{i} \leftarrow 0$; found \leftarrow false
while \neg found $\wedge i+m \leq n$ do
Δ invariant: nomatch(i)
$\mathrm{i} \leftarrow \mathrm{i}+1 ; \mathrm{j} \leftarrow 0$
while $j<m \wedge P[j+1]=T[i+j]$ do
\square invariant: match (i, j)
$j \leftarrow j+1$
found $\leftarrow j=m$

Analysis of Naive String Search

- In the average case, if the characters are drawn from an alphabet with two or more characters and occur randomly, we can expect a mismatch after less than two comparisons (cf. analysis of table search and linear search and CRL exercise 34.1-4). Hence an upper bound of the average number of comparisons is

$$
2(n-m+1)
$$

which makes an average case running time of $O(n-m)$.

- For the worst case, suppose P consists of $m-1$ characters " a " followed by character " b " and
- T consists of n characters " a ", or
- T consists of $n-1$ characters "a" followed by "b".

In both cases, $(n-m+1) m$ comparisons are necessary, making a running time of $\Theta((n-m+1) m)$.

Improving Naive String Search

- The idea is to use the information provided by a partial match to avoid further comparisons which cannot possibly succeed:

Text

\ldots	a	b	c	\ldots

Pattern

Shifted Pattern

Shifted Again

Text
Pattern

\ldots	a	b	c	\ldots

Shifted Pattern

Improving Naive String Search

Text

\ldots	a	a	c	\ldots

Pattern
Shifted Pattern

Shifted Again

Text

\ldots	a	b	c	a	b	d	\ldots

Pattern
Shifted Pattern

a	b	c	a	b	c

In other words, we could shift faster and make fewer comparisons if we know the repetitive structure of the pattern!

Structure of Knuth-Morris-Pratt Search

- At each position i in the text T, we compare $T[i]$ with one or more elements of P;
- The index i used for comparisons with $T[i]$ is either incremented by one or remains the same; it is never decremented.
- The index j used for comparisons with $\mathrm{P}[\mathrm{j}+1]$ is either incremented by one or decremented by a value such that it becomes greater than or equal to zero.

Structure of Knuth-Morris-Pratt Search

- The outer loop is responsible for incrementing i by one and, in case of a match, incrementing j by one. The inner loop is responsible for shifting P to the right, if possible:

```
\(\mathrm{i} \leftarrow 0 ; \mathrm{j} \leftarrow 0\)
while \(j<m \wedge i<n d o\)
        \(\triangle\) invariant: nomatch \((i-j) \wedge\) match \((i-j+1, j)\)
        \(\mathrm{i} \leftarrow \mathrm{i}+1\)
        while \(j>0 \wedge P[j+1] \neq T[i]\) do
        \(j \leftarrow D\)
        if \(P[j+1]=T[i]\) then
            \(j \leftarrow j+1\)
found \(\leftarrow(j=m)\)
```

- D is still unspecified. However, we note that if $D<j$, then the assignment $j \leftarrow D$ will shift P to the right! If $D=0$, then the pattern is shifted beyond its current position.

Determining Maximal Shifts

- The idea of D is that it depends only on the pattern P and the position j, where $1 \leq j \leq m$. Hence it can be represented by $D=d[j]$, where d is an array of type:
d : array [1..m] of integer
- For example, for $P=$ "ababc" we have
for $\mathrm{P}=$ "ababa"? $d[1]=0, d[2]=0, d[3]=1, d[4]=2, d[5]=0$
- In general, $d[j]$ is the length of the longest prefix of $P[1 . . j]$ which is also a suffix of $P[1 . . j]$: $d[j]=\max \{k \mid 0 \leq k<j \wedge P[1 . . k]=P[j-k+1 . . j]\}$
......abcdefgx.......
abcdefgy... $\quad j=7$
abcd... $\quad \mathrm{d}[\mathrm{j}]=3$
- Computing d amounts to searching strings, for which we can use Knuth-Morris-Pratt search itself.

Knuth-Morris-Pratt Search

Principle of Boyer-Moore Search

- Knuth-Morris-Pratt search yields a genuine benefit only in the case of a partial mismatch, which is comparatively rare. Boyer-Moore Search improves also the average case.
- The idea is to start comparing the pattern with the text at the end of the pattern. In case of a mismatch, the pattern can immediately be shifted to the right by a precomputed number of positions. Example where the compared characters are underlined:

```
Hoola-Hoola girls like Hooligans
Hooligan
        Hooligan
        Hooligan
            Hooligan
                Hooligan
```


Structure of Boyer-Moore Search

- Let match (i, j) mean that when $\mathrm{P}[1]$ is shifted over $T[i]$, then all elements to the right of $\mathrm{P}[\mathrm{j}]$ match the corresponding ones in T ; let nomatch(i) mean that there is no complete match up to $T[i]$:

```
\(\operatorname{match}(i, j)=(P[j+1 . . m]=T[i+j . . i+m-1])\)
nomatch(i) \(=(\forall \mathrm{k} \mid 1 \leq \mathrm{k} \leq \mathrm{i} \cdot \neg \operatorname{match}(\mathrm{i}, 0))\)
```

- $\mathrm{i} \leftarrow \mathrm{m}$
while $\mathrm{i} \leq \mathrm{n}$ do
\triangle invariant: nomatch(i-m)
$\mathrm{j} \leftarrow \mathrm{m} ; \mathrm{k} \leftarrow \mathrm{i}$
while $j>0 \wedge P[j]=T[k]$ do
\triangleright invariant: match $(\mathrm{i}-\mathrm{m}+1, \mathrm{j}) \wedge \mathrm{i}-\mathrm{m}=\mathrm{k}-\mathrm{j}$
$\mathrm{j} \leftarrow \mathrm{j}-1 ; \mathrm{k} \leftarrow \mathrm{k}-1$
if $\mathrm{j}=0$ then
return $\mathrm{k}+1$
$\mathrm{i} \leftarrow \mathrm{i}+\mathrm{d}[\mathrm{T}[\mathrm{i}]]$

Maximal Shifts

- $d[x]$ is defined to be the rightmost occurrence of character x in P from the end (not including the last character):

$$
(\forall k \mid m-d[x]<k<m \cdot P[k] \neq x)
$$

- For example, if $P=$ "abc", then

$$
d[a]=2, d[b]=1, d[c]=3, d[x]=3 \text { for all } x \neq a, b, c
$$

- If $P=$ "aab", then $d[a]=1, d[b]=3, d[x]=3$ for all $x \neq a, b$
- If $P=$ "aba", then

$$
d[a]=2, d[b]=1, d[x]=3 \text { for all } x \neq a, b
$$

Boyer-Moore Search

- Boyer-Moore-Search (P, T)
for each character x do $\mathrm{d}[\mathrm{x}] \leftarrow \mathrm{m}$
for $\mathrm{j} \leftarrow 1$ to $m-1$ do $d[P[j]] \leftarrow m-j$
$i \leftarrow m$
while $\mathrm{i} \leq \mathrm{n}$ do
$j \leftarrow m ; k \leftarrow i$
while $j>0 \wedge P[j]=T[k] d o$ $j \leftarrow j-1 ; k \leftarrow k-1$ if $\mathrm{j}=0$ then return k+1

What is the best and worst case running time? $\mathrm{i} \leftarrow \mathrm{i}+\mathrm{d}[\mathrm{T}[\mathrm{i}]]$

Comparison of String Search Algorithms

- Let m be the length of the pattern and n the length of the text. We assume that the size of the alphabet is a constant (otherwise we would need to add the size to the running time of Boyer-Moore). We are interested in the average and worst case running times in case when the pattern does not occur in the text :

	Naive	Knuth-Morris-Pratt	Boyer-Moore
average	$\Theta(n)$	$\Theta(n+m)$	$\Theta(n / m)$
worst	$\Theta(n m)$	$\Theta(n+m)$	$\Theta(n * m)$

- Combination of Knuth-Morris-Pratt and Boyer-Moore is possible by building tables d1 and d2, respectively, and taking the larger shift of both. This way we achieve $\Theta(n / m)$ in average and $\Theta(n+m)$ in the worst case. However, the additional bookkeeping makes the gain questionable in practice.

