3. Recurrences

A recurrence is an equation defining a function f(n) recursively in
terms of smaller values of n.

E.g., the running time of Merge-Sort, if n is a power of 2, is:
T(n) = Q(1) ifn=1
T(n)= 2 T(n/2)+Q(n) ifn>1

For arbitrary n > 0, the running time is

T = Q) ifn=1
T(n) = T(&/20) + T(&n/20)+ Q (n) ifn>1 Why? |

We use 3 methods for solving recurrences
- Substitution Method
- Iteration Method
- Master Method

44

Floors and Ceilings

For any real number x,

éx(= greatest integer less than or equal to x
éxu= least integer greater than or equal to x

For any integer n,
én/20+én/20=n

For integersa® Oand b1 O,

én / au/ bu=én/ (ab)u
&n/al/ bl=é/ (ab)i

45

Logarithms

Definition: For any a, b , c:
logpa=c U b°=a
We use:
Ign=log, a (binary logarithm)
Inn=log, a (natural logarithm)
Properties (writing log for a logarithm with arbitrary base):
a = plogba
log (ab)= loga+logb
loga” = nloga
log,a = (log.a)/ (log.b) (*)
log (1/a)= -loga
logpa = 1/log, b
alosbn = plogpa
(*) implies that e.g. Q (Ig n) = Q (log, n) for any c.
The base of the logarithm is irrelevant for asymptotic analysis!

46

Forward Substitution Method ...

U Guess a solution.
U Verify by induction.
For example, for
T(n)=2TEn/20)+nand T(1) =1
we guess T(n) = O(n Ig n)
Induction Goal:
T(n) £ cnlgn, for some c and all n > n,
Induction Hypothesis:
T(en/ 200 Ecén/ 20lgén/ 20
Proof of Induction Goal:

T(n)=2T(en/ 20)+ n
£2(cén/20lgéen/ 20)+n
£cnlg(n/2)+n
=cnlgn-cnlg2+n
=chnlgn-cn+n
£cnlgn provided c 31

47

.. Forward Substitution Method

So far the restrictions on ¢, nyare only c 3 1
Base Case:
T(hg)£Ecnlgn
Here, n, = 1 does hot work, since T(1)=1butc1llg1=0.
However, taking n, = 2 we have:
T(2)= 4 2lg2=2
so
T@)Ec2
holds provided c 3 2.

48

Summations...

Linearity:
@A k[1EkEn-ca +by)
= c@k|1EkEna)+(@ k|1£KEn-by)
Use for asymptotic notation:
@AKkITEKEN-Q(f(k)) = Q@A kI1EKEnN-f(k)
In this equation, the Q-notation on the left hand side applies to
variable k, but on the right-hand side, it applies to n.

Arithmetic Series:
@ Kk|1EKEN-K)

nin+1)/2
Q(n?)

Geometric (or Exponential) Series: If x* 1then
@AK|OEKEN X = (x™-1)/(x-1)

49

.. Summations

Infinite Decreasing Geometric Series: If |x| <1 then
AKk|OEk<¥Y X)) = 1/(1-%)

Harmonic Series:

H, = 1+1/2+1/3+..+1/n
= Bk|1E£kEn-1/Kk)
= Inn+0(Q)

Further series obtained by integrating or differentiating the
formulas above.

For example, by differentiating the infinite decreasing geometric
series and multiplying with x we get:

BK|OEK<¥ - kx) = x/(1-x)?

50

Iteration (Backward Substitution) Method ...

U Express the recurrence as a summation of terms.
U Use techniques for summations.

For example, we iterate
T(n) = 3T(en/40)+n
as follows:
T(n) = n+3 T(en/ 40)
n+3(en/ 40+ 3 T(en/ 160)
n+3(én/ 40+ 3 (&n/ 160+ 3 T(en / 640))
= n+3én/40+9én/ 160+ 27 T(én / 640)
The i-th term in the series is 3' én / 41
We have to iterate until én / 40= 1, since T(1) = Q(1),
or equivalently until i > log, n.

51

| ... Iteration (Backward Substitution) Method

We continue:
T(n) = n+3é&n/40+9én/ 160+ 27 T(en/ 640)

£ n+3n/4+9n/16+27n/ 64+ .. + 3994 Q1)
{as a'°%" = plogba}

£ n(Ai|O0ELi<¥ - (3/4))+Q(ned)
{decreasing geometric series:
Ak|OEk<¥ +x) = 1/(1-x)}

£ 4 n+ Q(nl943)
{log, 3< 1}

= 4n+o0(n)

= O(n)

| The Master Theorem

Let a3 1and b > 1 be constants and f(n) be a function. Assume
T(n) = a T(n/b) + f(n)
where n/b stands for én/blor én/bl Then
- T(n) = Q(n"%7) if f(n) = O(n'°%**) for some >0,
= T(n) = Q(n'"%° Ig n) if f(n) = Q(n'"%"°)
- T(n) = Q(f(n)) if f(n) = W(n'°%>*) for some e> 0 and if
a f(n/b) £ c f(n) for some c < 1 and sufficiently large n.

Note 1: This theorem can be applied to divide-and-conquer
algorithms, which are all of the form

T(n) = a T(n/b) + D(n) + C(n)
where D(n) is the cost of dividing and C(n) the cost of combining.

Note 2: Not all possible cases are covered by the theorem.

| Merge Sort with the Master Theorem

For arbitrary n > 0, the running time of Merge-Sort is

T(n) = Q1) ifn=1
T(n) = T(&/20) + T(en/20)+ Q(n) ifn>1
We can approximate this from below and above by
T(n) = 2 T(en/20) + Q(n) ifn>1
T(n) = 2 T(en/20) + Q(n) ifn>1

respectively. According to the Master Theorem, both have the
same solution which we get by taking

a=2,b=2,f(n)=Q(n).
Since h = n°%?, the second case applies and we get:
T(n) =Q(n Ig n)

54

Binary Search with the Master Theorem

The Master Theorem allows us to ignore the floor or ceiling
function around n/b in T(n/b) in general.

Binary Search has for any n > O a running time of

T(n) = T(n/2) + Q1) .
Hencea=1,b = 2, f(n) = Q(1). Since 1 = n'*%! the second case
applies and we get:

T(n) = Q(lg n)

55

| Towers of Hanoi with the Master Theorem (a bit odd application) |

The Towers of Hanoi algorithm has for any n > O a running time of
T(n)=2T(n-1)+1.
In order to bring this into a form such that the Master Theorem is
applicable, we rename n = Ig m:
T(gm) =2 T(lgm-1)+1
=2T(gm-1g2)+1
=2 T(lg (m/2)) +1
Defining S(m) = T(lg m) we get the new recurrence:
S(m)=25S(m/2)+1
Hencea=2,b =2, f(m) = 1. Since 1 = m"°%?? the first case applies
with e= 1 and we get:

S(m) = Q(m)
With S(m) = T(Ig m) and n = Ig m we finally get:
T(n) = Q(2")

56

