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Abstract—The vast computing power of GPUs makes them
an attractive platform for accelerating large scale data parallel
computations such as popular graph processing applications.
However, the inherent irregularity and large sizes of real-
world power law graphs makes effective use of GPUs a
major challenge. In this paper we develop techniques that
greatly enhance the performance and scalability of vertex-
centric graph processing on GPUs. First, we present Warp
Segmentation, a novel method that greatly enhances GPU
device utilization by dynamically assigning appropriate number
of SIMD threads to process a vertex with irregular-sized
neighbors while employing compact CSR representation to
maximize the graph size that can be kept inside the GPU
global memory. Prior works can either maximize graph sizes
(VWC [11] uses the CSR representation) or device utilization
(e.g., CuSha [13] uses the CW representation; however, CW
is roughly 2.5x the size of CSR). Second, we further scale
graph processing to make use of multiple GPUs while proposing
Vertex Refinement to address the challenge of judiciously using
the limited bandwidth available for transferring data between
GPUs via the PCIe bus. Vertex refinement employs parallel
binary prefix sum to dynamically collect only the updated
boundary vertices inside GPUs’ outbox buffers for dramatically
reducing inter-GPU data transfer volume. Whereas existing
multi-GPU techniques (Medusa [31], TOTEM [7]) perform
high degree of wasteful vertex transfers. On a single GPU,
our framework delivers average speedups of 1.29x to 2.80x
over VWC. When scaled to multiple GPUs, our framework
achieves up to 2.71x performance improvement compared to
inter-GPU vertex communication schemes used by other multi-
GPU techniques (i.e., Medusa, TOTEM).

Keywords-Graphs; Power Law Graphs; GPU; Irregular
Computations; Scalability; Multi-GPU;

I. INTRODUCTION

Due to their ability to represent relationships between

entities, graphs have become the building blocks of many

high performance data analysis algorithms. A wide variety

of graph algorithms can be expressed in an iterative form –

during each iteration vertices update their state based upon

states of neighbors connected by edges using a computation

procedure until the graph state becomes stable. The inherent

data parallelism in an iterative graph algorithm makes many-

core processors with underlying SIMD hardware such as

GPUs an attractive platform for accelerating the algorithms.

However, efficient mapping of real-world power law graphs

with irregularities to symmetric GPU architecture is a chal-

lenging task [19].

In this paper we present techniques that maximize the

scalability and performance of vertex-centric graph process-

ing on multi-GPU systems by fully exploiting the available

resources as follows:

SIMD hardware – The irregular nature of power law

graphs makes it difficult to balance load across threads

leading to underutilization of SIMD resources. We address

the device underutilization problem of a GPU by developing

Warp Segmentation that dynamically assigns appropriate

number of SIMD threads to process a vertex with irregular-

sized neighbors. Our experiments show that the warp exe-

cution efficiency of warp segmentation exceeds 70% while

for the well known VWC [11] technique it is around 40%.

GPU global memory – For scaling performance to large

graphs, they must be held in the global memory of the GPUs.

To maximize the graph sizes that can be held in global

memories, a compact graph representation must be used.

Therefore Warp Segmentation makes use of the compact

CSR representation. To tolerate the long latency of non-

coalesced memory accesses that arise while accessing the

neighbors of a vertex in CSR, warp segmentation keeps the

GPU cores busy by scheduling other useful operations that

compute the segment size and lane’s intra-segment index.

Inter-GPU communication bandwidth – Since large

graphs must be distributed across the global memories of

multiple GPUs, processing at each GPU requires values of

neighboring vertices that reside on other GPUs. Here we

must make judicious use of the limited bandwidth available

for transferring data between GPUs via the PCIe bus. We

introduce an approach based upon parallel binary prefix

sum that dynamically limits the inter-GPU transfers to only

include updated vertices. Existing multi-GPU techniques

perform high degree of wasteful vertex value transfers.

Our solution maximizes the graph sizes for which high

performance can be achieved by fully utilizing GPU re-

sources of SIMD hardware, memory, and bandwidth.

Let us briefly consider the related works and see how our

approach overcomes their drawbacks. First, we consider the

prominent single GPU techniques for vertex-centric graph

processing, namely VWC [11] and CuSha [13]. Virtual-Warp

Centric (VWC) [11] is the state-of-the-art method that uses

the compact CSR representation and is inevitably prone to

load imbalance when processing real-world graphs due to

high variation in degrees of vertices. When the size of the
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virtual warp is less than the number of neighbors for a

vertex, the virtual warp needs to iterate over the neighbors

forcing other virtual warps within the warp that are assigned

to vertices with fewer neighbors to stay inactive. When the

size of the virtual warp is greater than the the size of the

neighbors for a vertex, a great portion of the virtual warp

is disabled. Both cases lead to underutilization of SIMD

resources and poor warp execution efficiency. In addition,

discovering the best virtual warp size for every graph and

every expressed graph algorithm requires multiple tries.

CuSha [13] addresses the drawbacks of VWC, namely warp

execution inefficiencies and non-coalesced accesses, but at

the cost of using G-Shards and CW graph representations

which are 2x-2.5x larger than the CSR representation due

to vertex replication. In contrast, Warp Segmentation uses
the compact CSR representation while delivering high SIMD
hardware utilization. In warp segmentation the neighbors

of warp-assigned vertices are grouped into segments. Warp

lanes then get assigned to these neighbors and recognize

their position inside the segment and the segment size by

first performing a quick binary search on the fast shared

memory content and then comparing their edge index with

corresponding neighbor indices. When the segment size

and the position in the segment are known for the lanes,

user-defined reduction can be efficiently performed between

neighbors of a vertex without introducing any intra-warp

load imbalance. When processing on a single device, our

framework employs asynchronous parallelism paradigm that

allows simultaneous program execution and data transfer in

an iteration. It also permits visibility of the updated neighbor

vertex content, enabling a faster convergence.

Next let us consider the related works on multi-GPU graph

processing [31] [7]. Given a partitioning of a graph across

multiple GPUs, these techniques underestimate the impor-

tance of efficient inter-device communication and do not

effectively utilize the PCIe bandwidth. This is a significant

problem because the PCIe bus, as the path to communicate

data from one GPU to other GPUs, is tens of times slower

than GPU global memory. Previous multi-GPU techniques

either copy the whole vertex set belonging to one GPU to

other GPUs at every iteration [31], or they identify boundary

vertices in a pre-processing stage and make GPUs exchange

these subsets of vertices in every iteration [7] [8]. In both

approaches, a great number of vertices that are exchanged

between devices is redundant. In contrast, we propose Vertex
Refinement, a new strategy that enables our framework
to efficiently scale to multiple GPUs. Vertex Refinement

refines and transfers only those vertices that are updated

in the previous round and are needed by other devices. It

consists of two stages: online and offline. In the offline stage,

boundary vertices are recognized and marked during pre-

processing. In the online stage, we exploit parallel binary

prefix sum to refine updated vertices from not-updated ones

on-the-fly. A vertex is transferred to another device only

if it is marked and refined by the online stage. Thus,

Vertex Refinement eliminates the communication overhead

and provides higher multi-GPU performance.

The key contributions of this work are:

• We introduce Warp Segmentation (WS), a novel tech-

nique for compact graph representations that overcomes

SIMD underutilization during graph processing. On

average, WS outperforms VWC by 1.29x−2.80x.

• We introduce Vertex Refinement that enables effective

scaling of the graph processing procedure to multiple

GPUs. It efficiently filters updated vertices of a GPU

on-the-fly via parallel binary prefix sum and provides

exclusive speedup of up to 2.71x over other multi-GPU

vertex communication schemes.

• We implemented a framework that embeds above items

and enables users to easily express desired iterative

graph algorithm and execute it on one or multiple

CUDA-enabled GPUs.

The remainder of the paper is organized as follows. In

Section II, we present Warp Segmentation and in Section III

we introduce the framework interface. Then in Section IV,

we describe efficient scaling of our framework to multiple

GPUs via Vertex Refinement. In Section V, we present the

experimental evaluation. Sections VI and VII give related

work and conclusion respectively.

II. WARP SEGMENTATION FOR SIMD-EFFICIENCY

Here we present Warp Segmentation (WS) that eliminates

intra-warp load imbalance and enhances execution efficiency

for processing a graph in CSR form. CSR is a compact

form suitable for representing large and sparse graphs in a

minimum space. Due to its space-efficiency, CSR is a good

choice to hold large graphs inside the limited GPU memory.

As Figure 1 shows, CSR consists of 4 arrays:

• VertexValues holds the content of the ith vertex in its

ith element.

• NbrVertexIndices holds the indices for a vertex’s neigh-

bors in a contiguous fashion.

• NbrIndices holds a prefix sum of the number of neigh-

bors for vertices. The ith vertex’s neighbors inside

NbrVertexIndices start at NbrIndices[i] and end before

NbrIndices[i+ 1].
• EdgeValues holds the edge values corresponding to the

neighbors inside NbrVertexIndices.

To motivate the need for WS, we first describe the

drawbacks of the Virtual-Warp Centric (VWC) [11] method

that also uses the CSR representation.

Drawbacks of VWC: VWC divides the SIMD group

(warp, in CUDA terms) with the physical length of 32
into smaller virtual warps with fixed lengths (2, 4, 8, 16,

or 32). Virtual warp size is kept the same throughout the

graph processing. Each virtual warp is assigned to process

one vertex and its incoming edges. As an enhancement
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Figure 1. A graph with 5 vertices and 8 edges and its CSR representation.

of the original work [11], Khorasani et al. proposed a

generalized form of VWC in [13] in which threads of the

virtual warp are involved in reduction over the computed

values. However, real-world graphs often exhibit power-law

degree distribution, i.e. the number of neighbors a vertex

owns vary greatly from one vertex to another. Thus, due to

fixed number of virtual lanes involved in a reduction, VWC

unavoidably suffers from underutilization:

– If the virtual warp is smaller than the vertex’s number of

neighbors, it will have to iterate over the vertex’s connected

edges hence dragging with it other virtual warps that have

already finished their jobs (see the example in Figure 2(a));

and

– If the virtual warp has a size that is larger than the

number of neighbors for a vertex, a portion of virtual

warp’s lanes stays idle during the reduction leading to

underutilization (see the example in Figure 2(b)).

This motivates the need for a technique that, independent
of inner graph structure, takes minimum number of reduction
steps in a SIMD environment, i.e. Warp Segmentation. Note

that VWC suffers from the SIMD load imbalance in the

same way PRAM-style thread assignment [9] does. In both

PRAM-style and VWC, assigning fixed number of SIMD

threads to process one vertex and its edges leads to thread-

idling due to highly irregular vertex degree distribution. This

fixed number in the former is exactly one while in the latter

it can be a power of 2.

Boosting SIMD Utilization via Warp Segmentation:
To remedy the drawbacks of fixed-sized virtual warps, we

propose Warp Segmentation (WS) technique. In WS, a warp

is assigned to a group of 32 consecutive vertices and their

connected edges. When warp lanes process edges iteratively,

those that process edges belonging to one vertex—i.e. having

the same destination index—form a segment. By knowing

the segment size and the index inside the segment, lanes

can participate in the appropriate reduction of segment,

minimizing the total number of reduction steps.

Figure 2(c) shows the reduction in WS in an example

scenario. In this example, first six lanes belong to one

segment and two last lanes belong to another. The minimum

number of reduction steps in this case is �log2 6� = 3
which is also the case in WS. As Figure 2 shows, on-the-fly

efficient reduction procedure in WS leads to better utilization

of SIMD resources compared to VWC. In addition, WS does

not need any pre-processing or trial-and-error for the best

configuration determination.
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(a) VWC with Virtual Warp size 2.
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(b) VWC with Virtual Warp size 4.
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(c) Warp Segmentation.

Figure 2. Reduction in WS and VWC with assumed warp size of 8 and
first 6 neighbors belonging to one vertex and last 2 belonging to another.
R denotes reduction between vertex’s connected neighbors and RF refers
to reduction with the vertex value in shared memory.

The key feature of WS is its fast determination of the

segment a lane belongs to and the index of the lane within

the segment. The step-by-step approach shown in Figure 3

illustrates this. Warp lanes perform a binary search over

NbrIndices elements for their assigned edge index. Since

NbrIndices elements are already fetched to the fast shared

memory of the GPU, the binary search is performed quickly.

After log2(warpSize) steps, the starting position of the

resulting search boundary shows the vertex index to which

the edge belongs. Knowing the vertex index, the lane’s index

inside the segment and the segment size is retrieved using

NbrIndices array. The distance of the holding edge index

from the vertex’s corresponding NbrIndices element reveals

the position of the vertex in the segment. The difference

between the holding edge index and the next vertex’s corre-

sponding NbrIndices element, minus one, yields the distance

of the lane from the end of the segment. Addition of these

two distances plus one represents the segment size.

WS is based upon the vertex-centric paradigm where in

every iteration the shared memory serves as a scratchpad

for vertices. The shared memory regions corresponding
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Figure 3. Discovering segment size and the index within segment by warp
lanes for the graph in Figure 1. Warp size is assumed 8.

to vertices are: initialized by the vertex content within

the global memory, modified depending upon the edges

connected to the vertex using appropriate reductions, and

at the end of the iteration, the updated values are pushed

back to the global memory. Two alternatives for the intra-

warp reduction in WS are possible. The first one is to

use atomics to survive the concurrent modifications of

the vertices as in [13]. However, this alternative imposes

heavy use of atomics on shared memory locations on top

of CSR’s inherent non-coalesced neighbor accesses. The

second alternative is processing a group of vertices by one

thread block instead of one warp. However, this approach

necessitates multiple synchronization primitive across the

thread block that degrade the performance. WS assigns

a set of vertices to GPU’s architectural SIMD grouping

(warp) and performs efficient reductions hence it avoids
shared memory atomic operations alongside any explicit
synchronizations throughout the kernel.

The reduction in WS can be viewed as a form of intra-

warp segmented reduction but without a head flags array,

consisting of two main steps. First, warp lanes identify the

vertex index via a fast binary search. Second, they discover

the intra-segment index and the segment size. Also, note

that these two sets of operations are independent from the

neighbor vertex value hence can be used to cover the latency

of the non-coalesced access. The thread exploits instruction

level parallelism by simultaneously executing non-dependent

instructions. Thus, GPU cores are kept busy performing

operations while neighbor’s vertex value is on its way.

III. GRAPH PROCESSING FRAMEWORK FOR WS

Next we describe the framework that uses the graph

processing procedure based on WS. Then, we present the

interface functions that allow easy expression of graph

algorithms by non-expert users.

A. Core Processing Procedure

Figure 4 shows the graph processing procedure. The

convergence of iterative graph processing is controlled via

0. converged = false;
1. while( !converged ) {
2. converged = true;
3. parallel-for warp w {
5. __shared__ Vertex V[ blockDim ];
6. __shared__ Vertex tLocal_V[ blockDim ];
7. __shared__ uint NIdx[ blockDim ];
8. w_V = V + warpOffsetInCTA;
9. w_tLocal_V = tLocal_V + warpOffsetInCTA;
10. w_NIdx = NIdx + warpOffsetInCTA;

/* 1st major step */
11. initVertex( w_V + laneID,

VertexValues + globalTID );
12. w_NIdx[laneID] = NbrIndices[ globalTID ];
13. startEIdx = w_NIdx[ 0 ];
14. endEIdx = NbrIndices[warpGlobalOffset+32];

/* 2nd major step */
15. for( currEIdx = startEIdx + laneID;

currEIdx < endEIdx;
currEIdx += 32 ) {

16. nbrIdx = NbrVertexIndices[ currEIdx ];
17. srcV = VertexValue[ nbrIdx ];
18. belongingVIdx =

binarySearch( currEIdx, w_NIdx );
19. inSegID = min( laneID,

currEIdx - w_NIdx[ belongingVIdx ] );
20. SegSize= inSegID + 1 + min( 31 - laneID,

( ( belongingVIdx == 31 ) ?
endEIdx : w_NIdx[ belongingVIdx + 1 ] )
- currEIdx - 1 );

21. ComputeNbr( srcV, EdgeValues + currEIdx,
w_tLocal_V + laneID );

22. reduceInsideSegment( w_tLocal_V + laneID,
inSegID, SegSize );

23. if( inSegID == 0 )
24. ReduceVertices( w_V + belongingVIdx,

w_tLocal_V + laneID );
25. }

/* 3rd major step */
26. if( IsUpdated( w_tLocal_V + laneID,

VertexValues + globalTID ) ) {
27. atomicExch( VertexValues + globalTID,

w_tLocal_V[ laneID ] );
28. converged = false;
29. }
30. } sync_device_with_host(); }

Figure 4. Framework’s graph processing procedure pseudo-algorithm.
Assumed warp size is 32. Shared memory pointers in the program code
are declared with volatile qualifier.

a variable passed between the host and the device. If no

thread updates this variable, it means the algorithm has

converged and no more iterations are needed. In the outer-

most for loop, according to the WS paradigm, each warp is

assigned to process a contiguous set of vertices with the size

equivalent to the warp size (32 for current CUDA devices).

A warp task during one iteration is to process its assigned

vertices. This task consists of three major steps.

First step: In this step (lines 11 to 14 in Figure 4)

threads of a warp fetch 32 elements of VertexValues and

initialize the designated shared memory region for ver-
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tex values using user-provided initialization function. The

threads also put 32+1 corresponding elements of NbrIndices
into another shared memory buffer. Using the NbrIndices
starting and ending element, warp lanes can recognize the

region within EdgeValues and NbrVertexIndices arrays that

belongs to the assigned group of vertices.

Second step: This step involves iteration of warp lanes

over the elements of the EdgeValues and NbrVertexIndices
arrays region (lines 15 to 25 in Figure 4). Warp lanes

perform a user-provided compute function with the fetched

neighbor vertex value and the connected edge value and

save the outcome in a local shared memory buffer (line

21). Besides, every warp lane must discover which of 32
vertices that are assigned to the warp owns the processed

edge and neighbor. This involves a log 32 = 5 stepped binary

search on fetched edgeIndices in the shared memory (line

18). Using the resulting vertex index, warp lanes can be

grouped into segments, each segment corresponding to one

vertex. Each lane identifies its position within the segment

and the size of the segment it belongs to (lines 19 and 20).

Therefore warp lanes can execute user-provided reduction

function in parallel (line 22). Finally, the first lane in each

segment performs the reduction function over the outcome

and associated element in the shared memory region for

vertex values (lines 23 and 24). Warp lanes perform these

steps iteratively until all the edges for the set of vertices are

processed.

Third step: In this step, the warp lanes compare the

content of designated shared memory region for vertex

values with the corresponding VertexValues elements using

the user-provided function (line 26). If the function returns

true, the vertex content inside the global memory will be

updated.

Once all the vertices are processed, the framework ex-

ecutes another iteration of the algorithm on all the graph

vertices if any vertex in the current iteration is updated.

Graph processing with WS method dynamically determines

the proper size for reduction based on the segment size and it

is guaranteed that the number of steps for parallel reduction

will never exceed five (logwarpSize).

Note that the memory transactions in all the steps are

coalesced except for accessing the neighbor vertex value

(line 17), which is inherent in the compact graph represen-

tation. However by moving “binary search” and “segment

realization” functions (lines 18 to 20) before the neighbor

computation function, we exploit instruction level paral-

lelism to hide the latency associated with the non-coalesced

memory access.

B. Framework Interface

In addition to trivial input/output handling functions, type

definition for the vertex, and the structure definition for the

edge, our framework accepts the following user specified

functions:

0. struct Edge{ uint BW; };
1. typedef unsigned int Vertex;
2. inline __device__ void initVertex(

volatile Vertex* initV, Veretx* V ){
3. *initV = *V;
4. }
5. inline __device__ void ComputeNbr( Vertex SrcV,

Edge* E, volatile Vertex* localV ) {
6. *localV = min( SrcV, E->BW );
7. }
8. inline __device__ void ReduceVertices(

volatile Vertex* firstV, Veretx* secondV ){
9. *firstV = max( *firstV, *secondV );
10. }
11. inline __device__ bool IsUpdated(

volatile Vertex* computedV, Veretx* V ){
12. return ( *computedV > *V );
13. }

Figure 5. User-specified structures and functions for SSWP.

• InitVertex initializes the vertex at the beginning of an

iteration.

• ComputeNbr is performed for every neighbor vertex.

• ReduceVertices acts as the reduction function between

the results of ComputeNbr for two neighbors of a

vertex.

• IsUpdated verifies if a vertex has updated during the

current iteration.

Figure 5 illustrates use of the framework by showing the

functions for Single Source Widest Path (SSWP) algorithm

as an example. SSWP requires a variable for expressing

the edge bandwidth and another variable for specifying

maximum visible bandwidth by the vertex from the source.

In SSWP, during multiple rounds, the content of a vertex is

updated by the maximum bandwidth it observes picked from

the minimums between incoming edges and corresponding

neighbors. As Figure 5 shows, this algorithm can be easily

expressed in our framework via the above processing func-

tions. First, the vertex content inside the shared memory

is initialized by the most updated content of the vertex.

Second, for each neighbor a local value is computed, which

in this case is the minimum between every connecting

edge bandwidth and its corresponding source vertex visible

bandwidth. Third, these values are reduced two-by-two using

the reduction function and the result is saved to the first

argument content. For SSWP, reduction function selects

the maximum of visible values through neighbors. Also,

at the end of the third step of the processing procedure,

the reduction function is executed for the initialized vertex

and the final reduction result. Finally, in the fourth step, the

framework verifies if the vertex should be updated. If the

IsUpdated function returns true—which in case of SSWP is

observing a greater bandwidth to the source—the content

of the vertex inside global memory is replaced with the

reduced vertex content in the current iteration. If any vertex

is updated, the host executes another iteration.
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IV. SCALING VIA VERTEX REFINEMENT

To handle larger graphs we must scale our method to use

multiple GPUs that provide more memory and processing

resources. Although graph partitioning strategies between

GPUs have been explored, inter-GPU data transfer efficiency

has not received adequate attention. Given a partitioning, for

scaling of graph processing to be effective, we must make

good use of limited PCIe bandwidth. We show the ineffi-

ciency of existing techniques and present Vertex Refinement

that avoids redundant data exchange between GPUs.

A. Inefficiency of Existing Inter-GPU Communication
Existing multi-GPU generic graph processing schemes

divide the graph in two or more partitions and assign each

partition to one GPU. Graph vertices completely fall into

partitions while there can be edges that pass the partition

boundaries. Due to these boundary edges, a GPU needs to

be informed of the vertex updates happening in other GPUs.

To keep the content of its assigned vertices held inside other

GPUs updated, the GPU needs to transfer vertices belonging

to its own partition over the PCIe bus. PCIe data transfer rate

happens to be tens of times lower than GPU global memory’s

thus extra care must be taken to transfer only necessary data

so as not to waste PCIe precious bandwidth.
Nonetheless, since implementing a mechanism to effi-

ciently manage queues in GPU’s massively multithreaded

environment is challenging, previous works choose simple

but inefficient approaches. Medusa [31] copies all the ver-

tices belonging to one device to other devices at every

iteration. We refer to this solution as the ALL method.

TOTEM [7] [8] pre-selects the boundary vertices in a pre-

processing stage but similar to Medusa copies the boundary

vertices after every iteration. We refer to this solution

as Maximal Subset (MS) method. Both of these methods

suffer from wastage of PCIe bandwidth because usually

only a small portion of the vertices are updated during

each iteration. Table I shows the ratio of useful transferred

vertices—vertices that are updated in the last iteration—to

all the vertices that are transferred in such schemes. Such

low percentages motivate the need for a new solution to

utilize limited PCIe bandwidth economically.

B. Vertex Refinement: Efficient inter-GPU Communication

To eliminate the overhead of transferring unnecessary

vertices between devices, our framework performs Vertex

Refinement in two steps: offline and online. We first describe

the required data structures and then present the two-staged

refinement procedure.

Data structures for Vertex Refinement: To process

a graph with multiple GPUs, our framework divides the

vertices and their associated edges into partitions and assigns

each partition to one GPU, so that each GPU processes

a continuous set of vertices. Since the processing time is

mostly affected by the memory accesses associated with

gathering the values of neighbor vertices, determining the

boundaries of vertex partitions depends upon the total num-

ber of edges that vertices of each subset hold. In our

scheme, vertices of each partition will have roughly the same

number of edges in order to provide a balanced load between

GPUs. Each GPU will hold relevant subset of NbrIndices,

NbrVeretxIndices, and EdgeValues but will contain a full

version of VertexValues array. This organization allows each

device to process vertices belonging to its own partition

as long as vertices inside VertexValues that belong to other

GPUs are updated during an iteration.

In addition to CSR representation buffers, each GPU will

hold one Outbox buffer that is filled with updated vertex

indices and vertex values of the GPU-specific division. As

shown in Figure 6, we keep the inboxes inside host pinned

buffers. In other words, the set of host buffers is similar to

a hub that are filled by devices. At the start of an iteration,

a device accesses inboxes corresponding to other devices

and updates its own VertexValues array. Also at the end of

an iteration, the device transfers its own outbox content to

device’s corresponding inbox. Moreover, we apply double

buffering technique by alternating read buffers and write

buffers. In an odd (even) iteration, devices read from the
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Graph Algorithm ALL % MS %

Breadth-First Search (BFS) 10.43 12.21
Connected Components (CC) 9.55 11.19

Circuit Simulation (CS) 2.34 2.39
Heat Simulation (HS) 31.29 36.66

Neural Network (NN) [2] 15.66 18.34
PageRank (PR) [25] 10.38 13.65

Single Source Shortest Path (SSSP) 13.65 15.99
Single Source Widest Path (SSWP) 3.14 3.68

Table I
THE PERCENTAGE OF USEFUL VERTEX DATA AMONG ALL THE

TRANSFERRED DATA WHEN ALL THE VERTICES (ALL) OR THE

MAXIMAL SUBSET OF THEM (MS) ARE COPIED FROM ONE GPU TO

ANOTHER. IN THIS TWO-GPU CONFIGURATION, THE GRAPH UNDER

THE EXAMINATION IS AN RMAT GRAPH WITH APPROXIMATELY 40
MILLION VERTICES AND 470 MILLION EDGES.

odd (even) inbox buffers and copy their outbox to their

designated even (odd) inbox buffer. In summary:

– Inbox and outbox buffers are vital for a fast data transfer

between GPUs. Direct peer-device memory access as an

alternative will introduce significant performance penalty

due to non-coalesced transactions over PCIe bus [28]. In

contrast, inbox and outbox buffers allow the collection of

necessary data together and hence accelerate the inter-device

communication.

– Using Host memory as the hub not only reduces memory

constraint pressure for GPUs, but is also beneficial when

more than two GPUs are processing the graph. A device

copies its own outbox to a host buffer only once. In contrast,

if there is no intermediate host buffer, the device has to

copy the outbox to each of the other GPUs’ inboxes causing

unnecessary traffic over connected PCIe lanes since the

same data are passed over more than once. Our experiments

show that using host as the hub is always beneficial in

reducing the communication traffic and overall multi-GPU

processing time in comparison to using inbox and outbox

buffers residing inside the GPUs.

– Double buffering eliminates the need for additional

costly inter-device synchronization barriers between data

transfers and kernel executions. For instance, when device

A grabs inbox buffer content of the device B during an

iteration, since device B is going to fill another inbox

buffer in the current iteration, needless of synchronizing with

device B we will be sure that device A does not receive

corrupted data.

If there are two GPUs processing the graph, during the

runtime our framework queries the available global memory

on the GPUs. If there is enough memory to hold the

pertained part of the graph plus both the odd and even

inboxes belonging to the other device, the framework puts

the inboxes inside the GPUs global memory. Otherwise, it

chooses host pinned buffers for this purpose.

Offline Vertex Refinement: In this pre-processing stage,

the framework scans NbrVertexIndices elements and identi-

fies the boundary vertices: those that are being accessed by

edges of one division while belonging to another division.
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Figure 7. An example of online vertex refinement stages via intra-warp
inclusive binary prefix sum – warp size in the figure is 8.

Inspired by TOTEM [7], for such a vertex we set the most

significant bit of its corresponding element inside NbrIndices
buffer. During the online refinement, if a vertex is not

a boundary vertex, it will be filtered out. Note that this

bit will be ignored during other computations that involve

NbrIndices buffer. Also during this stage, the framework

can determine the maximum size to allocate for inbox and

outbox buffers.

Online Vertex Refinement via parallel binary prefix
sum: As opposed to Offline Vertex Refinement, Online

Vertex Refinement happens on-the-fly inside the GPU kernel.

At the last level of graph processing, lanes of a warp examine

warp-assigned vertices for updates, each producing a binary

predicate associated with one vertex. If this predicate is

true and at the same time the vertex is marked during the

offline stage, the vertex is required to be transferred to other

devices.

By means of any() intrinsic, we first verify if any

of the warp lanes has an eligible vertex to transfer. If

yes, warp lanes quickly count the total number of updated

vertices inside the warp via intra-warp binary reduction

and realize the number of updated vertices in lower lanes

via intra-warp binary prefix sum. For a fast computation

of binary reduction and inclusive binary prefix sum, our

framework utilizes Harris et al. approach [10] in which

popc() and ballot() CUDA intrinsic functions are

exploited. Having total number of updated vertices, one lane

in the warp atomically adds it to a moving index inside

the global memory, which its returned value specifies the

starting position in the designated outbox buffer to write the

warp’s updated vertex indices and values. In other words, a

lane reserves a region inside the Outbox for eligible warp

lanes. The starting position of the region is shuffled to other

lanes in the warp via shfl() intrinsic, and lanes with

updated vertex fill up the buffer using this position plus their

intra-warp prefix sum. Figure 7 presents an example showing

online vertex refinement procedure.

An alternative to above approach is extending the binary

reduction and the binary scan to the CTA; however, we

did not find this alternative faster since it required two

synchronizations across the thread-block. Whereas in our

approach the atomic addition is performed by only one lane
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in the warp which avoids contention for the atomic variable.

When processing in an iteration is done, the moving index

determines how much of the device outbox buffer has been

filled. We significantly reduce the communication time by

transferring the content of this buffer to the corresponding

inbox buffer only with the length specified by the moving
index. At the beginning of the next iteration, in order to

have newly updated vertex values from other devices, each

device distributes the content of other devices’ inboxes only
with the length specified by their associated moving indexes
over its own VertexValues array.

In summary, Offline Vertex Refinement identifies bound-

ary vertices and Online Vertex Refinement recognizes the

vertices updated in the previous iteration. The combination

of two yields the set of updated boundary vertices and

maximizes the inter-device communication efficiency.

V. EXPERIMENTAL EVALUATION

The system we performed experiments on has 3 NVIDIA

GeForce GTX780 GPUs each having 12 Kepler Stream-

ing Multiprocessors and approximately 3 GBytes of global

memory. The first GPU is connected to the system with

PCIe 3.0 16x while the rest are operating at 4x speed. The

single-GPU experiments are reported from the GPU with the

highest PCIe bandwidth. We compiled and ran all programs

for Compute Capability 3.5 on Ubuntu 14.04 64-bit with

CUDA 6.5 and applied the highest optimization level flag.

A. Warp Segmentation Performance Analysis

In this section, we analyze the performance of Warp

Segmentation on a single GPU. We use the graphs shown

in Table II for experiments in this section. In the table,

graphs with prefix RM refer to Rmat [3] graphs created using

PaRMAT [14] with parameters a = 0.45, b = 0.25, and c =
0.15. Rmat graphs are known to imitate the characteristics of

real-world graphs such as power-law degree distribution. The

graph with prefix ER is a uniformly random (Erdős-Rényi)

graph. Other graphs are extracted from real-world origins

and are publicly available at SNAP dataset [16]. Graphs in

Table II cover a wide range of sizes with different densities

and characteristics.

Warp Segmentation vs VWC – Performance Compar-
ison: First we compare the performance of WS method

against VWC with graphs shown in Table II for the bench-

marks in Table I. Table III presents the raw processing time

for the completion of all the benchmarks over all the graphs

for both methods. We experimented on VWC with all the

possible virtual warp sizes (2, 4, 8, 16, and 32) hence its

processing times are specified in ranges. Table IV shows

the average speedup of WS compared to VWC over input

graphs and benchmarks. In comparison with VWC, WS

shows better performance across all the graphs and all the

benchmarks. WS speedup over VWC averaged across all the

input graphs and benchmarks ranges from 1.29x to 2.80x.

Input Graph N. Vertices N. Edges CSR size CW size

RM33V335E 33 554 432 335 544 320 1611-3087 5503-8321
ComOrkut [30] 3 072 441 234 370 166 962-1912 3762-5649

ER25V201E 25 165 824 201 326 592 1007-1913 3322-5033
RM25V201E 25 165 824 201 326 592 1007-1913 3322-5033
RM16V201E 16 777 216 201 326 592 940-1812 3288-4966
RM16V134E 16 777 216 134 217 728 671-1275 2215-3355

LiveJournal [1] 4 847 571 68 993 773 315-610 1123-1695
SocPokec [27] 1 632 803 30 622 564 136-265 496-748

HiggsTwitter [6] 456 631 14 855 875 63-124 240-360
RoadNetCA [17] 1 965 214 5 533 214 38-68 96-149
WebGoogle [17] 875 713 5 105 039 27-51 85-130

Amazon0312 [18] 400 727 3 200 440 16-30 53-80

Table II
GRAPHS USED IN SINGLE-GPU EXPERIMENTS – ACROSS BENCHMARKS

THE SIZE RANGES IN MBYTES FOR CSR AND CW REPRESENTATIONS.
SIZES EXCEEDING GPU’S GLOBAL MEMORY CAPACITY ARE BOLDED.

Averages Across Input Graphs Averages Across Benchmarks

BFS 1.27x−2.60x RM33V335E 1.23x−1.56x
CC 1.33x−2.90x ComOrkut 1.15x−1.99x
CS 1.43x−3.34x ER25V201E 1.09x−1.69x
HS 1.27x−2.66x RM25V201E 1.15x−1.57x
NN 1.21x−2.70x RM16V201E 1.16x−1.41x
PR 1.22x−2.68x RM16V134E 1.22x−1.69x
SSSP 1.31x−2.76x LiveJournal 1.29x−1.99x
SSWP 1.28x−2.80x SocPokec 1.27x−1.77x

HiggsTwitter 1.34x−4.78x
RoadNetCA 1.24x−9.90x
WebGoogle 1.79x−2.69x
Amazon0312 1.53x−2.68x

Table IV
SPEEDUP RANGES OF WARP SEGMENTATION OVER VWC EXCLUDING

DATA TRANSFER TIMES. SINCE BOTH METHODS USE CSR
REPRESENTATION, THEIR DATA TRANSFER TIMES ARE EQUAL.

To further examine the effectiveness of WS against VWC,

as the state-of-the-art CSR based generic graph processing

method, we profiled both our framework and VWC over

different graphs for warp execution efficiency. Figure 8

shows the average warp execution efficiency (predicated

and non-predicated combined) over all the iterations of

graph processing with SSSP benchmark. It is evident from

the figure that for different graphs, best warp execution

efficiency for VWC happens in different virtual warp sizes.

For example with RoadNetCA, a 2D mesh of intersections

and roads, virtual warp size 2 yields the best results due

to special structure of the graph; while it leads to the

poorest performance for other graphs. On the other hand,

WS exhibits a steady warp execution efficiency (71.8%
on average) regardless of the graph. WS warp execution

efficiency is 1.75x-3.27x better than VWC when averaged

across all graphs. This confirms the SIMD efficiency of WS

over fixed-width intra-SIMD thread assignment in VWC.

Warp Segmentation Performance against CW: We

present the speedup of WS over CW having large graphs in

Table V and having small graphs in Table VI. For the large

graphs, CW representation cannot fit the whole graph inside

GPU global memory. For these combinations, CuSha fails;
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Input Graph BFS CC CS HS NN PR SSSP SSWP

RM33V335E
WS 1257 1118 1629 2812 1416 6056 2882 5505

VWC 1428-1811 1270-1680 2012-2562 3501-4412 2030-2506 6563-8275 3237-3959 6740-8268

ComOrkut
WS 403 351 4162 681 904 4290 1398 931

VWC 455-664 382-572 5566-8847 692-1056 989-1634 6296-13334 1515-2519 1029-1626

ER25V201E
WS 837 644 704 8330 773 5004 2181 2462

VWC 976-1385 710-1045 748-1313 9499-16047 805-1160 5287-6095 2386-3505 2574-3756

RM25V201E
WS 845 835 1052 4782 1023 3856 1802 4216

VWC 933-1231 935-1233 1287-1709 5619-8716 1190-1529 4183-5491 2080-2653 4787-5991

RM16V201E
WS 667 663 959 1762 840 3762 1625 2998

VWC 750-907 746-908 1187-1438 2058-2337 984-1159 4043-4526 1800-2230 3403-4284

RM16V134E
WS 512 514 660 1244 572 4068 1159 2028

VWC 591-820 592-822 850-1218 1539-2133 691-913 4448-5656 1402-1832 2427-3267

LiveJournal
WS 172 154 535 346 2061 2326 446 772

VWC 215-296 201-273 807-1084 378-536 2297-4746 2498-4043 619-814 1059-1345

SocPokec
WS 75 66 121 226 464 1145 194 194

VWC 90-107 80-106 175-203 264-329 614-761 1302-2817 237-327 236-314

HiggsTwitter
WS 48 37 117 75 159 483 100 77

VWC 54-170 49-178 157-495 95-294 192-812 927-2433 113-432 98-355

RoadNetCA
WS 386 330 1694 41 193 55 465 1077

VWC 480-3400 493-3437 2392-23659 45-301 191-1668 62-448 619-4402 118-5619

WebGoogle
WS 41 36 61 15 84 109 63 108

VWC 81-109 75-99 124-186 23-35 124-167 145-248 113-172 186-288

Amazon0312
WS 17 17 263 81 41 44 33 38

VWC 25-46 26-46 419-797 142-237 42-78 63-110 63-90 57-92

Table III
RAW RUNNING TIMES (MS) OF WARP SEGMENTATION (WS) AND VWC INCLUDING KERNEL EXECUTIONS AND HOST-DEVICE DATA TRANSFERS FOR

DIFFERENT ALGORITHMS AND DIFFERENT GRAPHS.
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Figure 8. Profiled average warp execution efficiency of Warp Segmentation
compared to VWC’s. SSSP is the benchmark.

therefore, as a straightforward workaround, we kept vertex

value and small auxiliary buffers inside the GPU global

memory and put shards at mapped pinned buffers inside the

host. For large graphs, CW processing time is significantly

higher than our method’s due to involvement of PCIe bus,

limiting the scalability of CW representation. Also for the

small graphs, although CW provides fully regular access

patterns, it incurs larger memory footprints. In addition,

our framework covers the latency of CSR-inherent irregular

accesses, therefore we observe near par performance, as

shown by averages in Table VI.

B. Vertex Refinement Performance Analysis

Next we analyze the performance of our framework when

it is scaled to multiple GPUs. First we present the speedup

provided by Vertex Refinement compared to existing meth-

ods over very large input graphs, and analyze its cost and

Input Graph BFS CC CS HS NN PR SSSP SSWP

RM33V335E 3.41 3.21 8.44 14.14 4.02 5.38 4.36 4.66
ComOrkut 5.11 5.91 1.72 10.76 5.23 6.85 7.92 5.72
ER25V201E 3.47 3.36 6.20 10.43 3.72 2.59 4.46 4.34
RM25V201E 3.07 2.76 7.71 9.65 3.55 3.54 3.99 4.14
RM16V201E 3.45 3.06 6.53 8.42 3.87 4.50 4.63 4.41
RM16V134E x x 3.19 4.97 x 3.93 x x

Average 3.70 3.66 5.63 9.73 4.08 4.47 5.07 4.65

Table V
THE SPEEDUP OF WARP SEGMENTATION OVER CUSHA’S [13] CW FOR

large GRAPHS. THE SHARDS RESIDE INSIDE THE HOST PINNED BUFFERS

(X MEANS GRAPH IS SMALL - FITS IN GPU MEMORY).

Input Graph BFS CC CS HS NN PR SSSP SSWP

RM16V134E 0.74 0.80 x x 0.88 x 0.67 0.56
LiveJournal 1.06 1.21 0.74 1.10 1.03 0.60 0.86 0.82
SocPokec 0.92 1.02 1.04 0.81 0.41 0.34 0.73 0.67
HiggsTwitter 1.48 2.30 1.48 1.64 2.20 1.19 1.65 2.03
RoadNetCA 0.67 1.13 0.98 0.92 1.02 1.20 0.76 0.91
WebGoogle 0.58 0.82 0.78 1.74 1.69 0.59 0.61 0.74
Amazon0312 1.05 1.47 0.39 0.91 0.91 0.97 1.21 1.20

Average 0.93 1.25 0.90 1.19 1.16 0.82 0.93 0.99

Table VI
THE SPEEDUP OF WARP SEGMENTATION OVER CUSHA’S [13] CW FOR

small GRAPHS. THE SHARDS RESIDE INSIDE THE GPU’S GLOBAL

MEMORY (X MEANS GRAPH IS LARGE - REQUIRES HOST MEMORY).

benefits. For the experiments in this section, we created

12 Rmat and Erdős-Rényi graphs with different sizes and

densities, shown in Table VII. Six of these graphs can be

fit inside two of our GPUs and Six require three GPUs.

Finally, we analyze the performance when smaller graphs

are processed on multiple GPUs.
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Input Graph N. Vertices N. Edges

RM54V704E 54 525 952 704 643 072
ER50V671E 50 331 648 671 088 640

RM50V671E 50 331 648 671 088 640
RM46V671E 46 137 344 671 088 640
RM46V603E 46 137 344 603 979 776
RM41V536E 41 943 040 536 870 912

RM41V503E 41 943 040 503 316 480
ER39V469E 39 845 888 469 762 048

RM39V469E 39 845 888 469 762 048
RM37V469E 37 748 736 469 762 048
RM37V436E 37 748 736 436 207 616
RM35V402E 35 651 584 402 653 184

Table VII
GRAPHS FOR MULTI-GPU EXPERIMENTS: TOP 6 GRAPHS USED IN

EXPERIMENTS WITH 3 GPUS; REST USED WITH 2 GPUS.

Vertex Refinement Performance Comparison: To better

realize the importance of data communication strategy and

the efficiency of Vertex Refinement, we have implemented

two other inter-device communication methods (mentioned

in Section IV) in our framework. The first method is the

straightforward solution that copies all the vertices belonging

to one device to other devices at every iteration. We refer to

this solution as ALL. The second one is the maximal subset

method where vertices that belong to one device and can be

accessed by another device are identified in a pre-processing

stage. During the iterative execution, only these vertices are

communicated to other devices. We refer to this method as

MS. We compare these methods with Vertex Refinement -

VR. Note that to better realize the benefits of VR, for all the

inter-device communication methods, we keep intra-device

processing style intact. In other words, underlying graph

processing method is WS for all experiments in this section.

Table VIII shows the speedup of our framework when

VR is employed over ALL and MS, for all the graphs

and benchmarks. In all cases, our solution performs better

than other methods. When averaged over all the graphs

and benchmarks, our approach provides 1.81x and 1.30x

speedups over ALL and 1.77x and 1.28x speedups over MS

for three-GPU and two-GPU configurations respectively.

In Figure 9, we analyzed the cost of VR queue man-

agement versus the savings it provides (in terms of elim-

inating redundant inter-device vertex communication) by

breaking down the processing time into computation time

and communication time. To create this plot, we measured

the time for each and every kernel execution, memory copy,

and outbox-loading/inbox-unloading. Aggregated computa-

tion duration refers to the total duration of GPU kernel

executions, whereas aggregated communication time refers

to the total duration of copies and/or box handling kernels.

First, it is evident from both plots in Figure 9 that MS

is not an effective solution for reducing communication

overhead. In fact, in one case (PR in Figure 9(a)) the

overhead of outbox handling overcomes the benefits of pre-

selection. Second, unlike MS, VR significantly reduces the

total communication duration by refining vertices on-the-fly

Input Graph BFS CC CS HS NN PR SSSP SSWP

RM54V704E
over ALL 1.85 1.81 2.53 1.64 1.66 1.48 1.75 2.03
over MS 1.82 1.78 2.46 1.59 1.63 1.47 1.71 1.98

ER50V671E
over ALL 1.64 1.36 2.19 1.55 1.43 1.22 1.72 2.02
over MS 1.67 1.4 2.24 1.49 1.48 1.21 1.76 2.05

RM50V671E
over ALL 1.83 1.76 2.51 1.68 1.63 1.49 1.72 1.98
over MS 1.78 1.74 2.47 1.6 1.6 1.36 1.68 1.93

RM46V671E
over ALL 1.78 1.77 2.48 1.7 1.62 1.43 1.72 1.98
over MS 1.75 1.74 2.42 1.64 1.6 1.41 1.69 1.93

RM46V603E
over ALL 1.84 1.82 2.58 1.67 1.67 1.43 1.79 2.07
over MS 1.81 1.8 2.51 1.59 1.64 1.37 1.75 2.01

RM41V536E
over ALL 1.89 1.84 2.71 1.62 1.69 1.44 1.8 2.1
over MS 1.82 1.81 2.63 1.58 1.66 1.39 1.75 2.04

RM41V503E
over ALL 1.29 1.29 1.61 1.23 1.21 1.18 1.24 1.35
over MS 1.27 1.28 1.57 1.21 1.2 1.15 1.21 1.32

ER39V469E
over ALL 1.21 1.06 1.49 1.18 1.14 1.19 1.23 1.21
over MS 1.23 1.09 1.53 1.16 1.17 1.15 1.25 1.24

RM39V469E
over ALL 1.29 1.3 1.64 1.28 1.21 1.39 1.26 1.38
over MS 1.28 1.28 1.61 1.24 1.2 1.29 1.23 1.35

RM37V469E
over ALL 1.26 1.26 1.6 1.24 1.2 1.23 1.22 1.36
over MS 1.25 1.26 1.57 1.21 1.19 1.18 1.2 1.33

RM37V436E
over ALL 1.33 1.32 1.66 1.27 1.22 1.25 1.28 1.41
over MS 1.31 1.29 1.63 1.23 1.22 1.24 1.26 1.39

RM35V402E
over ALL 1.32 1.31 1.72 1.28 1.23 1.21 1.25 1.41
over MS 1.3 1.29 1.66 1.23 1.22 1.2 1.22 1.38

Table VIII
THE SPEED-UP OF VR OVER ALL AND MS FOR THREE-GPU AND

TWO-GPU CONFIGURATIONS.

while adding negligible overhead to the computation dura-

tion. Note that even though in VR the vertex information is

communicated accompanying its index, the communication

duration is still much less compared to ALL and MS for all

the cases. Third, by comparing Figure 9(a) and Figure 9(b),

we notice that more time is spent on the communication

by employing more GPUs. By adding another GPU, each

device needs to send and receive more vertex information

to and from more devices, signifying VR’s supremacy even

further. Especially in the 3-GPU configuration, using host

as the hub supports reducing inter-device traffic by passing

the data over PCIe only once.

Scaling to multiple GPUs for smaller graphs: To

observe the effect of scaling graph processing procedure

from one or two GPUs to three GPUs, we experimented

our framework with smaller graphs and more GPUs and

reported the speedups in Table IX. As this table shows,

the performance does not scale linearly as we add more

GPUs. This is due to comparatively slow PCIe paths and

also imperfect load division between different GPUs. Also,

the speedup of adding more GPUs greatly depends on the

graph algorithm. For example, in PageRank (PR) the chances

that a vertex is updated during an iteration is relatively high

(especially in earlier iterations) thus more vertices have to be

transferred from one GPU to another. As a result, we observe

lower speedups in PageRank compared to other algorithms

when adding more GPUs.

We also present the effect of the graph characteristics

(graph size and density) on the scalability of our framework

in Figure 10. By comparing large graphs and small graphs

48



0

0.2

0.4

0.6

0.8

1
A

L
L

M
S

V
R

A
L

L

M
S

V
R

A
L

L

M
S

V
R

A
L

L

M
S

V
R

A
L

L

M
S

V
R

A
L

L

M
S

V
R

A
L

L

M
S

V
R

A
L

L

M
S

V
R

BFS CC CS HS NN PR SSSP SSWP

N
o
rm

al
iz

ed
 A

gg
re

ga
te

d
 T

im
e

Aggregated Computation Duration Aggregated Communication Duration

(a) RM54V704E graph with 3 GPUs.
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Figure 9. Processing-time break down into computation time and
communication time for the Vertex Refinement (VR) compared to ALL
and MS. Computation time is the total duration of kernel execution, and
communication time is the total duration of inbox/outbox management plus
inter-device memory copies. For each benchmark, the times are normalized
with respect to the longest time. Note that this times cannot be used to
infer the overall speedup due to asynchronicity of devices.

Input Graph GPUs BFS CC CS HS NN PR SSSP SSWP

RM41V503E 3 vs. 2 1.39 1.38 1.32 1.23 1.21 1.12 1.32 1.35
ER39V469E 3 vs. 2 1.36 1.11 1.44 1.19 1.33 1.09 1.28 1.26
RM39V469E 3 vs. 2 1.3 1.37 1.42 1.22 1.28 1.13 1.42 1.29
RM37V469E 3 vs. 2 1.21 1.27 1.32 1.24 1.38 1.19 1.34 1.43
RM37V436E 3 vs. 2 1.22 1.18 1.32 1.17 1.21 1.18 1.28 1.34
RM35V402E 3 vs. 2 1.5 1.37 1.42 1.23 1.29 1.14 1.33 1.39

RM33V335E
3 vs. 1 1.75 1.56 1.95 1.33 1.52 1.1 1.55 1.59
2 vs. 1 1.27 1.24 1.4 1.07 1.12 1.06 1.21 1.2

ComOrkut
3 vs. 1 1.65 1.81 1.95 1.28 1.97 1.43 1.96 1.85
2 vs. 1 1.19 1.31 1.65 1.15 1.36 1.32 1.4 1.39

ER25V201E
3 vs. 1 1.5 1.55 1.44 1.19 1.38 1.18 1.48 1.58
2 vs. 1 1.14 1.33 1.16 1.07 1.13 1.15 1.11 1.19

RM25V201E
3 vs. 1 1.47 0.96 1.56 1.29 1.38 0.93 1.29 1.17
2 vs. 1 1.08 0.97 1.26 1.1 1.08 1.01 1.07 0.94

RM16V201E
3 vs. 1 1.45 1.64 1.74 1.3 1.56 1.02 1.42 1.6
2 vs. 1 1.26 1.36 1.44 1.12 1.21 1.06 1.17 1.34

RM16V134E
3 vs. 1 1.36 1.58 1.86 1.36 1.47 1.19 1.46 1.66
2 vs. 1 1.21 1.21 1.44 1.14 1.11 1.12 1.12 1.31

Table IX
THE SPEEDUP OF OUR FRAMEWORK WHEN SCALING TO MORE GPUS:
FROM 2 TO 3 GPUS FOR THE TOP 6 GRAPHS; AND FROM 2 TO 3 AND

FROM 1 TO 2 GPUS FOR THE REST OF THE GRAPHS.

in Figure 10, we observe that as the graphs get larger

with greater number of edges, adding more GPUs produces

greater reductions in graph processing time. In addition,

higher density in larger graphs signifies the reduction in

the processing time when scaling to multiple GPUs by

downsizing inter-device vertex transfer volumes.
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Figure 10. The scalability of our framework over graphs with different
number of edges and densities for SSSP benchmark. All the graphs are
Rmat created with parameters a = 0.45, b = 0.25, and c = 0.15. y axis
is the processing time (lower is better).

VI. RELATED WORK

Harish and Narayanan pioneered GPU graph processing

in [9] by privatizing the processing of a vertex to one GPU

thread. This solution was is prone to load imbalance (i.e.,

warp execution inefficiency) and suffers heavily from non-

coalesced accesses to edge and vertex indices. Hong et

al. improved upon this solution with Virtual-Warp Centric

manner of graph processing [11] [12] nonetheless, as ex-

plained in the context, this method does not efficiently utilize

available SIMD resources. CuSha [13] is a generic CUDA

graph processing framework that uses G-Shards and CW

representation to avoid warp execution inefficiencies and

non-coalesced memory accesses. Although effective, such

representations consume 2 to 2.5 times more space than

CSR which can hinder the framework from processing very

large graphs. In addition, CuSha relies on atomic operation

in the computation function which can be limiting general

applicability of the framework. [29] proposes an static load-

balancing scheme that puts vertices into multiple bins based

on the number of neighbors and assigns appropriate number

of threads to each bin accordingly. [4] and [26] aim to

provide regular GPU-friendly data patterns in order to bal-

ance the load however their usage is confined to predictable

data structures. Moreover, [22] and [24] propose solutions

for algorithms that change the structure of the graph. Our

framework, in contrast, focuses on the graphs in which the

connectivity of vertices via edges do not change at any time.

Merril et al. recognized the potential of parallel scan on

GPUs for graph traversal in order to efficiently construct

vertex frontiers and edge frontiers [23] however their solu-

tion is limited to BFS. Similarly, [5] and [21] suggest work-

efficient solutions respectively for SSSP and betweenness

centrality. Our focus in this work is rather on a scalable and

generic framework that allows the expression of numerous

iterative vertex-centric algorithms and proposing generally-

applicable techniques. [20] is also for BFS graph traversal

that due to its excessive usage of atomic operations to control

the queue does not exhibit acceptable performance. We avoid

the contention over the atomic variable by mainly relying on

binary prefix sum for vertex refinement and involving only
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one warp lane in the outbox region reservation process.

In order to involve more GPUs to process the graph,

Medusa [31] employs METIS [15] an off-the-shelf graph

partitioner in order to distribute vertices between devices

and reduce the number of edges that pass the boundaries.

TOTEM [7] is a CPU-GPU hybrid framework that pre-

processes the graph and uses the highest order bits of

neighbor vertex indices to flag the boundary vertices so the

read access is redirected to the device inbox. However, the

whole content of the outbox in TOTEM or all the partition

vertices in Medusa have to be copied over to the remote

device, incurring massive unnecessary traffic over PCIe

lanes. [12] is another CPU-GPU hybrid solution for BFS that

after a few iteration, transfers the whole graph from the CPU

side to the GPU side. Our work is the first generic multi-

GPU framework that reduces inter-device communication by

filtering out not-updated and non-boundary vertices.

VII. CONCLUSION

We introduced a CUDA-based framework for efficient

scaling of iterative graph algorithms to larger graphs and

multiple GPUs. The graphs are stored in the space-saving

CSR form that allows processing large graphs. To overcome

the SIMD execution inefficiency we employ Warp Segmen-

tation leading to 1.29x−2.80x speedup over state-of-the-art

VWC method. To scale the graph processing over multiple

GPUs in our framework, we introduced Vertex Refinement

that collects and transfers only those vertices that are bound-

ary and recently updated. Vertex Refinement maximizes

inter-device bandwidth utilization leading to 2.71x speedup

over existing multi-GPU communication schemes.
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