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1. INTRODUCTION

Execution traces have been collected and analyzed for a wide range of appli-
cations, such as developing new optimizations, developing new architectural
techniques, and producing reliable software through testing and debugging.
Three common types of traces that are useful in the above applications are
control flow, dependence, and address traces.

1.1 Control Flow Trace

A control flow trace captures the complete path followed by a program during an
execution. It is represented as a sequence of basic block ids (or Ball–Larus path
ids [Ball and Larus 1996]) visited during the program execution. These traces
can be analyzed to determine execution frequencies of shorter program paths
[Larus 1999]. Thus, hot paths in the program can be identified and this knowl-
edge has been used to perform path-sensitive instruction scheduling and opti-
mization by compiler researchers [Ammons and Larus 1998; Bodik et al. 1998;
Gupta et al. 1998; Young and Smith 1998] and path prediction and instruction
fetching by architecture researchers [Jacobson et al. 1997]. Larus demonstrated
that complete control flow traces of reasonably long program executions can be
collected and stored by developing the compressed representation called the
whole-program path (WPP) [Larus 1999].

1.2 Dependence Trace

Dependence (data and control) traces have also been used. Compiler researchers
have used these profiles for performing data speculative optimizations for
Itanium [Lin et al. 2003, 2004], speculative optimizations [Chen et al. 2004],
and computation of dynamic slices [Weiser 1982; Agrawal and Horgan 1990;
Korel and Laski 1988; X. Zhang and Gupta 2004]. The latter have been used
for software debugging [Agrawal et al. 1993; Korel and Rilling 1997; X. Zhang
et al. 2005, 2006], testing [Kamkar 1993], and providing security. Architecture
researchers have used slicing to study the characteristics of performance de-
grading load instructions [Zilles and Sohi 2000], thread creation using slicing
[Liao et al. 2002], and studying instruction isomorphism [Sazeides 2003]. The
dependence history can be collected as follows. The control dependence trace
can be recovered by analyzing the control flow trace. Every register data de-
pendence (i.e., flow of a value from a def to a use through a register) can also
be recovered using the control flow trace. However, recovery of each and every
memory dependence (i.e., flow of a value through memory—the flow from a store
to a load) requires detection of def-use information [Agrawal and Horgan 1990].
This trace is very long because each dependence must identify the statements
and their execution instances involved in the dependence. Essentially, since
dependence traces are at the granularity of statements while control traces are
at the granularity of basic blocks (or Ball–Larus paths), dependence traces are
longer than control flow traces.

Alternatively, the dependence information can also be captured by capturing
the memory addresses referenced by every load and store instruction during
execution. The data dependences can then be recovered from the address trace
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Fig. 1. Trace generation, storage, and use.

by using it in conjunction with the control flow trace and analyzing these traces
off-line. Again, address traces are very long, since they are at the granularity
of statements.

Let us first briefly see how control flow and data dependence traces are ex-
plicitly represented. There are two kinds of explicit representations: those that
are more appropriate to use when the traces are stored on disk, such as the
Sequitur [Nevil-Manning and Witten 1997] compressed control flow trace rep-
resentation called the whole-program path [Larus 1999] and those that are
used when traces are held in memory for analysis, such as the timestamped
representations of control flow traces [Y. Zhang and Gupta 2001] and depen-
dence traces [X. Zhang and Gupta 2004]. Recent work [Zhao et al. 2006] has
shown how to capture a complete profile of a program’s control flow, memory
reference, and dependence information by exploiting the fact that most of the
information can be retrieved by recording the register value changes and using
this in conjunction with the control flow trace. In this paper, we develop an
approach for producing a compact representation of the traces that are stored
on disk as shown in Figure 1. We also discuss recovery algorithms that process
these traces stored on disk and convert them to explicit representations that
can be held in memory for analysis.

The combination of control flow and dependence traces is useful for a wide
range of applications. In fact, frequencies of control flow edges/paths and data
dependence edges/chains can be determined from these traces. However, the
size of these traces can be quite large. Table I gives an idea of the sizes of the
traces for sample runs. These runs were generated using the reference inputs
of the SPEC CPU 2000 integer benchmarks. The traces were collected for
instruction counts of approximately between 350 and 400 million. The average
length of the abridged control flow traces was around 90 million basic blocks and
this corresponds to more than 1% of the trace of the entire run. It gives the sizes
of the control flow and memory dependence traces, both when the dependence is
captured explicitly (i.e., dependence traces) and implicitly (i.e., address traces).
It also shows the factors by which they can be compressed. As we can see, the
length of the memory dependence trace is significantly longer than the length
of the control flow trace. Moreover, as shown, the compressibility of memory
dependence traces using both Sequitur [Nevil-Manning and Witten 1997], a
grammar-based compression algorithm, and VPC [Burtscher 2004], a value
predictor-based compression algorithm, is quite inferior to that of control flow
traces. The table also clearly shows that capturing address traces is superior
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Table I. Trace Sizes and Compressibility

Compression Factor

Uncomp. (MB) Sequitur VPC

Program Cont. Dep. Addr. Cont. Dep. Addr. Cont. Dep. Addr.

256.bzip2 154 540 590 57 1.37 4.2 61 5.3 8.4

186.crafty 184 604 638 77 1.53 37.1 25 5.7 17.2

252.eon 115 612 812 767 1.24 1242.0 610 8.3 153.2

254.gap 72 528 593 362 1.51 2.2 179 7.2 5.93

164.gzip 197 408 564 90 1.18 5.1 116 4.5 7

181.mcf 291 687 756 1265 1.18 17.9 3417 6.2 21.5

197.parser 226 642 680 161 1.49 10.5 221 6.1 19.1

253.perlbmk 185 537 652 1542 1.20 52.4 49 4.8 8.3

300.twolf 177 513 559 59 1.25 21.0 29 4.6 7.3

255.vortex 182 618 884 3033 1.26 46.8 113 6.2 16.8

175.vpr 186 525 599 78 1.20 21.7 38 4.8 7.7

Average 179 565 666 681 1.31 132.6 442 5.8 24.8

to capturing explicit dependence traces as they are not significantly larger and
can be compressed by a larger degree. Hence, in the rest of the paper we use
address traces as the baseline in our experiments.

Even though the address traces of some benchmark programs have good
compressibility, overall, address traces do not get compressed as much as control
flow traces. Thus, even if the address traces are compressed before being stored
on disk, they can be quite long.

In this paper, we develop algorithms for generating an extended control flow
trace that not only captures the dynamic control flow history but also the dy-
namic data dependence history. The memory dependences are not captured by
an explicit representation of data dependences. Rather, memory dependences
are implicitly embedded in the control flow trace. This representation of dy-
namic memory dependences is motivated by the observation that all dynamic
register dependences can be recovered from the control flow trace. To capture
the remainder of the dynamic data dependences, i.e., memory dependences, we
present program transformations that introduce disambiguation checks and
whose control flow signatures capture the results of these checks. The resulting
extended control flow trace produced enables the recovery of otherwise irrecov-
erable memory dependences. Thus, our approach replaces the combination of a
control flow and address trace with a single extended control flow trace, which
is compressed to produce the extended whole-program path (eWPP) representa-
tion. The extended control flow trace is smaller and more compressible than the
combination of the original control flow trace and the address trace. The pro-
gram transformations are carefully designed to enable the capture of dynamic
memory dependences at a reasonable cost in terms of the increase in program
execution time and the control flow trace size.

Our experiments show that, on average, the sizes of compressed eWPPs are
only 25% of the sizes of combined compressed WPP and address traces. Com-
pared to the uncompressed control flow and address trace, the uncompressed
extended control flow trace is 47% smaller, but incurs a 5× increase in runtime
overhead.
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The remainder of the paper is organized as follows. Section 2 describes our
new extended trace and the program transformations needed to generate this
trace. Section 3 describes some important optimizations that help in captur-
ing and compressing the trace efficiently. Section 4 presents some enhance-
ments to Sequitur that can improve the compression capability of control flow
traces. Section 5 discusses how to recover the dependences from these traces
and presents algorithms for the same. Section 6 presents results from the ex-
periments we conducted. We conclude in Section 7.

2. EXTENDED WHOLE-PROGRAM PATHS

As the data presented in Table I shows, control flow traces are shorter in length
than dependence and address traces. This is because control flow traces con-
sist of a sequence of executed basic blocks (or paths), while dependence traces
consist of def-use information, the dynamic memory dependences, and address
traces consist of the memory addresses referenced at runtime. Each execu-
tion of a basic block or path may involve several memory references. Moreover,
Sequitur-based compression techniques are very effective for control flow traces
[Larus 1999], but significantly less so for dependence and address traces. While
compression based on value predictors, VPC [Burtscher and Jeeradit 2003;
Burtscher 2004], provides a greater degree of compression than Sequitur for
dependence traces, this benefit comes at a price. Traces compressed using VPC
have to be decompressed before they can be analyzed, unlike Sequitur, which
produces the compressed trace in the form of a context-free grammar that can
be readily analyzed. For instance, Larus [1999] has shown how to traverse the
compressed control flow trace to find hot-subpaths.

The above observation motivated us to search for an alternative to the
dependence/address trace. Note that the dependence/address trace is needed,
because, when used in conjunction with the control flow trace, it enables the
recovery of all dynamic memory dependences. The focus of this section is on
designing an extended control flow trace representation from which we can
extract dynamically exercised memory dependences. To enable the recovery
of dynamic memory dependences, the extended trace should include addi-
tional information. We have the following goals in designing the extended trace
representation:

� The additional information contained in the extended trace should be in the
form of control flow so that the existing compression algorithm by Larus
[1999] can be used to compress the extended trace.

� The incremental cost of generating the additional information should be min-
imized both in terms of the increase in the size of the trace and the increase
in the program execution time because of the generation of the trace.

First, let us consider the additional information that is needed to recover the
memory dependences from the control trace. Consider a path from def1 to use
that passes through def2, as shown in Figure 2. Let us assume that memory
dependences e1(def1, use) and e2(def2, use) are potential memory dependences,
because of aliasing, that may or may not be manifested during a particular
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Fig. 2. Dynamic disambiguation.

execution of the path. While the control flow trace will capture each execution
of the path, additional information on the addresses referenced by def1, def2,
and use are needed to identify the dynamic memory dependences. Thus, im-
mediately preceding the use, dynamic disambiguation checks are introduced:
disamb e1 compares the addresses referenced by def1 and use while disamb e2

compares the addresses referenced by def2 and use. As we will see later, the
control flow signature of the disambiguation checks captures the result of the
comparison (true or false). Thus, the extended control flow trace (i.e., the origi-
nal control flow trace augmented with the control flow signatures of the disam-
biguation checks) contains all the information needed to identify the dynamic
memory dependences.

Given a set of potential memory dependences, to minimize the cost of the
disambiguation checks, we classify each memory dependence into one of three
categories: no-cost, fixed-cost, and variable-cost dependence. As the names sug-
gest, the three categories differ in the cost needed for the disambiguation checks.
Our program transformations to enable this classification and the collection of
the memory dependence history are described next.

2.1 No-Cost Capture

In general, we need to introduce disambiguation checks to capture dynamic
memory dependences. However, for a subset of dependences, disambiguation
checks are not needed, as the outcomes of these checks can be determined
directly from the control flow trace.

Definition 1. Fully free dependence. A def-use memory dependence is a
fully free dependence iff under every execution of the program all occurrences
of the dependence can be recovered from the program’s control flow trace.

Figure 3 illustrates this situation. The two definitions and one use in this ex-
ample always refer to the same variable, i.e., X . Moreover, for path 1.3.4, we
are guaranteed that dependence edge e1 is exercised and for all other paths
that arrive at 4 via 2, dependence edge e2 is exercised. Thus, the control flow
trace is sufficient to identify these dependences when exercised.
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Fig. 3. Fully free.

Fig. 4. Partially free.

Definition 2. Partially free dependence. A def-use memory dependence is
a partially free dependence iff, in general, only some occurrences of the depen-
dence can be recovered from the program’s control flow trace.

Figure 4 illustrates this situation. The definition in node 2 assigns a value
through a pointer. Let us assume that a points-to analysis indicates that the
pointer P may point to variable X . For path 1.3.4, we are guaranteed that
dependence edge e1 is exercised. However, for all other paths that arrive at 4
via 2, the dependence edge e1 may or may not be exercised. Thus, the control
flow trace only captures partial information for dependence edge e1, i.e., when
exercised through 1.3.4.

The presence of free dependences can be recognized at compile time as fol-
lows. First, given a def that reaches a use, the def and use must always refer
to the same variable (say X ). Next, if every path from the def to the use along

ACM Transactions on Architecture and Code Optimization, Vol. 4, No. 3, Article 19, Publication date: September 2007.



Article 19 / 8 • S. Tallam and R. Gupta

Fig. 5. Fixed cost check.

which the dependence can be exercised is definition clear w.r.t X , then the de-
pendence (def, use) is fully free. If the preceding condition is only true for a
subset of paths from def to use (i.e., along at least one of the paths, a definition
of a may-alias of X is encountered), then this dependence (def, use) is partially
free.

2.2 Fixed-Cost Capture

Free capture is only possible when def and use are guaranteed to refer to the
same address. If the def and use may, but not necessarily, refer to the same
address, the disambiguation check must be performed at runtime. If the def
always refers to the same variable (say X ), while the use may or may not refer
to X , we can introduce a fixed-cost disambiguation check to enable detection of
instances of this dependence. By a fixed-cost check, we mean that every execu-
tion of the use will require a constant amount of additional work to perform the
disambiguation check for the def and use, which is a comparison of the address
of X with the address read by use.

Definition 3. Last-instance dependence. A def-use memory dependence is
a last-instance dependence iff every occurrence of this dependence is caused by
the latest execution of the definition statement prior to the execution of the use
statement.

The reason why we can capture some dependences at a fixed cost is because
they are last-instance dependences. If the def always refers to the same variable
and if the def is executed multiple times prior to executing the use, only the
last execution of the def is relevant to the executed use as the def assigns to
the memory address every time and, hence, is a last-instance dependence.

A fixed-cost disambiguation check for dependence edge e, denoted as
disamb e, has the form shown in Figure 5. The control flow signature of
disamb e is (Ce.CT

e ) if the check finds an address match; otherwise it is (Ce).
The key point to note is that the result of the disambiguation check is captured
by its control flow signature and is incorporated in the extended control flow
trace. There is no need to explicitly save the def information for this use, i.e.,
the dependence trace need not be collected.

The example in Figure 6 illustrates a situation in which fixed-cost checks
are needed to capture the three memory dependences corresponding to the use
in node 5. In this example, we assume that it is known that pointer P is not
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Fig. 6. Fixed-cost disambiguation.

assigned in the code fragment shown. Thus, the def in node 1 and the use in
node 5 always refer to the same address. Assuming that P may or may not
point to X or Y , disambiguation checks are needed to compare the addresses
of X and Y with ∗P .

It should be noted that in the transformed program, each execution path
from 1 to 5 uniquely identifies the exercised memory dependence edge. For ex-
ample, consider the path 1.2.4.4.6.7.8.5. The disambiguation check signatures
(6.7) and (8) indicate that P points to X not Y . The control flow 1.2 indicates
that the def in node 2 is the latest definition of X before arriving at 5. Thus, we
conclude that memory dependence edge e2 is exercised along this path. Simi-
larly, determinations can be made for all other paths.
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Fig. 7. Any-instance dependence.

2.3 Variable-Cost Capture

In the case of free dependences, both def and use were guaranteed to always
refer to the same address, while in the case of fixed-cost dependences, only
the def was always guaranteed to refer to the same address as the addresses
referred to by the use could vary. Now, we consider the final case where both
the def and use can refer to varying addresses.

This final situation is illustrated by the example in Figure 7. When the ex-
ecution proceeds along path 1.2+.4 (2+ refers to one or more occurrences of 2),
the value of X assigned through ∗P in node 2 reaches the use of X in node 4.
While the statements in node 2 may be executed several times, only the first
execution of the definition assigns a value to X via ∗P . Thus, the dependence
between the definition of ∗P in node 2 and the use of X in node 4, denoted as
(∗P : 2, X : 4), is not a last-instance dependence. In fact, by changing the as-
signment to P = &X in node 1, we can create situations where the dependence
exists between any-instance of ∗P : 2 and X : 4.

Definition 4. Any-instance dependence. A def-use memory dependence is
an any-instance dependence if and only if an occurrence of a dependence can
be caused by any one of the executions of the definition statement prior to the
execution of the use statement.

To capture any-instance dependences we need to do two things. First, all the
addresses assigned to by the multiple executions of the definition must be saved
in a buffer. Second, at the use, a variable-cost check shown in Figure 8 must
be inserted. This check compares the use address with the definition addresses
saved in the buffer, one at a time, starting from the latest address. The checks
continue to be performed until a match is found or no more addresses remain
in the buffer. The complete cost of this check is a variable as it can vary from a
minimum of one check to as many checks as there are addresses in the buffer.
The size of the buffer also continues to grow as the program executes. The
example of Figure 7 once transformed using the variable-cost disambiguation
results in the code shown in Figure 9.
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Fig. 8. Variable-cost check.

Fig. 9. Variable-cost disambiguation.

3. OPTIMIZING INSTRUMENTATION

In this section, we present a series of optimizations aimed at tuning the inser-
tion and execution of instrumentation code so that the size of the instrumen-
tation code, the space, time cost of executing it, and the compressibility of the
resulting trace are improved.

3.1 Instrumentation Code Size

Thus far, in our discussion, we have assumed that all potential memory depen-
dences are identified, classified, and the program is instrumented according to
the classification. However, in practice, because of the conservative nature of
static analysis, too many spurious memory dependence edges may be present,
causing the cost of instrumentation to become very high. The unnecessary in-
strumentation will not only incur execution time overhead, but will also in-
crease the length of the extended control flow trace and the cost of recovering
memory dependences.
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Fig. 10. Optimizing trace length by executing the disambiguation code of the correct store

instruction.

To solve the above problem, we use a two-phase profiling scheme that consists
of a filtering phase and a collection phase. In the filtering phase, the program
is instrumented to identify all memory dependence edges that are exercised at
least once during execution. Also, based upon their behavior, the dependences
are classified as no-cost, fixed-cost, or variable-cost. Now that all actually en-
countered memory dependences have been identified, the program is instru-
mented only with the disambiguation checks that are needed to capture these
dependences. The instrumented program is then run to collect the extended
whole-program path. The instrumentation needed for the filtering phase is sim-
ilar to the one used by Agrawal and Horgan [1990] for their second-approximate
slicing algorithm—mapping between an address and the statement that defined
it last is maintained to detect all exercised memory dependence edges.

This approach is not directly applicable in the presence of nondeterminism,
since the second run on the same input may exercise some dependences that
were not exercised during the first execution. The absence of instrumentation
code for such dependences can cause such dependences to be missed. One so-
lution to this problem is to conservatively introduce instrumentation code to
capture all potential memory dependences. Another solution is to capture non-
deterministic events in the first run and replay them using the second run so
that no new dependences are exercised. For the programs considered in the
experiments we performed, the above issue did not arise.

3.2 Trace Length and Compressibility

Each time a load is encountered, the disambiguation codes for all the corre-
sponding stores (potential sources of the dependence) are executed. Therefore,
the corresponding trace produced can be very long. A simple optimization can
ensure that we only execute the disambiguation code for a single store. We can
track the last store for each address at runtime and use it to quickly identify
the source of the dependence. We can implement this by using a hash table
that is indexed by the memory address and stores the identifier of the source
statement that last wrote to this address. The instrumentation code for only
this source is executed—the purpose of the trace produced is then to only iden-
tify the precise instance of this defining store. This optimization is shown in
Figure 10. Note that not only the length of the trace produced is reduced, but
also the cost of executing the instrumentation code.
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Fig. 11. Optimizing trace compressibility by executing a common piece of code.

Next, we consider another optimization that is aimed at sharing the instru-
mentation code across different uses (loads). This optimization not only reduces
the overall size of the instrumentation code that is inserted, but also increases
the compressibility of the trace produced by this instrumentation code. We cre-
ate a single copy of the instrumentation code as shown in Figure 11. For each
load, its corresponding stores are numbered from 1 to n (≤ maxn). At each
load, the source of the dependence is determined and a call is made to the
shared instrumentation providing the source id (1 ≤ id ≤ n) and a pointer to
its corresponding buffer. The instrumentation code is then executed, producing
traces such that traces for different loads now look similar, thus enabling a
greater degree of compression. The control flow trace produced still uniquely
identifies the dynamic memory dependences. By finding the source of the call to
the instrumentation code from the control flow trace, we can determine which
load execution is being processed. Then, by examining the control flow trace
produced by the instrumentation code itself, we can know the source of the
dependence (1 to n) and the specific execution instance of the source that is
involved. Notice that the dependences are encoded implicitly in the trace using
the control flow signatures and they need to be recovered to be used in later
analysis. Section 5 discusses the algorithms that can be used to recover these
dependences. The compressibility of the trace improves because each disam-
biguation involves executing a common piece of code and, hence, these basic
blocks repeat in the extended control flow trace. Sequitur or VPC is then able
to effectively capture these repetitions and compress them.

3.3 Reducing the Number of Checks

For the variable-cost transformation, the number of checks could be as high
as the number of addresses stored in the buffer. This cost could significantly
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Fig. 12. Reducing the number of checks.

increase the runtime overhead. We greatly reduce this cost by using the fol-
lowing optimization. Instead of using a linear search, we adapt our buffer to
allow binary search by saving along with the address, the global timestamp at
which the address was written to by the store instruction. At runtime, we also
track the global timestamp of the last write to each address. Now, at runtime,
when a load is encountered, we look up the timestamp of the latest write to the
address being referenced by the load. We search for this address in the buffer
using the last write timestamp. Since the timestamps in the buffer appear in
ascending order, we can employ binary search to find the relevant timestamp
and, hence, determine the distance. Enabling linear search to be replaced by
binary search greatly reduces the number of checks required. For instance, if
1 billion instructions are executed, the number of checks for each load cannot
exceed log2(1 billion) = 30. For the benchmark runs we considered, on average,
we only needed ten checks for every dynamic dependence exercised.

Figure 12 illustrates the above approach. It shows a snapshot of a sample
buffer. Let us say that a load corresponding to address 0x678 is encountered.
The last write information for the address will tell us that the timestamp at
which the last write to this address was performed is 1024. Now we can search
for time stamp 1024 using binary search as the timestamps appear in ascend-
ing order. Once the proper entry in the buffer is found, the distance can be
determined. Figure 13 shows the code and its CFG that does this search. defT S
refers to the array of timestamps, which correspond to the different instances
of the definition.

The extended control flow trace will include the control flow signatures from
the binary search routine that is executed to capture every variable cost depen-
dence, implicitly capturing the definition and its instance responsible for this
dependence. Section 5 discusses how to recover this information from the trace.

3.4 Number of Buffer Entries

For the variable-cost transformation, the buffer used to save the addresses
associated with a definition grows as the definition is repeatedly executed. We
address this problem as follows. For every store instruction, we preallocate a
buffer of size 200 K entries. In addition, we put a check to detect if the buffer
size is exceeded. If more buffer space is needed, we allocate a larger buffer that
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Fig. 13. Code for binary search.

is twice the size of the previous one and copy into it the past history from the
old buffer. We selected a relatively large buffer size as we wanted to minimize
the runtime overhead because of reallocations and copying. We found that the
number of times copying was required is extremely small. On average, for the
benchmarks we considered, the total amount of buffer space needed was less
than 300 MB.

In the experiments we conducted, the traces were collected for around 400
million instruction executions. If we were to scale the tracing to larger instruc-
tion counts, we could run out of memory because of the space needed by this
growing buffer. To overcome this problem, we propose the following solution.
We can define a maximum buffer size for each store instruction. Once this is
about to be exceeded, we can transfer a predetermined amount of the oldest
buffer entries to disk to make room for new entries. This solution will require
transfers between memory and disk. However, if the maximum buffer size is
large, then such transfers will be infrequent as the dependences have a strong
history bias. The entries that match are more likely to be closer to the tail of
the buffer than its head. We conducted an experiment that confirmed this. For
all benchmarks we considered, the matches occurred, on average, within the
first 15% of the length of the buffer from the tail. Hence, this will be an effective
solution to scale this approach.

4. ENHANCED SEQUITUR ALGORITHM

In this section, we discuss an enhancement we made to Sequitur to improve its
compression capability. In particular, we found that this enhancement works
very well on control flow traces.

4.1 Overview of Sequitur

Sequitur is a context-free grammar-based compression algorithm that exploits
repetitions in the input string to compress it and runs in time linear in the
length of the input string [Nevil-Manning and Witten 1997]. As an example,
for the input string

abcabcabc
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Sequitur produces the following grammar:

S → AAA

A → abc

In this example, Sequitur is effectively able to capture the repetition of the
pattern “abc.” The Sequitur algorithm manipulates the input symbols so that
the following two properties are preserved.

1. Digram uniqueness. A digram is a pair of symbols that occur together in
the input string. This property states that any digram “xy” can occur, at
most, once in the entire grammar. If it occurs more than once, Sequitur
introduces a new rule, of the form {R → xy}, that replaces both occurrences
of the digram “xy” with the left-hand side of the rule, “R.” For example,
after “abca” has been processed in the example discussed above, the next
symbol causes digram “ab” to occur twice. Thus, Sequitur produces a new
rule A → ab and transforms the input into “AcA.”

2. Rule plurality. This property states that the left-hand side of any rule must
appear more than once in the entire grammar, on the right-hand side of the
other grammar rules. If any rule occurs only once, then Sequitur deletes
this rule and substitutes the rule occurrence with its right-hand side. In
the example above, after “abcabc” is processed, the resulting grammar rules
are S → BB, B → Ac, and A → ab. Now, rule A occurs only once on
the right-hand side of the entire grammar. Hence, to preserve this prop-
erty, Sequitur expands rule B → Ac into B → abc and deletes the rule
A → ab.

4.2 Enhancement of Sequitur

We were motivated to enhance Sequitur by observing the way it compresses
repeating digrams. We first give an example. Consider the input string

wbcwbcxbcxbcybcybczbczbc

Using Sequitur to compress this produces the grammar:

S → AABBCCDD

A → wbc

B → xbc

C → ybc

D → zbc

Although Sequitur detected patterns like “wbc,” it missed out the pattern “bc”
that got repeated in each of the rules. A better grammar would have been:

S → AABBCCDD

A → wE

B → xE

C → y E
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D → z E

E → bc

Notice that the above grammar contains fewer symbols than the first one. The
magnitude of this saving grows with the size of the input string.

The reason why Sequitur failed to detect the pattern “bc” is because it first
detected the digram “wb,” which killed the digram “bc.” Had we processed this
string offline, instead of an online left to right method that Sequitur uses, and
first compressed digram “bc,” then we could have generated the ideal grammar
for this string. Based upon this observation, we propose the following enhance-
ment to Sequitur. We first show how to generate better grammars by processing
the string offline. Then, it is easy to see that the offline algorithm could be made
online by buffering the input. Depending on the size of the buffer, a degree of
approximation will, however, be introduced. In our experiments, we reported
compression results by processing the string offline. Note that offline process-
ing is equivalent to having a buffer whose size is the same as the size of the
uncompressed trace.

We now describe our algorithm. We look at the entire string and find fre-
quency counts of each digram occurring in the string. We then start compress-
ing digrams in the descending order of their frequency. As and when a digram is
substituted by a rule, the two properties of Sequitur are checked to make sure
they are satisfied. In this process, digrams that are more frequent are substi-
tuted first rather than the earliest occurring digrams. This ensures that highly
frequent digrams are not destroyed in the process of compressing infrequent
digrams and, hence, promises smaller grammars. For instance, in the example
above, digram bc is the most frequent. Thus, compressing it first gives rise to
the grammar

S → wExEyEzE

E → bc

and further compression yields the ideal grammar for this string, already shown
previously. The original Sequitur algorithm was modified to take into account
these changes. Figure 14 shows the pseudocode for the new Sequitur algorithm.

We experimented with the enhanced Sequitur and found that it is very effec-
tive on control flow traces. Table II compares the compression ratios obtained by
both the Sequitur versions. On average, enhanced Sequitur can compress the
traces further by around 33%. Table II also compares the memory used by both
versions of Sequitur and the runtime overhead of using enhanced Sequitur.
The enhanced version uses ten times more memory and is five times slower, on
average.

5. RECOVERING THE DEPENDENCE EDGES FROM THE TRACES

Thus far, we have discussed how to perform the disambiguation checks in or-
der to capture the different memory dependences. The checks were designed so
that the resulting trace is small and compressible and also the runtime over-
head is low. Now, we discuss the next step, which is how to extract the memory
dependences from these traces after they have been generated. Note that the

ACM Transactions on Architecture and Code Optimization, Vol. 4, No. 3, Article 19, Publication date: September 2007.



Article 19 / 18 • S. Tallam and R. Gupta

Fig. 14. Enhanced Sequitur algorithm.

Table II. Compression Ratio, Memory Used, and Runtime Overhead: Original

Sequitur versus Enhanced Sequitur

Compression Ratio Memory Used Runtime

Program Original Enhanced Original Enhanced Enh./Orig.

256.bzip2 57 65 48 M 308 M 4.9

186.crafty 77 126 50 M 368 M 4.8

252.eon 767 1323 22 M 230 M 4.9

254.gap 362 1051 23 M 144 M 4.9

164.gzip 90 102 43 M 394 M 4.0

181.mcf 1265 1572 23 M 582 M 3.8

197.parser 161 297 36 M 452 M 4.5

253.perlbmk 1542 2728 22 M 370 M 4.9

300.twolf 59 73 54 M 354 M 4.8

255.vortex 3033 4100 21 M 364 M 3.4

175.vpr 78 93 46 M 372 M 4.8

Average 681 1048 35 M 358 M 4.5

implicit dependence representation in the extended control flow trace is de-
signed so that the traces can be compactly stored on disk. However, when the
dependences have to be used for analysis, they have to be converted into an
explicit representation. In this section, we describe how to recover the depen-
dence edges from the extended control flow trace and the address trace and the
overhead involved in doing so.

We first discuss how the memory dependences are expressed as annotations
on the static program representation. Such annotated reperesentations are very
useful when these dependences have to be stored in memory for analysis and
have been discussed in Y. Zhang and Gupta [2001] and X. Zhang and Gupta
[2004]. We then discuss how to recover the memory dependences from the ex-
tended control flow trace and the address trace in order to annotate the static
program representation.
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Fig. 15. Control flow and dependence trace.

Consider the execution traces in Figure 15 in which the dependences are ex-
plicitly represented. The control flow trace CF gives the sequence of basic block
ids executed. Let us assume that ∗p corresponds to the contents of the address
of X in this run (p = &X ). The dependence trace representation in Figure 15
is interpreted as follows. At ts = 14, X (6, 2) means that the use of variable X
at this execution point was data dependent on the second execution instance of
basic block 6. That is, the definition corresponding to the use at ts = 14 comes
from the second execution instance of basic block 6, which is the definition of
X at ts = 13. Given a use at some execution point, its corresponding def, which
is the program statement and the instance, can be directly obtained from the
dependence trace as the dependences are explicit. Now let us discuss how the
dynamic control flow and dependences can be annotated on the static program
representation. First, executions of basic blocks are assigned timestamps in
the order of their execution. The column ts of Figure 15 gives the timestamp
values for the sample execution. Using these timestamps, the control flow trace
can be annotated on the static control flow graph representation by labeling
each basic block with the sequence of timestamps at which it was executed (see
the timestamps prefixed by “B” in Figure 16). In Figure 16, the control flow
edges are represented by dotted lines and the dependence edges are shown by
bold lines. A dynamic dependence (data or control) is annotated by labeling a
static dependence edge with a sequence of timestamp pairs such that the pair
of timestamps identify the execution instances of the statements that were in-
volved in the dynamic dependence. Figure 16 shows the labels that identify
the dynamic memory dependences next to each dependence edge. Note that the
annotated representation explicitly captures the control flow and data depen-
dences exercised in a program run. We now describe the process of recovering
the memory dependences and annotating the static program representation
from the extended control flow trace.
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Fig. 16. Annotated trace representation.

Given the extended control flow trace, to recover the definition correspond-
ing to a given execution of a use, we need to put together two types of informa-
tion contained in the control flow signatures of the disambiguation checks that
immediately preceded the use. The control flow signatures of disambiguation
checks that contain the definition and the control flow of the binary search rou-
tine in Figure 13, which identifies the instance of the definition. Of particular
importance is the ordering of the instances of the basic blocks B0 and B1. By
putting these two pieces together, we can recover the definition and its instance
that was involved in the dependence with the current instance of the use. The
algorithm to do this is discussed next.

Consider the example shown in Figure 17. The disambiguation code preced-
ing the use is not shown. The trace shows that prior to reaching the use in 5,
def1 is executed three times and def2 is executed only once. Let the control flow
signature of the disambiguation checks preceding 5 be Ce1

.B0.E. The control
flow signature contains Ce1

, which is the signature for def1, and, hence, def1 is
the definition that produced the value. Also, look at the control flow signature
of the binary search routine (Figure 13) preceding the use. Now, def1 was exe-
cuted three times in this example and, hence, the length of the timestamp array
corresponding to def1 is 3. The presence of B0 in the disambiguation check indi-
cates that an address match must have occurred at the first timestamp. Hence,
we conclude that the first instance of def1 must have been responsible for the
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Fig. 17. Recovery example.

Fig. 18. Annotating CFG with control flow information.

dependence. Notice that, in extended control flow traces, the dependences are
implicit. The dependence information is actually embedded in the control flow
of the disambiguation checks. To recover the exact dependence, we need to in-
terpret these disambiguation checks in the exact reverse of the process we used
to embed them.

Next, we present the detailed algorithm for recovering a memory dependence,
as illustrated by the above example. It should be recalled that our goal is to
process the extended control flow trace and produce the annotations on the
static program representation as shown in Figure 16. First we show how the
control flow trace can be traversed and annotated on the static representation.
As Figure 18 shows, each node n is annotated with a timestamp sequence TS(n).
The function getnextnode() returns the identity of the node that was executed
immediately after the current node. TS(n) is the set of all timestamps at which
node n was executed. Before() and After() in Figure 19 show how the static
graph can be traversed in the reverse and forward direction of actual observed
control flow using the TS() annotations. Given an execution point n(t), execution
instance of node n at timestamp t, the function Before(n(t)) returns the identity
of the node(n′) that was executed immediately before n(t), which is n′(t − 1).
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Fig. 19. Definitions of Before and After functions to traverse the eCF along control flow edges.

Fig. 20. Recovering the dynamic memory dependence from the extended trace for use u executed

at time t by replaying binary search.

Analogously, After(n(t)) returns the identity of the node(n′) that was executed
immediately after n(t), which is n′(t + 1).

Now let us consider the memory dependence recovery algorithm in Figure 20.
The first step in the algorithm examines the control flow signature of the disam-
biguation checks before the use to determine the definition that was involved
in the dependence. This is done by traversing backward from the use point,
u(t), until a node whose signature is of the form Ci is found. The signature of
this node exactly gives the definition, di, of this use. Once this is obtained, the
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Fig. 21. Recovering a dynamic data dependence chain and obtaining its frequency.

second step looks at the control flow signature of the binary search routine to
determine the exact instance of the definition that produced the value refer-
enced by u(t). To use this signature, we first need to reconstruct the array of
timestamp values that was used to embed this signature. The array of times-
tamp values is already available in T S(di). This array contains the timestamp
values of execution instances of the definition di. Using the control flow sig-
nature of the binary search routine, this array is searched to obtain the right
instance. The control flow signature gives the binary search order that we used
on the timestamp array to embed the dependence and retracing this will give
us the exact instance. When the definition and its instance are found, we have
recovered the memory dependence. Note that this process is the exact reverse
of the process used to embed the dependence. All memory dependences can be
recovered and annotated on the program representation in this manner. While
a single call to the RecoverDependence recovers a single dynamic memory de-
pendence, we can build upon this function to develop additional functions, such
as RecoverChain and ChainFreq, that are able to recover a dependence chain
and the number of times a dependence chain is encountered during execution
(see Figure 21). In Figure 21, d1 is the definition corresponding to the use u0(t0).
u1 is a use at statement d1 and d2 is the definition corresponding to use u1, and
so on. We use the RecoverDependence routine to check if a particular chain has
been executed.

The algorithm for recovering a memory dependence using an address trace is
shown in Figure 22. At every use point, we need to backtrack and find the latest
definition that wrote to the same address as the use. Figure 22 shows a simple
backtracking scheme. However, the backtracking can be implemented more
efficiently by using a hash table as follows. For every definition we encounter,
we can store the instance and the definition in the hash table indexed by the
address. When we reach a use, we can look up in the hash table to find the
latest definition and instance that wrote to the same address.
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Fig. 22. Recovering the dynamic memory dependence from the address trace for use u executed

at time t.

Table III. Register versus Memory Dependences

Program Instructions (millions) Register (%) Memory (%)

256.bzip2 402 78.0 22.0

186.crafty 459 79.7 20.3

252.eon 378 72.0 28.0

254.gap 425 82.9 17.1

164.gzip 423 83.8 16.2

181.mcf 429 71.0 29.0

197.parser 415 74.2 25.8

253.perlbmk 354 72.2 27.8

300.twolf 405 79.2 20.8

255.vortex 418 69.4 30.6

175.vpr 407 77.5 22.5

Average 410 76.4 23.6

We compare the overheads of recovering the dependences from the address
and extended control flow traces in the experimental section.

6. EXPERIMENTAL RESULTS

We have implemented our algorithms using the Phoenix Compiler Frame-
work developed by Microsoft. The instrumentation code was inserted by using
Phoenix to rewrite the binaries of the benchmark programs. The intermediate
representation with which we worked was the low-level x86 instruction set. This
allowed us to clearly distinguish between register and memory dependences.
Notice that the register dependences can always be detected directly from the
control flow trace. Hence, the instrumentation was performed to capture mem-
ory dependences. This is important for carrying out a realistic evaluation as
for the program runs used in our experiments, on average, 76.4% of all depen-
dences were register dependences for program runs that execute hundreds of
millions of instructions (see Table III). The SPEC CPU2000 C benchmarks were
used to carry out the experiments (we had to exclude 176.gcc because the cur-
rent version of Phoenix had problems with this benchmark). Two instrumented
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Table IV. Uncompressed Trace Sizes

Program CF + AT (MB) eCF (MB) eCF/CF + AT

256.bzip2 154 + 590 = 744 380 0.51

186.crafty 184 + 638 = 822 392 0.48

252.eon 115 + 812 = 927 414 0.45

254.gap 72 + 593 = 665 411 0.62

164.gzip 197 + 564 = 761 288 0.38

181.mcf 291 + 756 = 1047 735 0.70

197.parser 226 + 680 = 906 609 0.67

253.perlbmk 185 + 652 = 837 466 0.56

300.twolf 177 + 559 = 736 417 0.57

255.vortex 182 + 884 = 1066 500 0.47

175.vpr 186 + 599 = 785 318 0.41

Average 179 + 666 = 845 448 0.53

Table V. Sequitur Compressed Trace Sizes

Program WPP + cAT (MB) eWPP (MB) eWPP/WPP + cAT

256.bzip2 2.4 + 142 = 144 46.8 0.32

186.crafty 1.5 + 17.2 = 19 11.6 0.60

252.eon 0.1 + 0.65 = 1 6.0 6.00
254.gap 0.1 + 270 = 270 2.2 0.01

164.gzip 2.0 + 110.5 = 113 28.6 0.25

181.mcf 0.1 + 42.2 = 42 16.7 0.40

197.parser 0.8 + 64.8 = 66 21.0 0.32

253.perlbmk 0.1 + 12.4 = 13 1.5 0.12

300.twolf 2.4 + 26.6 = 29 32.0 1.10

255.vortex 0.04 + 18.9 = 19 4.5 0.24

175.vpr 2.0 + 27.6 = 30 17.4 0.60

Average (excluding 252.eon) 1 + 74 = 75 18 0.24

versions of each binary were created apart from the original. The first version
captured control flow and address traces. The second version captured extended
control flow traces. Being able to produce the instrumented binaries of each of
these using Phoenix allowed us to accurately measure the overheads involved
in collecting these traces. We ran the binaries on a system with a 2 GHz In-
tel processor, 2 GB of RAM, and 100 GB of hard disk space. Based upon this
implementation we carried out an experimental evaluation whose results are
described next.

6.1 Trace Sizes

We first consider the various trace sizes. In Table IV, the sizes of the uncom-
pressed control flow (CF ), address (AT ), and extended control flow (eCF ) traces
are given. The traces were collected, on average, for the first 400 million instruc-
tions. The corresponding compressed trace sizes, i.e., WPP, cDD, and eWPP, re-
spectively, are also given in Tables V and VI. As we can see, on average, the eCF
is smaller than CF + AT by 47% while eWPP is smaller than WPP + cDD by 76%
and 70% using Sequitur and VPC, respectively. In other words, whether we use
uncompressed or compressed traces, our extended control flow trace is superior
to combined control flow and address traces. For 252.eon, using Sequitur, the

ACM Transactions on Architecture and Code Optimization, Vol. 4, No. 3, Article 19, Publication date: September 2007.



Article 19 / 26 • S. Tallam and R. Gupta

Table VI. VPC Compressed Trace Sizes

Program WPP + cAT (MB) eWPP (MB) eWPP/WPP + cAT

256.bzip2 2.5 + 69.9 = 72 30.3 0.42

186.crafty 7.2 + 37 = 44 18.6 0.43

252.eon 0.19 + 5.3 = 5 2.1 0.42

254.gap 0.4 + 100 = 100 9.3 0.10

164.gzip 1.7 + 80.1 = 82 19.4 0.24

181.mcf 0.09 + 35.2 = 35 7.7 0.22

197.parser 1 + 35.6 = 37 20.9 0.56

253.perlbmk 3.8 + 78.3 = 82 18.4 0.22

300.twolf 6.1 + 76.4 = 83 39.4 0.47

255.vortex 1.6 + 52.7 = 54 12.2 0.23

175.vpr 4.9 + 77.8 = 83 24.8 0.30

Average 2.7 + 59 = 62 18.5 0.30

Table VII. Reason for Reduced eWPP Size When Compared to Address Trace

Sequitur VPC

Program Smaller eCF (%) Comp. of eCF (%) Smaller eCF (%) Comp. of eCF (%)

256.bzip2 52 48 51 49

186.crafty 53 47 54 46

252.eon 56 44 55 45

254.gap 38 62 39 61

164.gzip 65 35 63 37

181.mcf 30 70 30 70

197.parser 34 66 34 66

253.perlbmk 44 56 45 55

300.twolf 45 55 46 54

255.vortex 53 47 53 47

175.vpr 61 39 61 39

Average 48 52 48 52

eWPP trace size obtained is larger, though not significantly. This aberration
is because of the fact that the address trace for this program is highly com-
pressible using Sequitur. The average size of the eWPP is calculated excluding
252.eon.

From the data in Table V, we can see that the reduced size of eWPP is a result
of two factors. First, the size of eCF is smaller than the size of CF + AT, as a
result of our novel representation of dependences. Second, Sequitur and VPC
are extremely effective in compressing eCF into eWPP. Thus, we wanted to see
what is the contribution of each of the two factors mentioned in reducing the
trace size from CF + AT to eWPP. Table VII shows the results of this experiment.
It shows that, on average, for Sequitur compressed traces, 48% of the reduction
in trace size came from the first factor (shown under column Smaller eCF),
i.e., going from CF + AT to eCF. The remaining 52% reduction came from the
compression (shown under column Compression of eCF ), as a result of going
from eCF to eWPP. For VPC too, the contibutions because of both factors were
the same. This shows that both the factors, representing the trace as eCF and
then compressing it, are important in achieving smaller eWPPs.
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Table VIII. Distribution of Memory Dependence Types

Program No-Cost (%) Fixed (%) Varying (%)

256.bzip2 40.8 3.1 56.1

186.crafty 48.5 0.0 51.5

252.eon 18.8 16.7 64.5

254.gap 3.4 0.6 96.0

164.gzip 72 0.1 27.9

181.mcf 6.9 3.5 89.6

197.parser 9.8 5.6 84.6

253.perlbmk 21.3 0.7 78.0

300.twolf 29.4 8.2 63.4

255.vortex 22.3 1.5 76.2

175.vpr 60.9 3.0 36.1

Average 30.4 3.9 65.7

Table IX. Address Comparisons per Dep. Edge

Using Linear and Binary Search

Checks/ Dep.

Program Linear Binary Min Max

256.bzip2 164814 11 1 24

186.crafty 18004 5 1 21

252.eon 35738 9 1 22

254.gap 661199 12 1 23

164.gzip 80493 8 1 22

181.mcf 194896 4 1 22

197.parser 107898 12 1 22

253.perlbmk 33341 8 1 23

300.twolf 170999 18 1 22

255.vortex 158386 10 1 23

175.vpr 26126 9 1 22

Average 150172 10 1 22

We also studied the distribution of three types of dynamic memory depen-
dences: no-cost, fixed-cost, and varying-cost. The resulting data is given in
Table VIII. From this data we can see that, on average, 65.7% of the dependences
are hard dependences, i.e., varying-cost dependences. However, the number of
no-cost memory dependences is also significant (average of 30.4%), which con-
tributes directly toward reducing the size of eCF.

6.2 Runtime Overhead in Trace Collection

The execution time cost of the disambiguation checks is mainly because of the
address comparisons performed. In particular, the greater the number of such
comparisons, the greater the overhead. In Table IX, the average number of
comparisons performed per dynamic data dependence is shown in the column
named binary under Checks/Dep. These results were obtained by applying the
optimizations described in Section 4. However, the most significant factor in
keeping the number of checks small is using binary search instead of linear
search. If we had not performed these optimizations, the number of checks
needed at runtime would have then gone up by a significant amount, as shown
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Table X. Running Time of Instrumented Versions (s)

Original CF + AT (VAT ) eCF (VE )

Program CPU CPU + IO FP + CPU + IO

256.bzip2 5 26 + 22 = 48 118 + 160 + 69 = 347

186.crafty 5 28 + 29 = 57 94 + 96 + 21 = 211

252.eon 3 28 + 40 = 68 105 + 113 + 51 = 269

254.gap 3 19 + 27 = 46 170 + 214 + 55 = 439

164.gzip 5 31 + 15 = 46 65 + 71 + 16 = 152

181.mcf 7 30 + 35 = 65 116 + 135 + 21 = 272

197.parser 7 28 + 32 = 60 90 + 100 + 66 = 256

253.perlbmk 5 28 + 35 = 63 90 + 217 + 55 = 362

300.twolf 6 29 + 29 = 58 77 + 87 + 54 = 218

255.vortex 4 32 + 28 = 60 139 + 143 + 48 = 330

175.vpr 7 27 + 30 = 57 86 + 95 + 51 = 232

Average 5 28 + 29 = 57 105 + 131 + 46 = 282

in the column named linear under Checks/Dep., making collection of these
traces impractical.

Table X shows the runtime overhead needed to collect these traces. The run-
ning time of the three versions of each program, that is, the original version,
the instrumented version for collecting control flow and address traces (VAT ),
and the instrumented version for collecting extended traces (VE ) is shown. For
VE , the time spent in the filtering phase alone is shown as FP. Also, for ver-
sions VAT and VE , the time spent on processing (CPU) and IO are separately
shown. The CPU time spent in VE is higher than VAT , coming from the checks
needed per dependence. The numbers also show the overhead incurred in the
filtering phase (FP). On average, there is a 5× increase in runtime overhead
when collecting extended control flow traces compared to collecting control flow
and address traces.

6.3 Dependence Edge Recovery

Table XI shows the time needed to recover the dependence information from
the address and extended traces. As mentioned before, dependences in the ex-
tended control flow and address traces are implicitly represented. To be used
in analysis, they need to be recovered and the numbers show the time needed
to do the same. Notice that it is much harder to recover the dependences from
the address traces. Although address traces are quicker to generate, they need,
on average, ten times the time to process extended traces for recovering the
dependences.

6.4 Decompressing the Traces

While the traces are compressed to be stored compactly on disk, in order to use
the trace information in analysis, they need to be decompressed. In Table XII,
we give the time taken to decompress compressed extended control flow and
address traces. On average, Sequitur-compressed traces take longer, more than
twice the time, to decompress than VPC compressed traces. The total time
needed to recover the dependences explicitly from compressed traces is the sum
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Table XI. Dependence Edge Recovery Time (s)

CF + AT (RAT ) eCF (RE )

Program CPU + IO CPU + IO

256.bzip2 146 + 5 = 151 18 + 4 = 22

186.crafty 164 + 4 = 168 11 + 5 = 16

252.eon 206 + 5 = 211 16 + 4 = 20

254.gap 212 + 5 = 217 14 + 4 = 18

164.gzip 75 + 4 = 79 15 + 4 = 19

181.mcf 157 + 6 = 163 21 + 4 = 25

197.parser 146 + 4 = 150 16 + 5 = 21

253.perlbmk 241 + 6 = 247 8 + 4 = 12

300.twolf 165 + 5 = 170 9 + 4 = 13

255.vortex 211 + 6 = 217 16 + 4 = 20

175.vpr 141 + 5 = 146 12 + 4 = 16

Average 169 + 5 = 174 14 + 4 = 18

Table XII. Decompression Times (s) for Compressed Traces

Sequitur VPC

Program WPP + cAT eWPP WPP + cAT eWPP

256.bzip2 183 160 73 59

186.crafty 118 98 53 40

252.eon 201 131 49 69

254.gap 165 159 61 46

164.gzip 103 101 63 32

181.mcf 185 152 71 55

197.parser 257 243 119 79

253.perlbmk 250 193 95 75

300.twolf 242 227 112 82

255.vortex 160 117 83 50

175.vpr 195 168 83 92

Average 187 159 78 61

of the decompression time and the time needed to recover the dependences from
the uncompressed traces shown in Table XI. Although there is a 5× increase in
runtime overhead in collecting extended traces over collecting control flow and
address traces, the time taken to collect, decompress, and recover the trace is
of the same order (282 + 18 + 61 = 361 for extended traces and 57 + 174 +
78 = 307 for control flow and address traces).

We would like to point out that an alternative to decompression also exists for
traces compressed with Sequitur. If the traces are compressed using Sequitur,
they could be analyzed without decompression. This is possible because of the
nature of the Sequitur compression algorithm, which compresses the trace into
a context-free grammar. An algorithm for identifying hot paths of a specific
length by analyzing the compressed control flow trace is given in Larus [1999].
A similar technique could also be developed for eWPP to recover dependences.

7. CONCLUSION

In this paper, we presented a unified trace representation for storing traces
on disk that enables the capture of complete control flow and data-dependence
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histories. The key problem that we solved in designing this unified trace is
our ability to effectively convert dynamic memory data dependences between
stores and loads into equivalent control flow trace information. The unified
trace produced is smaller than the combination of control flow and address
traces and has the dependences encoded implicitly in the form of control flow
signatures. In order to use these dependences in analysis, we have presented
algorithms for traversing our extended trace to recover data dependences or
chains of data dependences. Such information is useful in carrying out a variety
of code optimizations, as well as in other software engineering applications, such
as dynamic program slicing.
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