11. String Search

The goal is to find the first occurrence of a pattern P of length m
in a text T of length n. Pattern P and text T can be sequences of
any kind, not necessarily character sequences:
found' = ($i | 1£i fn-m+1 + match(im)) U
(found' P 1£i'£n-m+1Umatch(i',m) Unomatch(i'-1)
where
match(i k)
nomatch(i)

(P[1..k] = TTi..i+k-1])
(" i|1£kEi-match(i,m))

Chapter 34 in CLR presents three algorithms (Naive, Knuth-Morris-
Pratt, Boyer-Moore) using the theory of finite state machines.
Here we partly follow an alternative presentation of Wirth,
Algorithms and Data Structures, Prentice-Hall, 1986, pp 56 - 69. A
copy of that part of the book is in the library.
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Naive String Search ...

The most straightforward solution is to start comparing P with T at
position 1 and in case of mismatch shift the position of P:

e

— it e T - b

i- 0;found - false
while ~found Ui+ m £ ndo
D> invariant: nomatch(i)
i~ i+1
found = match(i, m)

It [t ] . [ [t

For the invariant, we observe that nomatch(0) holds initially and
that nomatch(i-1) and ~match(i,m) implies nomatch(i). The loop
terminates with the postcondition (assuming m £ n):

nomatch(i) U ((-found U i+m > n) U (found U i+m £ nU match(i,m))
178
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.. Naive String Search

The statement found = match(i,m) needs to be refined to a loop:
i~ 0; found - false
while -found Ui + m £ ndo
> invariant: nomatch(i)
i-i+l1;j- 0
while j<m UP[j+1]= T[i + j]1 do
D> invariant: match(i,j)
Jm i+l
found = j=m
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Analysis of Naive String Search

In the average case, if the characters are drawn from an alphabet
with two or more characters and occur randomly, we can expect a
mismatch after less than two comparisons (cf. analysis of table
search and linear search and CRL exercise 34.1-4). Hence an upper
bound of the average number of comparisons is

2(n-m+1)
which makes an average case running time of O(n - m).

For the worst case, suppose P consists of m-1 characters "a"
followed by character "b" and

- T consists of n characters "a", or

- T consists of n -1 characters "a" followed by "b".
In both cases, (n - m + 1) m comparisons are necessary, making a
running time of Q((n - m + 1) m).
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Improving Naive String Search ...

+  The idea is to use the information provided by a partial match to
avoid further comparisons which cannot possibly succeed:

Text | lalb]c]. ]
Pattern a6 ]d] ]
Shifted Pattern [alb|d]| |
Shifted Again lalofd] |
Text | lalb]c]. ]
Pattern lalb|d] ]
Shifted Pattern lalb|d]| ]
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.. Improving Naive String Search

Text [ fafafec].]

Pattern n“n
Shifted Pattern nn“
Shifted Again ““n

Text |...|a|b|c|a|b|d|...|
Pattern |a|b|c|a|b|c|
Shifted Pattern |a|b|c|a|b|c|

In other words, we could shift faster and make fewer
comparisons if we know the repetitive structure of the pattern! 182
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Structure of Knuth-Morris-Pratt Search ..

T [fafbfc].]
P [afb|d]
IE!

At each position i in the text T, we compare T[i] with one or more
elements of P;

The index i used for comparisons with T[i] is either incremented by
one or remains the same; it is never decremented.

The index j used for comparisons with P[j+1] is either incremented
by one or decremented by a value such that it becomes greater
than or equal to zero.

183

.. Structure of Knuth-Morris-Pratt Search

The outer loop is responsible for incrementing i by one and, in case
of a match, incrementing j by one. The inner loop is responsible for
shifting P to the right, if possible:

i- 0 . J - 0
while j<m Ui<ndo
> invariant: nomatch(i-j) U match(i-j+1, j)

i- il D[1..m]: int
while j >0 UP[j+1]* T[i] do

j- D j <-- D[]
if P[j+1] = T[i] then

gt

found = (j=m)

D is still unspecified. However, we note that if D < j, then the
assignment j = D will shift P to the right! If D = O, then the

pattern is shifted beyond its current position.
184
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 D[1..m]: int

 j <-- D[j]
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Determining Maximal Shifts |

The idea of D is that it depends only on the pattern P and the
position j, where 1 £ j£ m. Hence it can be represented by D = d[j],
where d is an array of type:

d:array [1..m] of integer

For example, for P = "ababc" we have for P="ababa"?
d[1]=0,d[2]=0,d[3]=1,d[4]=2,d[5]=0

In general, d[j]is the length of the longest prefix of P[1..jlwhichis  |f...... abcdefy.......
also a suffix of P[1..j]: abodefgy =7
d[j] = max{k | O £ k < JUP[1..k] = P[j-k+1..j]} abal... d[j] =3

Computing d amounts to searching strings, for which we can use
Knuth-Morris-Pratt search itself.
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| Knuth-Morris-Pratt Search |
aba@aba®... d[9]=4 d[4]=1
E[lcloin pcl)”e i abaa... d[10]=4+1=5?
ko 0 ab... d[10]=d[4]+1
forj- 2tom =27
while k>0 UP[k+1]* P[j] do J1d[j-1] = Ki/
k- d[k]
if P[k+1] = P[j] then
k- k+l
dijl- k
> search for P
i=- 0; J -0
while j<m Ui<ndo How would you analyze
i- vl this algorithm?How
while j >0 UP[j+1]* T[i]do manycomparisons
i~ dij] wouldit requirein the
if P[j+1] = T[i] then worstcase?
i
foundJ—- (:jl =m) 186
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          abaaa...     d[10] = 4+1 = 5?
                ab...    d[10] = d[4]+1 
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Principle of Boyer-Moore Search

Knuth-Morris-Pratt search yields a genuine benefit only in the case
of a partial mismatch, which is comparatively rare. Boyer-Moore
Search improves also the average case.

The idea is to start comparing the pattern with the text at the end
of the pattern. In case of a mismatch, the pattern can immediately
be shifted to the right by a precomputed number of positions.
Example where the compared characters are underlined:

Hool a- Hool a girls |ike Hooligans

Hool i gan
Hool i gan
Hool i gan
Hool i gan
Hool i gan

187

Structure of Boyer-Moore Search |

Let match(i,j) mean that when P[1] is shifted over T[i], then all
elements to the right of P[j] match the corresponding ones in T; let
nomatch(i) mean that there is no complete match up to T[il:
match(i,j) = (P[j+1.m]l=T[i+j..i+m-1])
nomatch(i) = (" k| 1£KkEi--match(i, 0))

i= m
while i £ndo
D> invariant: nomatch(i - m)
jomik-i
while j >0 UP[j] = T[k] do
> invariant: match(i-m+1, j)Ui-m=k- |
joj-1:k= k-1

if j=0 then
return k + 1
i~ i+ d[T[il]
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| Maximal Shifts

d[x] is defined to be the rightmost occurrence of character x in P
from the end (not including the last character):

(" klm-d[x]<k<m-P[k]?! x)

For example, if P = "abc", then

dla]l=2,d[b]=1,d[c]=3,d[x]=3forallx® a,b,c

If P ="aab", then

dlal=1,d[b]=3,d[x]=3 forallxt a,b

If P ="aba", then

dla]=2,d[b]=1,d[x]=3 forallx* a,b
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Boyer-Moore Search

Boyer-Moore-Search (P, T)

for each character x do
dix]- m

forj- 1tom-1do
d[P[jl]-~ m-j

= m

while i £ndo
jomik-i
while j > 0 UP[j]= T[k] do

J7j-1:;k= k-1

if j= 0 then
return k + 1
i~ i+ d[TLN

What is the best
and worst case
running time?
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Comparison of String Search Algorithms

Let m be the length of the pattern and n the length of the text.
We assume that the size of the alphabet is a constant (otherwise
we would need to add the size to the running time of Boyer-Moore).
We are interested in the average and worst case running times in
case when the pattern does not occur in the text :

Naive Knuth-Morris-Pratt  Boyer-Moore
average Q(n) Q(n + m) Q(n/ m)
worst Q(n'm) Q(n+m) Q(n*m)

Combination of Knuth-Morris-Pratt and Boyer-Moore is possible by
building tables d1 and d2, respectively, and taking the larger shift
of both. This way we achieve Q(n / m) in average and Q(n + m) in the
worst case. However, the additional bookkeeping makes the gain
questionable in practice.
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