3. Recurrences

- A recurrence is an equation defining a function $f(n)$ recursively in terms of smaller values of n.
- E.g., the running time of Merge-Sort, if n is a power of 2 , is:

$$
\begin{array}{ll}
T(n)=\Theta(1) & \text { if } n=1 \\
T(n)=2 T(n / 2)+\Theta(n) & \text { if } n>1
\end{array}
$$

For arbitrary $n>0$, the running time is

$$
\begin{array}{ll}
T(n)=\Theta(1) & \text { if } n=1 \\
T(n)=T(\lceil n / 2\rceil)+T(\lfloor n / 2\rfloor)+\Theta(n) & \text { if } n>1
\end{array}
$$

- We use 3 methods for solving recurrences
- Substitution Method
- Iteration Method
- Master Method

Floors and Ceilings

- For any real number x,
$\lfloor x\rfloor=$ greatest integer less than or equal to x
$\lceil x\rceil=$ least integer greater than or equal to x
- For any integer n,

$$
\lceil n / 2\rceil+\lfloor n / 2\rfloor=n
$$

- For integers $a \neq 0$ and $b \neq 0$,

$$
\begin{aligned}
& \lceil\lceil n / a\rceil / b\rceil=\lceil n /(a b) \\
& \lfloor n / a\rfloor / b\rfloor=\lfloor n /(a b)\rfloor
\end{aligned}
$$

Logarithms

- Definition: For any a, b, c :

$$
\log _{b} a=c \quad \Leftrightarrow \quad b^{c}=a
$$

- We use:

$\lg n=\log _{2} a$	(binary logarithm)
In $n=\log _{e} a$	(natural logarithm)

- Properties (writing log for a logarithm with arbitrary base):
$a=b^{\log _{b} a}$
$\log (a b)=\log a+\log b$
$\log a^{n}=n \log a$
$\log _{b} a=\left(\log _{c} a\right) /\left(\log _{c} b\right)$
$\log (1 / a)=-\log a$
$\log _{b} a=1 / \log _{a} b$
$a^{\log _{b} n}=n^{\log _{b} a}$
- (*) implies that e.g. $\Theta(\lg n)=\Theta\left(\log _{c} n\right)$ for any c.

The base of the logarithm is irrelevant for asymptotic analysis!

Forward Substitution Method
\rightarrow Guess a solution.
\rightarrow Verify by induction.

- For example, for

$$
T(n)=2 T(\lfloor n / 2\rfloor)+n \text { and } T(1)=1
$$

we guess $T(n)=O(n \lg n)$

- Induction Goal:

$$
T(n) \leq c n \lg n, \text { for some } c \text { and all } n>n_{0}
$$

- Induction Hypothesis:

$$
T(\lfloor n / 2\rfloor) \leq c\lfloor n / 2\rfloor \lg \lfloor n / 2\rfloor
$$

- Proof of Induction Goal:

$$
\begin{aligned}
T(n) & =2 T(\operatorname{Ln} / 2\rfloor)+n \\
& \leq 2(c \operatorname{Ln} / 2\rfloor \lg \operatorname{Ln} / 2\rfloor)+n \\
& \leq c n \lg (n / 2)+n \\
& =c n \lg n-c n \lg 2+n \\
& =c n \lg n-c n+n \\
& \leq c n \lg n \quad \text { provided } c \geq 1
\end{aligned}
$$

Forward Substitution Method

- So far the restrictions on c, n_{0} are only $c \geq 1$
- Base Case:

$$
T\left(n_{0}\right) \leq c n \lg n
$$

Here, $n_{0}=1$ does not work, since $T(1)=1$ but $c 1 \lg 1=0$.
However, taking $n_{0}=2$ we have:

$$
T(2)=4 \quad 2 \lg 2=2
$$

so

$$
T(2) \leq c 2
$$

holds provided $c \geq 2$.

Summations...

- Linearity:

$$
\begin{aligned}
& \left(\sum k \mid 1 \leq k \leq n \cdot c a_{k}+b_{k}\right) \\
& \quad=c\left(\sum k \mid 1 \leq k \leq n \cdot a_{k}\right)+\left(\sum k \mid 1 \leq k \leq n \cdot b_{k}\right)
\end{aligned}
$$

Use for asymptotic notation:
$(\Sigma k \mid 1 \leq k \leq n \cdot \Theta(f(k)))=\Theta\left(\sum k \mid 1 \leq k \leq n \cdot f(k)\right)$
In this equation, the Θ-notation on the left hand side applies to variable k, but on the right-hand side, it applies to n.

- Arithmetic Series:

$$
\begin{aligned}
\left(\sum k \mid 1 \leq k \leq n \cdot k\right) & =n(n+1) / 2 \\
& =\Theta\left(n^{2}\right)
\end{aligned}
$$

- Geometric (or Exponential) Series: If $x \neq 1$ then

$$
\left(\sum \mathrm{k} \mid 0 \leq \mathrm{k} \leq n \cdot x^{k}\right)=\left(x^{n+1}-1\right) /(x-1)
$$

Summations

- Infinite Decreasing Geometric Series: If $|x|<1$ then

$$
\left(\sum \mathrm{k} \mid 0 \leq \mathrm{k}<\infty \cdot x^{\mathrm{k}}\right)=1 /(1-x)
$$

- Harmonic Series:

$$
\begin{aligned}
H_{n} & =1+1 / 2+1 / 3+\ldots+1 / n \\
& =\left(\sum k \mid 1 \leq k \leq n \cdot 1 / k\right) \\
& =\ln n+O(1)
\end{aligned}
$$

- Further series obtained by integrating or differentiating the formulas above.
For example, by differentiating the infinite decreasing geometric series and multiplying with x we get:
$\left(\sum \mathrm{k} \mid 0 \leq \mathrm{k}<\infty \cdot \mathrm{k} x^{\mathrm{k}}\right)=\mathrm{x} /(1-\mathrm{x})^{2}$

Iteration (Backward Substitution) Method

\rightarrow Express the recurrence as a summation of terms.
\rightarrow Use techniques for summations.

- For example, we iterate

$$
T(n)=3 T(\lfloor n / 4\rfloor)+n
$$

as follows:

$$
\begin{aligned}
T(n) & =n+3 T(\lfloor n / 4\rfloor) \\
& =n+3(\lfloor n / 4\rfloor+3 T(\lfloor n / 16\rfloor)) \\
& =n+3(\lfloor n / 4\rfloor+3(\lfloor n / 16\rfloor+3 T(\lfloor n / 64\rfloor))) \\
& =n+3\lfloor n / 4\rfloor+9\lfloor n / 16\rfloor+27 T(\lfloor n / 64\rfloor)
\end{aligned}
$$

- The i-th term in the series is $3^{i}\left\lfloor n / 4^{i}\right\rfloor$.

We have to iterate until $\left\lfloor n / 4^{i}\right\rfloor=1$, since $T(1)=\Theta(1)$, or equivalently until $i>\log _{4} n$.

Iteration (Backward Substitution) Method

- We continue:
$T(n)=n+3\lfloor n / 4\rfloor+9\lfloor n / 16\rfloor+27 T(\lfloor n / 64\rfloor)$
$\leq n+3 n / 4+9 n / 16+27 n / 64+\ldots+3^{\log 4 n} \Theta(1)$
$\left\{a s a^{\log _{b} n}=n^{\log _{b} a}\right\}$
$\leq n\left(\sum i \mid 0 \leq i<\infty \cdot(3 / 4)^{i}\right)+\Theta\left(n^{\log 43}\right)$
\{decreasing geometric series:
$\left.\left(\sum \mathrm{k} \mid 0 \leq \mathrm{k}<\infty \cdot x^{\mathrm{k}}\right)=1 /(1-x)\right\}$
$\leq 4 n+\Theta\left(n^{\log 43}\right)$
$\left\{\log _{4} 3<1\right\}$
$=4 n+o(n)$
$=O(n)$

The Master Theorem

- Let $a \geq 1$ and $b>1$ be constants and $f(n)$ be a function. Assume

$$
T(n)=a T(n / b)+f(n)
$$

where n / b stands for $\lfloor n / b\rfloor$ or $\lceil n / b\rceil$. Then

- $T(n)=\Theta\left(n^{\log _{b} a}\right)$ if $f(n)=O\left(n^{\log _{b} a-\varepsilon}\right)$ for some $\varepsilon>0$,
- $T(n)=\Theta\left(n^{\log _{b} a} \lg n\right)$ if $f(n)=\Theta\left(n^{\log _{b} a}\right)$
- $T(n)=\Theta(f(n))$ if $f(n)=\Omega\left(n^{\log _{b} a+\varepsilon}\right)$ for some $\varepsilon>0$ and if $a f(n / b) \leq c f(n)$ for some $c<1$ and sufficiently large n.
- Note 1: This theorem can be applied to divide-and-conquer algorithms, which are all of the form

$$
T(n)=a T(n / b)+D(n)+C(n)
$$

where $D(n)$ is the cost of dividing and $C(n)$ the cost of combining.

- Note 2: Not all possible cases are covered by the theorem.

Merge Sort with the Master Theorem

- For arbitrary $n>0$, the running time of Merge-Sort is
$T(n)=\Theta(1)$
if $n=1$
$T(n)=T(\lceil n / 2\rceil)+T(\lfloor n / 2\rfloor)+\Theta(n)$
if $n>1$

We can approximate this from below and above by
$T(n)=2 T(\lfloor n / 2\rfloor)+\Theta(n) \quad$ if $n>1$
$T(n)=2 T(\lceil n / 2\rceil)+\Theta(n) \quad$ if $n>1$
respectively. According to the Master Theorem, both have the same solution which we get by taking
$a=2, b=2, f(n)=\Theta(n)$.
Since $n=n^{\log _{2} 2}$, the second case applies and we get:
$T(n)=\Theta(n \lg n)$

Binary Search with the Master Theorem

- The Master Theorem allows us to ignore the floor or ceiling function around n / b in $T(n / b)$ in general.
- Binary Search has for any $n>0$ a running time of

$$
T(n)=T(n / 2)+\Theta(1) .
$$

Hence $a=1, b=2, f(n)=\Theta(1)$. Since $1=n^{\log _{2} 1}$ the second case applies and we get:
$T(n)=\Theta(\lg n)$

Towers of Hanoi with the Master Theorem (a bit odd application)

- The Towers of Hanoi algorithm has for any $n>0$ a running time of $T(n)=2 T(n-1)+1$.

In order to bring this into a form such that the Master Theorem is applicable, we rename $n=\lg m$:
$T(\lg m)=2 T(\lg m-1)+1$

$$
\begin{aligned}
& =2 T(\lg m-\lg 2)+1 \\
& =2 T(\lg (m / 2))+1
\end{aligned}
$$

Defining $S(m)=T(\lg m)$ we get the new recurrence:
$S(m)=2 S(m / 2)+1$
Hence $a=2, b=2, f(m)=1$. Since $1=m^{\log _{2} 2-1}$ the first case applies with $\varepsilon=1$ and we get:
$S(m)=\Theta(m)$
With $S(m)=T(\lg m)$ and $n=\lg m$ we finally get:
$T(n)=\Theta\left(2^{n}\right)$

