
1

44

3. Recurrences

• A recurrence is an equation defining a function f(n) recursively in
terms of smaller values of n.

• E.g., the running time of Merge-Sort, if n is a power of 2, is:
T(n) = Θ (1) if n = 1
T(n) = 2 T(n/2) + Θ (n) if n > 1

For arbitrary n > 0, the running time is
T(n) = Θ (1) if n = 1
T(n) = T(n/2) + T(n/2) + Θ (n) if n > 1

• We use 3 methods for solving recurrences
– Substitution Method
– Iteration Method
– Master Method

Why?

45

Floors and Ceilings

• For any real number x,
 x = greatest integer less than or equal to x
 x = least integer greater than or equal to x

• For any integer n,
 n / 2 + n / 2 = n

• For integers a ≠ 0 and b ≠ 0,
 n / a / b = n / (a b)
 n / a / b = n / (a b)

2

46

Logarithms

• Definition: For any a, b , c:
logb a = c ⇔ bc = a

• We use:
lg n = log2 a (binary logarithm)
ln n = loge a (natural logarithm)

• Properties (writing log for a logarithm with arbitrary base):
a = blogb a

log (a b)= log a + log b
log an = n log a
logb a = (logc a) / (logc b) (*)
log (1/a)= - log a
logb a = 1/loga b
alogb n = nlogb a

• (*) implies that e.g. Θ (lg n) = Θ (logc n) for any c.
The base of the logarithm is irrelevant for asymptotic analysis!

47

Forward Substitution Method ...

➜ Guess a solution.
➜ Verify by induction.

• For example, for
T(n) = 2 T(n / 2) + n and T(1) = 1

we guess T(n) = O(n lg n)
• Induction Goal:

T(n) ≤ c n lg n, for some c and all n > n0

• Induction Hypothesis:
T(n / 2) ≤ c n / 2 lg n / 2

• Proof of Induction Goal:
 T(n)= 2 T(n / 2) + n

≤ 2 (c n / 2 lg n / 2) + n
≤ c n lg (n / 2) + n
= c n lg n - c n lg 2 + n
= c n lg n - c n + n
≤ c n lg n provided c ≥ 1

3

48

… Forward Substitution Method

• So far the restrictions on c, n0 are only c ≥ 1
• Base Case:

T(n0) ≤ c n lg n
Here, n0 = 1 does not work, since T(1) = 1 but c 1 lg 1 = 0.
However, taking n0 = 2 we have:

T(2) = 4 2 lg 2 = 2
so

T(2) ≤ c 2
holds provided c ≥ 2.

49

Summations…

• Linearity:
(∑ k | 1 ≤ k ≤ n • c ak + bk)
 = c (∑ k | 1 ≤ k ≤ n • ak) + (∑ k | 1 ≤ k ≤ n • bk)

Use for asymptotic notation:
(∑ k | 1 ≤ k ≤ n • Θ(f(k))) = Θ(∑ k | 1 ≤ k ≤ n • f(k))

In this equation, the Θ-notation on the left hand side applies to
variable k, but on the right-hand side, it applies to n.

• Arithmetic Series:
(∑ k | 1 ≤ k ≤ n • k) = n (n + 1) / 2

= Θ(n2)

• Geometric (or Exponential) Series: If x ≠ 1 then
(∑ k | 0 ≤ k ≤ n • xk) = (xn+1 - 1) / (x - 1)

4

50

… Summations

• Infinite Decreasing Geometric Series: If |x| < 1 then
(∑ k | 0 ≤ k < ∞ • xk) = 1 / (1 - x)

• Harmonic Series:
Hn = 1 + 1 / 2 + 1 / 3 + … + 1 / n

= (∑ k | 1 ≤ k ≤ n • 1 / k)
= ln n + O(1)

• Further series obtained by integrating or differentiating the
formulas above.
For example, by differentiating the infinite decreasing geometric
series and multiplying with x we get:

 (∑ k | 0 ≤ k < ∞ • k xk) = x / (1 - x)2

51

Iteration (Backward Substitution) Method …

➜ Express the recurrence as a summation of terms.
➜ Use techniques for summations.

• For example, we iterate
T(n) = 3 T(n / 4) + n

as follows:
 T(n) = n + 3 T(n / 4)

= n + 3 (n / 4 + 3 T(n / 16))
= n + 3 (n / 4 + 3 (n / 16 + 3 T(n / 64)))
= n + 3 n / 4 + 9 n / 16 + 27 T(n / 64)

• The i-th term in the series is 3i n / 4i.
We have to iterate until n / 4i = 1, since T(1) = Θ(1),
or equivalently until i > log4 n.

5

52

… Iteration (Backward Substitution) Method

• We continue:
T(n) = n + 3 n / 4 + 9 n / 16 + 27 T(n / 64)

≤ n + 3 n / 4 + 9 n / 16 + 27 n / 64 + … + 3log4n Θ(1)
{as alogb n = nlogb a }

≤ n (∑ i | 0 ≤ i < ∞ • (3 / 4)i) + Θ(nlog43)
{decreasing geometric series:
(∑ k | 0 ≤ k < ∞ • xk) = 1 / (1 - x)}

≤ 4 n + Θ(nlog43)
{log4 3 < 1}

= 4 n + o (n)
= O (n)

53

The Master Theorem

• Let a ≥ 1 and b > 1 be constants and f(n) be a function. Assume
T(n) = a T(n/b) + f(n)

where n/b stands for n/b or n/b. Then
– T(n) = Θ(nlogba) if f(n) = O(nlogba-ε) for some ε > 0,
– T(n) = Θ(nlogba lg n) if f(n) = Θ(nlogba)
– T(n) = Θ(f(n)) if f(n) = Ω(nlogba+ε) for some ε > 0 and if

a f(n/b) ≤ c f(n) for some c < 1 and sufficiently large n.

• Note 1: This theorem can be applied to divide-and-conquer
algorithms, which are all of the form

T(n) = a T(n/b) + D(n) + C(n)
where D(n) is the cost of dividing and C(n) the cost of combining.

• Note 2: Not all possible cases are covered by the theorem.

6

54

Merge Sort with the Master Theorem

• For arbitrary n > 0, the running time of Merge-Sort is
T(n) = Θ(1) if n = 1
T(n) = T(n/2) + T(n/2) + Θ(n) if n > 1

We can approximate this from below and above by
T(n) = 2 T(n/2) + Θ(n) if n > 1
T(n) = 2 T(n/2) + Θ(n) if n > 1

respectively. According to the Master Theorem, both have the
same solution which we get by taking

a = 2, b = 2, f(n) = Θ(n) .
Since n = nlog22, the second case applies and we get:

 T(n) = Θ(n lg n)

55

Binary Search with the Master Theorem

• The Master Theorem allows us to ignore the floor or ceiling
function around n/b in T(n/b) in general.

• Binary Search has for any n > 0 a running time of
T(n) = T(n/2) + Θ(1) .

Hence a = 1, b = 2, f(n) = Θ(1). Since 1 = nlog21 the second case
applies and we get:

T(n) = Θ(lg n)

7

56

Towers of Hanoi with the Master Theorem (a bit odd application)

• The Towers of Hanoi algorithm has for any n > 0 a running time of
T(n) = 2 T(n–1) + 1 .

In order to bring this into a form such that the Master Theorem is
applicable, we rename n = lg m:

T(lg m) = 2 T(lg m – 1) + 1
= 2 T(lg m – lg 2) + 1
= 2 T(lg (m/2)) + 1

Defining S(m) = T(lg m) we get the new recurrence:
S(m) = 2 S(m/2) + 1

Hence a = 2, b = 2, f(m) = 1. Since 1 = mlog22–1 the first case applies
with ε = 1 and we get:

S(m) = Θ(m)
With S(m) = T(lg m) and n = lg m we finally get:

T(n) = Θ(2n)

