
Stadium Hashing: Scalable and Flexible Hashing on GPUs

Farzad Khorasani Mehmet E. Belviranli Rajiv Gupta Laxmi N. Bhuyan

Computer Science and Engineering Department
University of California Riverside, CA, USA

{fkhor001, belviram, gupta, bhuyan}@cs.ucr.edu

Abstract—Hashing is one of the most fundamental operations
that provides a means for a program to obtain fast access
to large amounts of data. Despite the emergence of GPUs as
many-threaded general purpose processors, high performance
parallel data hashing solutions for GPUs are yet to receive
adequate attention. Existing hashing solutions for GPUs not
only impose restrictions (e.g., inability to concurrently execute
insertion and retrieval operations, limitation on the size of
key-value data pairs) that limit their applicability, their per-
formance does not scale to large hash tables that must be kept
out-of-core in the host memory.

In this paper we present Stadium Hashing (Stash) that is
scalable to large hash tables and practical as it does not
impose the aforementioned restrictions. To support large out-
of-core hash tables, Stash uses a compact data structure
named ticket-board that is separate from hash table buckets
and is held inside GPU global memory. Ticket-board locally
resolves significant portion of insertion and lookup operations
and hence, by reducing accesses to the host memory, it
accelerates the execution of these operations. Split design of
the ticket-board also enables arbitrarily large keys and values.
Unlike existing methods, Stash naturally supports concurrent
insertions and retrievals due to its use of double hashing
as the collision resolution strategy. Furthermore, we propose
Stash with collaborative lanes (clStash) that enhances GPU’s
SIMD resource utilization for batched insertions during hash
table creation. For concurrent insertion and retrieval streams,
Stadium hashing can be up to 2 and 3 times faster than GPU
Cuckoo hashing for in-core and out-of-core tables respectively.

Keywords-GPU hashing; concurrency support; Out-of-core
hash tables; key-value pairs; collaborative lanes execution;

I. INTRODUCTION

In recent years, general purpose computing on GPUs has

undoubtedly attracted much attention due to GPU’s ability

to achieve high performance on data-intensive applications.

Although efficient GPU implementations of many promi-

nent algorithms and data structures have been explored,

hash tables for storing key-value pairs have received very

little consideration. Existing hashing solutions on GPUs

were generally designed for, and inherited from, the GPU’s

Graphics-only era while recent advances in GPU architec-

tures have brought many more applications into the realm of

GPU computing that require fast and flexible hashing solu-

tions. Important applications such as dictionary based data

compression [25], detection and elimination of duplicate

objects in graph processing [15], and text mining [23] use

hash tables; therefore they can benefit from GPU’s massively

multithreaded environment due to their data-intensive nature.

A common approach to exploiting parallelism for hashing

in a multithreaded environment is to simultaneously perform

multiple insertions or multiple retrievals of key-value pairs.

When insertions are performed in parallel, to correctly

handle collisions, a strategy known as chaining is employed

– techniques for GPUs that use this strategy include [1],

[2], [7]. Chaining atomically swaps to-be-hashed key with

the key that is already present in the bucket; the swapped out

key is rehashed and this process of swapping and rehashing

is repeated until an empty bucket is found. Nonetheless,

employing chaining leads to a number of restrictions. First,

chaining based methods restrict concurrency to operations of

the same type – insertions and retrievals cannot be performed

at the same time. Workarounds to enable safe concurrent

mixed operations inevitably degrade performance. Second,

they are primarily designed for the scenario where the hash

table can be held in GPU’s global memory thus limiting

their effectiveness for large scale data processing. Third,

when some of the parallel operations by threads in the same

SIMD group are unsuccessful, all the threads in the group

must wait for their completion. This imbalance leads to

degradation in GPU’s SIMD resource utilization. Finally,

since they use atomic exchange to deploy chaining, the

maximum supported size of atomic operation restricts the

size of key-value pairs (currently 64-bits).

In this paper we present Stadium Hashing (Stash), a

parallel hashing method that utilizes a compact auxiliary

data structure called ticket-board. For every bucket in the

table, the ticket-board contains a ticket consisting of a

single availability bit and possibly multiple info bits. The

availability bit indicates whether the bucket is occupied or

not – threads can unset (zero) the bits atomically to safely

reserve a bucket. Stash overcomes the restrictions associated

with current hashing methods as follows. Stash employs

double hashing as the collision resolution technique for

quick empty bucket discovery. As a result, unlike existing

methods that employ chaining, Stash allows concurrent

insertions and retrievals and also load factors as high as one.

Stash achieves scalability by keeping the large hash table in

the host memory while holding the ticket-board inside the

GPU’s global memory. This scheme enables fast resolution

of the threads’ transactions using per-bucket tickets. The info

bits are derived from the key that resides in the bucket; thus,

2015 International Conference on Parallel Architecture and Compilation

1089-795X/15 $31.00 © 2015 IEEE

DOI 10.1109/PACT.2015.13

63

they can help to quickly reject a table bucket without having

to access the table bucket content itself hence speeding up

lookups. In addition, the separation between the table and

the ticket-board allows us to have arbitrarily large keys and

values; thus overcoming another restriction of the existing

methods.

Furthermore, we propose stadium hashing with collab-
orative lanes (clStash) that increases the SIMD resource

utilization of batched insertions. When multiple threads

are concurrently asked to perform insertions, some threads

might be successful in their first attempt while other threads

in the same SIMD group may not succeed. In clStash,

instead of making successful threads wait, unsuccessful

threads accumulate unfinished requests in shared memory

and thus all threads in the SIMD group can continue by

fetching fresh requests from GPU’s global memory. When

enough unfinished requests have been accumulated in the

shared memory, successful threads fetch them while unsuc-

cessful threads retry working on the requests they had from

the previous iteration. This strategy keeps all the threads

inside a SIMD group busy. Finally, we propose a hybrid of

Stash and clStash to improve insertion performance.

The key contributions of this paper are:

• We propose Stash, a parallel hashing scheme that pro-

vides efficient concurrent execution of mixed operation

types, delivers excellent out-of-core performance via

use of an auxiliary compact data structure named ticket-

board, and allows having large keys and values;

• We present an efficient implementation of Stadium

hashing in CUDA framework, and show that it can

provide up to 2x and 3x speedup against GPU Cuckoo

hashing over concurrent in-core and out-of-core inputs

respectively; and

• We introduce clStash, a solution for batched insertions
that greatly improves utilization of GPU SIMT archi-

tecture. clStash warp execution efficiency is around

2x and 3.5x higher than Stash’s and Cuckoo-GPU’s

respectively.

In the rest of the paper, we review the limitations of the

most prominent existing GPU hashing method in Section II.

Section III describes Stadium Hashing and elaborates upon

its efficient implementation in the CUDA framework. Sec-

tion IV presents experimental evaluation. Sections V and VI

give related work and conclusions.

II. MOTIVATION: LIMITATIONS OF RELATED WORK

The most notable endeavor to implement a hash table on

the GPU and perform either parallel insertions or parallel

retrievals is by Alcantra et al. [2], which is an improvement

over the same authors’ previous work [1]. Alcantra et al.

use the Cuckoo Hashing [18] method and rely upon atomic

exchange operations to safely use multiple threads during

hash table construction.

Time

D2

h1(E)=1

h2(C)=4

h2(B)=0C1

A1

B1

D2

A1

B1

E1

E C1 B1

h3(D)=1

h2(E)=5

D2

A1

E1

C2

A1

E1

C2

B2 B2

D3

A1

E2

C2

D2 E1

Figure 1. Insertion in a cuckoo hash table is a recursive procedure.
Insertion of a pair can cause a long eviction chain.

Insertion: Cuckoo hashing uses multiple hash functions

to provide a key with multiple insertion locations. For a

given key, the first hash function gives the bucket address

for the key-value pair to reside. The key-value pair that is

already residing at that address is swapped with the new

key-value pair. To reinsert the swapped out key-value pair,

another hash function, different from what hashed the pair

into their previous location, is used to find a new bucket.

This procedure is repeated until an empty location is found.

Figure 1 shows this recursive insertion procedure.

[2] performs the insertion and eviction of key-value pairs

using 64-bit atomic exchange operations so that multiple

threads can safely update the hash table. Every thread

participates in an insertion chain until an empty slot is

found. Generally, Cuckoo hashing needs to know which hash

function placed evicted key into its last position so that it

can select the next hash function, in a round robin fashion, to

attempt reinsertion. In [2] the previously used hash function

is found as follows. All the hash functions are applied to the

evicted pair, and by comparing the generated addresses with

the address of the bucket from which the key-value pair was

evicted, the appropriate hash function is identified.

Retrieval: When the value for a key is queried, cuckoo

hashing performs hash functions one by one on the key.

It then checks the content of table addresses and once a

matching key is found, the corresponding value is returned.

Limitations: Cuckoo hashing on GPU [2] suffers from

a number of issues and introduces restrictions via its design:

• Restriction on concurrency. It does not support concur-

rent insertion and retrieval. A lookup for a query key

may fail simply because during the probe the already-

inserted pair is in transit, i.e. another thread being in

an insertion-eviction chain is currently holding the pair

containing the query key in its registers. For example

in Figure 1, querying C in the second step will fail

although it had been inserted previously. We modi-

fied GPU Cuckoo hashing to accept mixed insertions

and retrievals while not processing them concurrently.

We compared the performance of Cuckoo hashing for

mixed operations with the case when all insertions are

performed before lookups using randomly generated

key value pairs.

64

1 1 0 0

1 0 1 0

0 1 0 0

1 1 1 1

0 1 1 0

1 1 1 1

1 1 1 1

D

C

A

B

E

F

Ticket-board

Tableh1(E)=2

h1(F)=4

(a)

1 1 0 0

1 0 1 0

0 1 0 0

1 1 1 1

0 1 1 0

1 1 1 1

1 1 1 0

D

C

A

B

Ticket-board

Table

E

F

h2(E)=4

h2(F)=3

(b)

1 1 0 0

1 0 1 0

0 1 0 0

1 1 1 0

0 1 1 0

1 1 1 1

0 1 1 0

D

C

A

B

Ticket-board

Table

E

F

h2(F)=3

(c)

1 1 0 0

1 0 1 0

0 1 0 0

1 0 0 0

0 1 1 0

1 1 1 1

0 1 1 0

D

C

A

B

Table

E

F

Ticket-board

(d)

Figure 2. An example - Inserting two pairs in a table with 7 buckets &
ticket size 4; the procedure starts from (a) and ends with (d); steps created
by double hashing ensure traversal of all entries.

• Performance degradation for large table sizes. Since

[2] involves atomic exchange operations that ask for
atomics returned values, when the table is large and

thus resides in the host memory, the latency associated

with reads during insertions and possibly multiple reads

during retrievals introduces long waiting times that de-

grade performance. In other words, further instructions

cannot be scheduled for the thread until the content

of the host memory position has traveled over the slow

PCIe bus and arrived at the device. Long eviction chains

make this problem even worse.

• Inefficient use of SIMT hardware. In [2], failure in

the insertion of even a single key-value pair into the

table by one thread causes starvation of all other

SIMD threads (warp lanes, in CUDA terms) that have

successfully inserted their pairs. By profiling [2] we

have observed insertions exhibit low warp execution

efficiency of around 25%.

Moreover, [2] restricts the key and the value to occupy

32 bits and can also fail when the Load Factor is high. In

summary, Cuckoo hashing on GPU [2] has restrictions that

limit its practicality and performance. This motivates the

need to explore practical hashing approaches that are flexible

(i.e., more general), scalable, and provide high utilization of

GPU’s SIMT hardware.

III. STADIUM HASHING

In this section, we first introduce Stadium Hashing (Stash)

that addresses the first two issues with Cuckoo Hashing [2]:

it allows concurrent execution of mixed operation types, and

efficiently scales to large table sizes. We also show efficient

implementation of Stash in the CUDA framework. Then

we present Stash with collaborative lanes (clStash), that

improves the warp execution efficiency of the underlying

SIMT architecture during insertions.

Stash Data Structures: Stadium hashing uses a split

design with two structures: a table for key-value pairs, of

any size, that can be kept in either GPU global memory or

the host memory depending upon its size; and a compact

auxiliary structure called ticket-board, that is kept in GPU

global memory. The ticket-board achieves acceleration by

maintaining a ticket corresponding to every bucket in the

table. A ticket consists of a single availability bit and a

small number of optional info bits. The availability bit

indicates the occupancy status of the table bucket – a 1
bit indicates the bucket is empty and a 0 bit means it has

already been reserved or occupied. In each ticket, if the

corresponding bucket is occupied, a number of info bits, that

have been generated deterministically from the key, provide

a clue about the existing key in the bucket. Info bits are

advantageous for prompt rejection of wrong table positions

during retrievals without having to access the bucket content.

While a ticket with the size of 1 bit does not have any

info bits, a ticket with the size 8 carries 7 ticket info bits

– in experiments, we consider ticket sizes of 1, 2, 4, and 8
bits. Let us see how the insertion and lookup operations are

performed in Stash.

Insertion: To insert key-value pairs into the table, we

assign each pair to a separate GPU thread. After hashing

the key, the thread tries to book a bucket in the table by

atomically unsetting (zeroing) the corresponding availability

bit. If the availability bit in the returned value is 1, the

ticket had been available and has now been acquired by the

thread. Thus, the thread can store the info bits (in case the

ticket size is not one) and insert the key-value pair into the

table. Otherwise, the bucket had already been in use; hence

the thread must rehash. Stash resolves collisions via double
hashing in which a second hash function, different from the

main hash function, creates the step size for the key. Then

the location of the ticket in the ticket-board is incremented

recursively with the step size. Figure 2 shows an example

of inserting two pairs into the table.

Retrieval (Lookup): To retrieve values for a set of

retrieval queries, each thread is assigned to find the value

for one query key. The thread hashes the key to locate the

potential entry and first checks its availability bit to see if

the table bucket is occupied at all. If the table bucket is not

occupied, the key has not been inserted. If the availability bit

is unset, the thread compares the info bits that reside beside

the availability bit with the info bits from the query key. If

they do not match, thread rehashes the query key to look for

another potential position. Otherwise, it is possible that the

key is hashed to the bucket. At last, the bucket in the table

is queried and in case it does not match the query key, the

key is rehashed with the second hash function. In summary,

a retrieval operation in Stash introduces three levels of

certitude to find a key. First checking the availability bit,

second verifying info bits, and third examining the actual

bucket content. The number of info bits becomes important

in the second level. Choosing a larger ticket size increases

the probability to quickly conclude that the bucket does not

hold the queried key without having to proceed to the third

level. Note that when the ticket size is one (i.e., there are

no info bits), the second level of retrieval is eliminated.

65

B1

�

B2

Thread A

Inserting

C1

�

C2

Thread B

Retrieving

� �

Table

C

B C

C

C

T
im

e h1(B)=1 h1(C)=2

h2(B)=0 h2(C)=1

(a) Stash.

B1

�

Thread A

Inserting

C1

�

C2

Thread B

Retrieving

�

Table

C

B

T
im

e h1(B)=1 h1(C)=2

h3(C)=3 h2(C)=1C3

�

B

B

C

(b) Cuckoo GPU.

Figure 3. Cuckoo GPU uses chaining as a result retrievals might wrongly
fail. Stash employs probing, it does not modify hash table during insertions
allowing concurrent insertions and retrievals.

Concurrent Execution of Mixed Operations: Stash al-

lows concurrent insertions and retrievals by employing prob-
ing as the collision resolution approach. As we mentioned

earlier, chaining disallows concurrent execution of insertions

and retrievals since retrievals can wrongly fail due to tem-

porary removal of key-value pairs from the hash table. On

the other hand, with probing, during an insert, ticket-board
entries are probed, first using an initial hashing function and

then (repeatedly, if needed) using a rehashing function, until

an available ticket (empty table bucket) is found. Since the

reservation of the available ticket is performed atomically,

and also no available information is extracted neither from

the ticket-board nor from the table during the insertion,

concurrent retrievals are permitted safely. Figure 3 shows

an example of concurrent insertion and retrieval in Stash

and Cuckoo GPU.

Efficient Out-of-core Performance: The split design

reduces costly accesses to the table entries when the table is

very large and is kept inside the host memory. Stash keeps

the compact ticket-board, which is much smaller than the

table, inside the GPU global memory. Stash tries to resolve

the collisions during insertions and mismatches during re-

trievals using the ticket-board before writing the key-value

pair into the table or retrieving the pair from the table.

During insertions, the table position is reserved inside the

ticket-board and the expensive write to the table (inside the

host memory) happens only once. Also, during a retrieval,

when availability bit is unset, a mismatch between the info
bits obtained from the key and the ticket info bits indicates

that the table entry does not contain the requested key-value

pair; therefore an unnecessary access to the table is avoided.

Note that this is a significant improvement compared to GPU

Cuckoo hashing [2], which has to directly access the table

again each time a collision or a mismatch happens. Figure 4

shows host and global memory transactions for insertion and

retrieval in Stash and Cuckoo GPU when the table is outside

the GPU global memory inside the host memory.

In addition, Stash applies atomic operations only on

ticket-board positions, unlike existing solutions that perform

atomics directly on table entries. Stash employs atomic AND

to unset (zero) the availability bits in the ticket-board for

insertions, regardless of the key or value types in the table.

This feature allows having arbitrarily large keys and values

Table

PCIe

B1

�

B2

�

B3

�

A thread

Ticket Board

T
im

e

(a) Stash insertion.

Table

PCIe

B

�

C

�

A

�

A thread

T
im

e

(b) Cuckoo GPU insertion.

Table

PCIe

A1

�

A2

�

A3

�

A thread

Ticket Board

T
im

e
(c) Stash lookup.

Table

PCIe

A1

�

A2

�

A3

�

A thread

T
im

e

(d) Cuckoo GPU lookup.

Figure 4. Side-by-side demonstration of out-of-core memory transactions
by Stash and Cuckoo GPU. Stash reduces costly host memory accesses by
using the ticket-board.

eliminating another restriction in existing methods. Next, we

present Stash implementation in CUDA.

A. Efficient Hash and Rehash Functions

For hashing purposes, we use a generalized function that

utilizes a number of high throughput CUDA arithmetic

instructions. As lines 1-6 in Figure 5 show, multiple rounds

perform reversible transformations on the value initialized

with the key. This function is non-linear and provides

diffusion in both left and right directions with the shift and

the multiplication operations respectively.

For initial hashing of received keys, we employ the func-

tion given in lines 7-10 in Figure 5. We first use the general

hash function with 4 rounds and a multiplication operand

with irregular bits. Then since the general hash function

is reversible, i.e. does not reduce the number of possible

results, in order to map the outcome of general hash function

from 32 bits (uint) boundary to table buckets we can use

the fast umulhi() function (line 9). Hash functions used

in current GPU solutions use modulo operator which results

in a long instruction sequence on the device. In contrast

Stash hash functions only rely on high throughput CUDA

instructions that translate into fewer assembly operations.

Stash’s collision resolution strategy is double hashing thus

a second hash function is used to create the step size for

the key and move to the next bucket. Every prime number

is co-prime with any smaller non-zero integer, therefore,

by slightly increasing the size of the table to be a prime

66

1. template <typename keyT, uint nRounds,
uint rShift, uint mulOp>
__device__ uint Hash(const keyT key){

2. keyT x = key;
3. for(uint j = nRounds; j > 0; --j)
4. x = ((x >> rShift) ˆ x) * mulOp + j;
5. return (uint)x;
6. }
7. template <typename keyT>

__device__ uint InitHash(keyT key, const uint tableSize){
8. uint hashed = Hash<keyT, sizeof(keyT), 8, 0xE9D58A6B>(key);
9. return __umulhi(hashed, tableSize);
10. }
11. template <typename keyT>

__device__ uint Rehash(keyT hashed, const keyT key,
const uint tableSize) {

12. uint h_2 = Hash<keyT, sizeof(keyT), 8, 0x6E5B9D8A>(key);
13. uint dh = hashed + 1 + __umulhi(h_2, tableSize - 1);
14. return (dh >= tableSize) ? (dh - tableSize) : dh;
15. }

Figure 5. Generalized hash function, initial hashing function, and
rehashing function implemented in CUDA.

1 hashed := hash key for the first time
2 tryCounter := 0
3 do
4 gotSeat := try reserve an entry with hashed
5 if(!gotSeat)
6 hashed := rehash key
7 if((++tryCounter) is equal to the table size)
8 the table is full so abort
9 while(!gotSeat)
10 insert ticket info into the ticket-board
11 insert key value pair into the table using hashed

Figure 6. Stash basic insertion pseudo-algorithm.

number and mapping the result of the second hash function

to be a non-zero integer less than the table size, we make

sure that hops can traverse all the entries. Lines 11-15

in Figure 5 present the rehashing function. Using the key

and a multiplication operand different from initial hashing

function’s, generalized hash function yields an integer that is

mapped to uint boundary (line 12). We map this outcome

to a non-zero integer less than the table size and add it to

the previous bucket location (line 13). Finally, if the addition

overflows the location to a position larger than the table size,

we cancel the effect (line 14). Note that this strategy allows

Load Factors to be as high as 1.

B. Implementing Operations

In this section, we present the detailed implementations

of operations supported by Stash. The constants used in

pieces of code shown are specific to the ticket size of 4 bits.

Constants for other ticket sizes can be similarly inferred.

Insertion: Figure 6 shows Stash insertion procedure.

First, the thread that is assigned to the key value pair, hashes

the key for the first time (line 1) and initializes the counter

(line 2). Then it recursively tries to reserve a table entry

(lines 3-9). If the entry is already reserved, rehashing is done

on the key (line 6). After a successful reservation, the info
bits get generated and inserted into the ticket-board (line 10).

At last, the key-value pair is inserted into the table (line 11).

1. __device__ uint TryBookASeat(uint* ticketBoard,
uint tbIndex, uint posInInt) {

2. uint permit = 1 << posInInt;
3. uint auth = atomicAnd(ticketBoard+tbIndex, ˜permit);
4. return (auth & permit) ? (˜0) : 0;
5. }

Figure 7. Table entry reservation function for ticket size 4.

1. __device__ uint bfi(uint source,
uint destination, uint start, uint length);

2. __device__ void InsertTicketInfo(uint info,
uint posInInt, uint* ticketBoard, uint tbIndex) {

3. uint prepTicket = bfi(info, ˜0, posInInt+1, 3);
4. atomicAnd(ticketBoard+tbIndex, prepTicket);
5. }

Figure 8. Ticket info insertion function for ticket size 4.

The entry reservation function is shown in the Figure 7.

The hashed value’s corresponding element index in the

ticket-board (tbIndex) and the availability bit position

inside the ticket-board’s 4-byte long element (posInInt) are

provided for the function from the caller. Inside the function,

the permit variable holds one set bit at the position of

ticket-board’s ticket availability bit (line 2). Via an atomic

operation, we bitwise AND the ticket-board entry that holds

the ticket with the bitwise negate of the permit, which has

only one zero bit at the position of availability bit (line 3).

After the atomic operation, the availability bit will be unset.

It is only through the atomic operation’s returned value that

the thread finds out if it has succeeded in reserving the

entry or if the entry had already been reserved by another

thread earlier. Using a bitwise AND, thread can verify the

availability bit content of the atomic returned value (line 4).

Utilizing atomic operation for entry reservation protects a

ticket from being reserved for multiple keys. Since reading

and modifying the ticket happens atomically, when multiple

threads try to reserve a ticket, only one of them will have

the return value that indicates a successful booking.

To generate ticket info quickly, we use a form of

generalized hash function with a different multiplication

operand. Figure 8 shows the ticket info insertion function.

Line 1 shows the declaration of the wrapper function for

utilizing high-throughput PTX bit-field insertion instruc-

tion. This function returns the result of inserting length

bits of source starting from start bit into a copy of

destination. We have used this function in our ticket

info insertion implementation. The ticket info bits need to

be transferred to the ticket-board via an atomic operation

because concurrent threads might be accessing the same

region. Line 4 performs it via an atomic AND. Line 3

prepares the info bits by placing appropriate number of info

LSBs into a variable full of set (1) bits.

After a successful reservation, the consequent operations,

including filling up the ticket info bits and insertion of the

key-value pair into the table, are all writes. As a result,

67

1 hashed := hash key for the first time
2 info := generate ticket info from key
3 tryCounter := 0
4 do
5 seatFound := try find key using info in hashed location
6 if(!seatFound)
7 hashed := rehash key
8 if((++tryCounter) is equal to the table size)
9 table is fully traversed so key isn’t inserted, return
10 while(!seatFound)
11 if(seatFound indicates the key is not inside the table)
12 key is not inserted
13 else
14 retrieve value from hashed location

Figure 9. Stash retrieval pseudo-algorithm.

the thread need not wait for the updates to finish; after

issuing the memory stores it can exploit Instruction-Level

Parallelism (ILP) and keep executing further non-dependent

instructions [13].

Retrieval (Lookup): Figure 9 presents the retrieval

procedure in Stash. For the key in hand, initial hash function

is applied (line 1) and info bits are generated and cropped

(line 2) before entering the loop that recursively tries to find

the key. Inside the loop, we verify if the key is found in the

hashed entry or not (line 5). If not, we rehash the key and

try again. When the key is found, its corresponding value is

recorded (line 14).

Line 1 in Figure 10 is the forward declaration of the

wrapper function that exploits high-throughput PTX bit-

field extraction instruction. The function extracts a bit-field

of source starting at start with the length length and

emplaces it into the LSBs of the returned value. The rest

of Figure 10 shows how a given key with its hashed value

is found. After extracting the ticket and putting it into a

variable (line 6), line 9 provides the first level of certitude

by checking if the availability bit is set at all. In line 12,

the info bits of the ticket are extracted to be compared with

key’s info bits for the second level of certitude at line 13. At

the last level, the table entry key is compared with the key

in hand (line 14). As can be seen in Figure 10, only when

a thread reaches the last level, a table access (host memory

access in case of a large table) is performed.

Deletion: Deletion of a pair from the table in Stadium

hashing happens via discovering the bucket in the table (re-

trieve) and then atomically setting the corresponding ticket

bits in the ticket-board. Note that unlike regular retrievals,

deletion includes more iterations after rejecting a position

since there is no guarantee that between multiple keys that

hash to the same position, the order of deletions would be

the same as the order of insertions.

Support for mixed operation concurrency: To support

mixed operation concurrency, the design needs an additional

bit named access bit, beside the availability bit, indicating

whether the bucket is being accessed or not. For example,

a thread that inserts a key-value pair into the table needs to

atomically unset this bit alongside the availability bit, and

1. __device__ uint bfe(uint source, uint start, uint length);

2. template < typename keyT, typename tableT >
__device__ uint TryFindTheSeat(keyT key,
uint hashed, uint info, uint* ticketBoard,
tableT* table, uint tableSize) {

5. uint tbIndex = hashed >> 3;
6. uint ticketHolder = ticketBoard[tbIndex];
7. uint posInInt = (hashed & 7) << 2;
8. uint permit = 1 << posInInt;
9. if(permit & ticketHolder) {
10. return KEY_NOT_INSIDE_TABLE;
11. } else {
12. uint retrievedInfo = bfe(ticketHolder, posInInt+1, 3);
13. if(info != retrievedInfo) return 0;
14. return (table[hashed].key == key) ? (˜0) : 0;
15. }
16. }

Figure 10. Table entry discovery function for Stash retrievals for ticket
size 4.

set it when insertion is completed. A proper memory barrier

instruction— threadfence() if the table is inside the

global memory, threadfence system() if the table is

inside the host memory— will be required in this case after

inserting the pair into the table. Stash assumes that there

exists a proper implicit or explicit memory barrier between

the insertion of a key and its retrieval. Therefore, retrieving

or deleting threads ignore the ticket with an unset access
bit. If there is no memory barrier between the insertion of

a key and its retrieval being supplied by the user, retrieving

and deleting threads have to wait for the access bit of

an available ticket to be set again. Also, if deletions and

retrievals mix, the retrievals require further iterations after

rejecting a bucket.

C. clStash: Batched Insertions with Collaborative Lanes

Basic Stash explained in the previous section is not aware

of GPU’s SIMT hardware architecture and actually with

slight modifications can be used in other multi-threaded

environments as well. In the GPU realm, if a thread is not

able to reserve a table entry, it has to rehash its key again

hence dragging with itself all other lanes in the same SIMD

group (warp) that have successfully reserved entries causing

them to stay idle. This dragging phenomenon continues

until all the warp lanes find and reserve a table entry, thus

lowering the warp execution efficiency. To better utilize

GPU resources, we propose Stash with collaborative lanes

(clStash). In clStash, each warp uses a portion of the shared

memory to collect key-value pairs that could not be inserted

into the table at the previous iterations. When there are

enough collected pairs to keep all the warp lanes busy,

rehashing task is chosen for all of them.

Figure 11 compares Stash and clStash via an example.

Figure 11(a) shows that threads inside a warp are underuti-

lized when only a few threads are not able to find available

entries. Figure 11(b) depicts the processing procedure in

the collaborative lanes approach. Here shared memory acts

as a fast easy-to-access storage for pairs that could not

be inserted into the table in the previous iterations. For

68

T
im

e
0 1 2 3

� � � �

01 21

� �

22

�

8 9 10 11

Lane 0 Lane 1 Lane 2 Lane

4 5 6 7

� � � �

51 61

� �

52

�

1 12 13 14 15

e 3 Lane 4 Lane 5 Lane 6 Lane 7

(a) Basic Stash.

T
im

e

0 1 2 3 4 5 6

� � � � � � �

8 9 10 11 12 13 14

� � � � � � �

Lane 0 Lane 1 Lane 2 Lane 3 Lane 4 Lane 5 Lane

� � � � � � �

81 61
101 111 51

131 14

� � � � � � �

16 17 18 19 20 21 22

7

� �

01 21 51 614 15

� � 0 2 5 6

e 6 Lane 7 Warp-specific shared memory region

01

� �

41 21

� �

01 82
102 112 52

142 22

01

01 21 51 61

2 23

(b) clStash.

Figure 11. Higher warp utilization in Stash with collaborative lanes (clStash) compared to the basic Stash. In the above figure, assumed warp size is 8,
and subscript numbers show the number of tries done to insert the pairs into the table.

each warp we select the size of this storage unit equal

to the warp size. After every iteration, warp lanes count

the number of successfully inserted pairs. If this number is

more than the number of pairs collected inside the shared

memory–equivalently if the number of pairs that could not

be inserted is less than the available warp-specific shared

memory capacity, unsuccessful lanes can push their pairs

into the storage unit, and then all the warp lanes grab fresh

pairs to hash. Otherwise, each successful lane can pop a

pair from shared memory, and all threads rehash their pairs.

This approach enhances the utilization of warp lanes by

postponing processing of some pairs to provide a unique

task for all the warp lanes in every iteration.

In clStash, lanes exploit intra-warp binary prefix sum to

identify the address in the shared memory from which they

have to extract pairs or to which they have to write pairs.

Here the lane success at inserting their pairs in the previous

iteration works as the predicate.

1) clStash CUDA Implementation: Figure 12 shows the

clStash pseudo-algorithm. It starts with initializing a variable

that indicates the number of accumulated undone jobs (line

1). The rest of the computation happens in a loop that

continues as long as there are more key-value pairs to insert.

The thread initializes a job at the beginning of the loop by

fetching a fresh key-value pair (line 3). After hashing the key

(line 4) and an attempt to reserve an entry for the pair (line

5), successful threads insert the ticket info bits and the pair

into the table (line 7 and 8). Since these two steps involve

writing to the global memory, the warp lanes can hide

the latency by executing further non-dependent instructions,

avoiding needless idling while the global memory region

is being updated. At line 9, we do an intra-warp binary

reduction to find how many warp lanes were not successful

in finding an empty entry. As long as there are sufficient

accumulated undone jobs to be used by those lanes who have

successfully finished their job (line 10), warp lanes stay in a

1 accumulated := 0
2 while(there exist more key value pairs to hash)
3 fetch a fresh job from global/host memory
4 hashed := hash the key for the first time
5 gotSeat := try reserve an entry with hashed
6 if(gotSeat)
7 insert ticket info into the ticket-board
8 insert key value pair into the table using hashed
9 nUnsuccess := intrawarp binary reduction over (!gotSeat)
10 while((nUnsuccess + accumulated) > warpSize)
11 threadScan := intrawarp binary scan over gotSeat
12 nSuccess := shuffle threadScan from the last warp lane
13 if(gotSeat)
14 address := accumulated - threadScan
15 fetch the job from shared memory using address
16 accumulated := accumulated - nSuccess
17 hashed := rehash the current job
18 gotSeat := try reserve a bucket with hashed
19 if(gotSeat)
20 insert ticket info into the ticket-board
21 insert key value pair into the table using hashed
22 nUnsuccess := intrawarp binary reduction over (!gotSeat)
23 if(!gotSeat)
24 threadScan := intrawarp binary scan over (!gotSeat)
25 address := accumulated - threadScan - 1
26 store the job to shared memory using address
27 accumulated := accumulated + nUnsuccess

Figure 12. clStash insertion pseudo-algorithm. Note that shared memory
declarations are volatile.

loop (line 10). Note that this condition is equivalent to there
not being enough storage slots to push unsuccessful jobs.
Inside the loop, successful lanes compute the shared address

from which they need to fetch the job via an intra-warp

inclusive binary prefix sum (line 11-15). At line 16, all the

warp lanes reconverge and start to work on the job they have

in their registers. When there are insufficient accumulated

undone jobs, the loop (line 10-22) terminates. Now those

lanes that were not successful in inserting their pairs, push

their jobs into shared memory. Then all warp lanes re-start

the outmost loop by fetching fresh jobs from the global

memory. Our implementation contains code to take care of

what remains in the shared memory after the outmost loop

terminates.

69

0 06

0.08

0.1

0.12

0.14

0.16

e
D

if
fe

re
n

ce
 (

m
s)

-0.02

0

0.02

0.04

0.06

0 30In
se

rt
io

n
 T

im
e

Table Occu

60 90

upation Percentage

(a) Ticket size is 1.

0.15

0.2

0.25

0.3

0.35

0.4

e
D

if
fe

re
n

ce
 (

m
s)

-0.1

-0.05

0

0.05

0.1

0 30

In
se

rt
io

n
 T

im
e

Table Occu

60 90

upation Percentage

(b) Ticket size is 2.

Figure 13. The measured time difference between clStash and Stash using
50 evenly distributed samples over insertion of 226 randomly generated
pairs. The Load Factor is 0.95, the key and the value each occupy 8 bytes,
and the pairs and the table reside in the GPU global memory. The second
order polynomial regression for each plot is shown in the same figure.

For a fast computation of intra-warp binary prefix sum

and intra-warp binary reduction, we used Harris et al. ap-

proach [10]. For aforementioned tasks, [10] efficiently ex-

ploits popc() and ballot() CUDA intrinsic func-

tions that translate into one or a few machine instructions.
2) Stash+clStash Hybrid for Batched Insertions: While

clStash increases warp execution efficiency, it does not

come for free. The added overhead of binary prefix sum,

counting successful lanes in the warp, checking the overflow

condition, and the transactions with the shared memory can

make clStash slower than the basic Stash insertion when

the collision chance is very small. Therefore, we designed a

hybrid approach in which, when the table is mostly empty,

Stash is employed. When the table becomes more occupied,

and collisions start to increase, clStash is used.

Hybrid insertion requires a threshold specifying when to

switch from the basic approach to collaborative lanes. To

determine this threshold, we divided a sample input to many

equally-sized chunks and measured the time it takes for

every chunk in both approaches to be fully inserted. Then

we computed the difference in times of two approaches such

that a positive value shows the supremacy of collaborative

lanes approach. We interpolated the timing difference plot

via a second order polynomial regression and introduced the

second in-the-range root as the hybrid threshold. Figure 13

shows this approach for two configurations; thresholds for

other configurations were computed similarly.

IV. EXPERIMENTAL EVALUATION

We performed our experiments on a system equipped with

Nvidia GeForce GTX780 which has 12 GK110 Streaming

Multiprocessors and 3 GB of GDDR5 RAM. PCI Express

3.0 operating at 16x speed connects the device RAM and the

host DDR3 RAM. Evaluations are performed using CUDA

6.5 on Ubuntu 14.04. Unified Virtual Addressing is in effect

and the highest optimization level flag (-O3) is applied

during compilation of all programs. In all the experiments,

the ticket-board, the input key-value pairs for insertions, the

input query keys, and the result array for retrievals reside

inside the GPU global memory. All the key-value pairs are

generated randomly.

We first compare the performance of Stadium hashing

with GPU Cuckoo hashing[2], then examine the benefits

provided by our suggested methods, and finally analyze the

sensitivity of Stash.

A. Stadium Hashing vs. Cuckoo Hashing

We compare the performance of Stash with GPU Cuckoo

hashing [2] implemented in CUDA Data Parallel Primitives

(CUDPP) Library [11]. Inputs in this section are in the form

of interleaved insert and retrieval operations grouped into

slices. Queried keys in an interval are selected from the

keys inserted in the previous slice. Each slice has approxi-

mately 100k insertion or retrieval operations combined. To

remove the effect of thread divergence during comparison,

we batched insertion and retrievals in groups of 32. In

Stadium hashing, each slice is executed by a separate CUDA

kernel all inside an stream therefore inserted query keys can

be found inside the table during processing the next slice.

As we mentioned earlier, GPU Cuckoo hashing [2] re-

quires the size of the key and the value each to be 4 bytes.

Therefore the experiments in this section use 4 byte keys and

values. Also, GPU Cuckoo hashing natively does not support

concurrency. To enable safe insertion and retrieval for GPU

cuckoo hashing inside a slice, we assigned two sequen-

tial kernels for each slice: first one performing insertions

ignoring retrievals and the second one ignoring insertions

retrieving query keys.

In-core performance: We compare the performance of

hybrid Stash with GPU Cuckoo hashing for a range of

inputs and presented the speedups using different ticket sizes

in Figure 14. When all the query keys exist in the table

(Figure 14(a)), our method is 1.04x−1.19x faster than GPU

cuckoo hashing on average. When only a portion of the

query keys are available in the table (Figure 14(b)), the

speedup provided by our method is higher and is between

1.55x−1.65x. The higher speedup range is due to quick

rejection of unavailable query keys by the ticket-board.

We further examined the concurrency efficiency of in-core

hashing for our method and Cuckoo-GPU. Figure 15 shows

the ratio of the aggregation of insertion duration and retrieval

duration over combined operations duration. It shows how

Stash performance and Cuckoo hashing performance get

affected when we combine and interleave Insertions and

retrievals. While Cuckoo performance drops significantly

by mixing the operations (61.3% on average), Stash per-

formance changes only slightly (concurrency efficiency is

96.8% on average).

Out-of-core performance: Figure 16 presents the

speedup of hybrid Stash against GPU Cuckoo hashing when

the table is inside host memory. In both Figures 16(a) and

16(b) it is evident that a larger ticket size provides higher

speedups due to higher access certainty (lower number

of host memory accesses) during retrievals. Also for the

inserts, our method incurs only one write-only access to

70

0

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

1.8

0 20 40 60 80 100 120 140 160

S
p

ee
d

u
p

Number of Pairs (Millions)

T.S. = 1 T.S. = 2 T.S. = 4 T.S. = 8

(a) 100% queries exist.

0

0.5

1

1.5

2

2.5

0 20 40 60 80 100 120 140 160

S
p

ee
d

u
p

Number of Pairs (Millions)

T.S. = 1 T.S. = 2 T.S. = 4 T.S. = 8

(b) 50% queries exist.

Figure 14. Stadium hashing speedup compared to GPU Cuckoo hashing.
The table is inside the GPU global memory. The number of pairs that have
been inserted in insertion phase are asked for during the retrieval. The Load
Factor is 0.8.

0

20

40

60

80

100

S
ta

sh
:
T

.S
.=

1

S
ta

sh
:
T

.S
.=

2

S
ta

sh
:
T

.S
.=

4

S
ta

sh
:
T

.S
.=

8

C
u

ck
o
o
-G

P
U

S
ta

sh
:
T

.S
.=

1

S
ta

sh
:
T

.S
.=

2

S
ta

sh
:
T

.S
.=

4

S
ta

sh
:
T

.S
.=

8

C
u

ck
o
o
-G

P
U

S
ta

sh
:
T

.S
.=

1

S
ta

sh
:
T

.S
.=

2

S
ta

sh
:
T

.S
.=

4

S
ta

sh
:
T

.S
.=

8

C
u

ck
o
o
-G

P
U

S
ta

sh
:
T

.S
.=

1

S
ta

sh
:
T

.S
.=

2

S
ta

sh
:
T

.S
.=

4

S
ta

sh
:
T

.S
.=

8

C
u

ck
o
o
-G

P
U

N. Pairs: 80 M N. Pairs: 160 M N. Pairs: 80 M N. Pairs: 160 M

100% Queries exist. 50% Queries exist.

C
o
n

cu
rr

en
cy

 E
ff

ic
ie

n
cy

 (
%

)

Figure 15. The ratio of the aggregation of insertion duration and retrieval
duration over combined operations duration. The table is inside the GPU
global memory and the Load Factor is 0.8.

the host memory per insertion request, minimizing costly

host memory transactions. When all the query keys are

available in the table, our method outperforms GPU Cuckoo

hashing by 1.25x−1.75x. When only half of the query keys

are available during retrieval (Figure 16(b)), ticket-board

helps rejecting unavailable keys without accessing the host

memory providing 1.23x−2.47x speedup.

We also compared the exclusive performance of Stadium

hashing and Cuckoo-GPU for out-of-core tables in Fig-

ure 17. Figure 17(a) shows the results for hybrid Stash inser-

tion rates for different ticket sizes. As we can see, regardless

of the ticket size, the hybrid Stash has approximately twice

0

0.5

1

1.5

2

2.5

3

0 40 80 120 160 200 240 280 320

S
p

ee
d

u
p

Number of Pairs (Millions)

T.S. = 1 T.S. = 2 T.S. = 4 T.S. = 8

(a) 100% queries exist.

0

0.5

1

1.5

2

2.5

3

3.5

4

4.5

0 40 80 120 160 200 240 280 320

S
p

ee
d

u
p

Number of Pairs (Millions)

T.S. = 1 T.S. = 2 T.S. = 4 T.S. = 8

(b) 50% queries exist.

Figure 16. Stadium hashing speedup compared to GPU Cuckoo hashing,
having the table inside a pinned host memory region. The number of pairs
that have been inserted in insertion phase are asked for during retrieval and
deletion. The Load Factor is 0.8.

the performance of Cuckoo-GPU. This is because Stash
resolves the collisions in the ticket-board and writes to the

slow host memory only when it is necessary but Cuckoo-

GPU asks for the returned value which adds the overhead

of reads from the host side. In Figure 17(b) we show the

retrieval rates of Stash and Cuckoo-GPU when all the query

keys are available inside the table. We observe that as we

increase the ticket size and hence ticket info bits, the retrieval

rates increase since positions that do not belong to the query

key can be rejected in greater numbers and thus avoiding

costly table lookups for the actual key. On average, retrievals

with ticket sizes 8, 4, and 2 are respectively 1.59, 1.50, and

1.14 times faster than Cuckoo-GPU. Figure 17(c) presents

the retrieval rates when only half of the query keys are

available inside the table. While Stash reduces the number

of costly unnecessary PCIe transactions by examining the

tickets in the ticket-board, Cuckoo-GPU has to verify all 4
possible entry locations, introducing 4 expensive PCIe reads

for unavailable keys. On average, Stash retrievals in this

scenario with ticket sizes 8, 4, and 2 are respectively 3.99,

3.23 and 1.59 times faster than Cuckoo-GPU.

SIMD execution efficiency: We measured the warp

execution efficiency of insertions in Cuckoo-GPU, Stash,

and clStash for various Load Factors and presented them

in Table I. In comparison to Stash and Cuckoo-GPU [2],

the clStash strategy greatly improves the warp execution effi-

ciency due to its awareness of underlying SIMD architecture.

71

0

50

100

150

200

250

300

0 40 80 120 160 200 240 280 320In
se

rt
io

n
 R

at
e

(M
 P

ai
rs

/S
ec

)

Inserted Pairs (Millions)

Cuckoo-GPU Hybrid: T.S. = 1 Hybrid: T.S. = 2

Hybrid: T.S. = 4 Hybrid: T.S. = 8

(a) Insertion.

0

50

100

150

200

250

300

0 40 80 120 160 200 240 280 320R
et

ri
ev

al
 R

at
e

(M
 K

ey
s/

S
ec

)

Queried Keys (Millions)

Cuckoo-GPU Stash: T.S. = 1 Stash: T.S. = 2

Stash: T.S. = 4 Stash: T.S. = 8

(b) Retrieval: all the query keys are available.

0

100

200

300

400

500

0 40 80 120 160 200 240 280 320R
et

ri
ev

al
 R

at
e

(M
 K

ey
s/

S
ec

)

Queried Keys (Millions)

Cuckoo-GPU Stash: T.S. = 1 Stash: T.S. = 2

Stash: T.S. = 4 Stash: T.S. = 8

(c) Retrieval: half of the query keys are available.

Figure 17. The out-of-core performance of Stadium hashing in comparison with Cuckoo hashing on GPU [2]. The same number of pairs that have been
inserted in insertion phase are asked for retrieval and deletion. The Load Factor is 0.8 in all cases.

LF = 0.8 LF = 0.85 LF = 0.9 LF = 0.95

Cuckoo-GPU 25.45% 24.5% 23.5% 22.4%
Stash 49.45% 47.0% 44.2% 40.6%

clStash 87.95% 87.45% 86.85% 86.1%

Table I
PROFILED WARP EXECUTION EFFICIENCIES FOR CUCKOO-GPU AND

STADIUM HASHING FOR INSERTION OF 225 PAIRS WITH VARYING LOAD

FACTORS (LFS). FOR STADIUM HASHING THE TICKET SIZE IS 4.

0

10

20

30

T.S.=1 T.S.=2 T.S.=4 T.S.=8 T.S.=1 T.S.=2 T.S.=4 T.S.=8

100% queries exist. 50% queries exist.

R
at

e
(M

 P
ai

rs
/S

ec
)

Stash without TB Stash Stash+CL

(a) There are 320M pairs and the table resides in the host memory.

0

50

100

150

T.S.=1 T.S.=2 T.S.=4 T.S.=8 T.S.=1 T.S.=2 T.S.=4 T.S.=8

100% queries exist. 50% queries exist.

R
at

e
(M

 P
ai

rs
/S

ec
)

Stash without TB Stash Stash+CL

(b) There are 160M pairs and the tables is inside the GPU global
memory.

Figure 18. The rate to insert and retrieve key-value pairs when utilizing
ticket-board and the collaborative lanes method. The key and the value each
occupy 8 bytes. The Load Factor is 0.85.

B. Stadium Hashing Performance Breakdown

In this section, we have measured the performance gain

provided by employing the ticket-board and the collaborative

lanes approach in different scenarios and provided the results

in Figure 18. For this purpose we have implemented a

version of Stash in which the requests for retrievals are

processed by directly comparing the query key with the

key in the table, avoiding the ticket-board in retrievals

altogether. Figure 18(a) presents the processing rate for Stash

and Stash+CL (hybrid) methods and compares them with

Stash that avoids ticket-board during retrievals, for when the

table is inside the host memory. It is clear that ticket-board

especially with larger ticket sizes can help improving the

processing rate. This is due to higher rate of unnecessary

host memory access avoidance with larger ticket info bits

about the key. This effect becomes very significant when

only a portion of the keys reside inside the table. On the

other hand, since the PCIe bandwidth is the bottleneck when

the table is in the host side, increasing SIMD efficiency in

this case is not very effective. Also when the table resides

inside the GPU global memory (Figure 18(b)), enhancing

warp execution efficiency of the Stash with Collaborative

Lanes method increases the performance.

C. Stadium Hashing Sensitivity Analysis

In this section, we analyze the sensitivity of Stadium

hashing to the size of keys and values. Figure 19 presents

the performance of Stash with different ticket sizes over

different key and value sizes for in and out of core insertions,

retrieval, and deletions. Figure 19(a) plots the insertion rate

for Stash, clStash and Hybrid method when the table resides

inside the GPU global memory. First, the ticket size one has

a higher rate of insertion since it does not involve creation

and insertion of ticket info bits. Also, the performance

slightly reduces as we increase the key or the value size

due to wider memory transactions. Figure 19(b) shows the

same scenario having the table inside the host memory. Here

the PCIe bandwidth limits the insertion rate in all cases.

Figure 19(c) shows the retrieval and deletion rates of

different ticket sizes facing different key or value sizes.

Generally, bigger keys or values require wider memory

transactions which bring down the retrieval rate. When

the table is in host memory (Figure 19(d)) larger ticket

sizes become more necessary to avoid costly host memory

transactions, especially with larger key or value sizes.

72

In
se

rt
io

n
 R

at
e

(M
 P

ai
rs

/S
ec

)

0

100

200

300

400

500

600

T
.S

.=
1

T
.S

.=
2

T
.S

.=
4

T
.S

.=
8

T
.S

.=
1

T
.S

.=
2

T
.S

.=
4

T
.S

.=
8

T
.S

.=
1

T
.S

.=
2

T
.S

.=
4

T
.S

.=
8

T
.S

.=
1

T
.S

.=
2

T
.S

.=
4

T
.S

.=
8

|Key|=8, |Value|=8 |Key|=8, |Value|=16 |Key|=16, |Value|=8 |Key|=16, |Value|=16

Stash clStash Hybrid

(a) Insertion into the global Mem.

0

20

40

60

80

100

120

140

T
.S

.=
1

T
.S

.=
2

T
.S

.=
4

T
.S

.=
8

T
.S

.=
1

T
.S

.=
2

T
.S

.=
4

T
.S

.=
8

T
.S

.=
1

T
.S

.=
2

T
.S

.=
4

T
.S

.=
8

T
.S

.=
1

T
.S

.=
2

T
.S

.=
4

T
.S

.=
8

|Key|=8, |Value|=8 |Key|=8, |Value|=16 |Key|=16, |Value|=8 |Key|=16, |Value|=16

Stash clStash Hybrid

In
se

rt
io

n
 R

at
e

(M
 P

ai
rs

/S
ec

)

(b) Insertion into the host Mem.

0

200

400

600

800

T
.S

.=
1

T
.S

.=
2

T
.S

.=
4

T
.S

.=
8

T
.S

.=
1

T
.S

.=
2

T
.S

.=
4

T
.S

.=
8

T
.S

.=
1

T
.S

.=
2

T
.S

.=
4

T
.S

.=
8

T
.S

.=
1

T
.S

.=
2

T
.S

.=
4

T
.S

.=
8

|Key|=8, |Value|=8 |Key|=8, |Value|=16 |Key|=16, |Value|=8 |Key|=16, |Value|=16

Retrieval: %100 of Keys Available Retrieval: %50 of Keys Available Deletion

R
at

e
(M

 K
ey

s/
S
ec

)

(c) Retrieval and deletion from the global Mem.

0

50

100

150

200

250

T
.S

.=
1

T
.S

.=
2

T
.S

.=
4

T
.S

.=
8

T
.S

.=
1

T
.S

.=
2

T
.S

.=
4

T
.S

.=
8

T
.S

.=
1

T
.S

.=
2

T
.S

.=
4

T
.S

.=
8

T
.S

.=
1

T
.S

.=
2

T
.S

.=
4

T
.S

.=
8

|Key|=8, |Value|=8 |Key|=8, |Value|=16 |Key|=16, |Value|=8 |Key|=16, |Value|=16

Retrieval: %100 of Keys Available Retrieval: %50 of Keys Available Deletion

R
at

e
(M

 K
ey

s/
S
ec

)

(d) Retrieval and deletion from the host Mem.

Figure 19. Sensitivity of Stadium Hashing to different key-value sizes over insertion, retrieval and deletion of 225 pairs or keys. The Load Factor is 0.85
in all cases. Mentioned key or value sizes are in bytes.

V. RELATED WORK

GPU parallel hashing: Parallel hashing on GPUs

started to attract attention first for a compact representation

of two or three dimensional sparse data: Perfect Spatial

Hashing [14] suggests precomputing a prefect hash table

for a static set of elements. GPU threads can access the

query data through exactly two memory accesses: one to an

offset table and one to the hash table. Since the creation

of two tables is time-consuming, this solution is helpful

only for static data and usually for Graphics applications.

Another notable solution is Coherent Parallel Hashing [7]

which implements the idea in Robin hood hashing [4].

Similar to Cuckoo Hashing [18], chaining is the collision

resolution strategy. Robin hood hashing stores additional bits

indicating the age of the key and a key is swapped only if it is

younger than another key. Coherent Parallel Hashing yields

its best performance only when the keys are neighbors for

insertions and accesses are coherent in retrieval. This makes

Coherent Parallel Hashing impractical for general purpose

applications. To exploit locality, Bordawekar has suggested a

multi-level design [3] in which every level utilizes a different

hash function and confines the probing region. Nevertheless,

this approach imposes restrictions to usability similar to [2].

Other techniques to improve the locality of references are

Hopscotch hashing [12] and Cache-Oblivious hashing [19]

via bounded probing but in our experiments we observed

that primary clustering, especially with larger Load Factors,

can outweigh the effect of possibly higher GPU L2 cache

hit ratio.

Query processing: Parallel processing of queries on

GPUs also involves parallel indexing and retrieval tech-

niques. Bin-Hash Indexing [8] provides a GPU based paral-

lelization method for Query-Driven Visualization. The key

space is partitioned into perfect spatial hash tables called

bins and only base data of the boundary bins are accessed

for candidate checks. Although this technique reduces total

global memory accesses, Bin-Hash requires the table data to

be pre-encoded on the host side before being transferred to

GPU. Diamos et.al. [6] implement several primary relational

operators on GPUs using binary search; nonetheless their

usage of sorted lists makes incremental insertions very

costly. Red Fox [22] proposes a more complete frame-

work consisting of compiler and run-time components for

executing relational queries on GPUs. Tables are stored

as key and value tuples on padded GPU global memory

and manipulated via low level tuple operators (i.e. kernels).

Although Red Fox provides a complete infrastructure, it

fails to optimize table look-ups, resulting in increased global

memory contention.
Load imbalance & branch divergence: The load im-

balance problem for GPU hashing can be considered as a

subset of a bigger well-known problem for SIMT devices

named branch divergence. To remedy the effect of branch

divergence, Dymaxion [5] offers data restructuring and

Zhang et al. suggest data reordering [24] but proposed

solutions have limited usage to predictable data patterns.

Iteration delaying [9] is another technique that by means

of intra-warp binary reduction, tries to reduce the effect of

branch divergence by taking the path most warp lanes will

be active in. Unlike Collaborative Lanes technique, iteration
delaying is unsuccessful in utilizing all the warp lanes in

every iteration since no job accumulation strategy is devised.
Parallel prefix sum, employed by Collaborative Lanes,

has shown to be a successful approach to balance the

load for GPU threads in graph traversal [15]. Furthermore,

[17] introduces several techniques to handle load imbalance

among which Local Worklists method saves a local work

73

queue for each thread in the shared memory; in Collaborative

Lanes approach we efficiently accumulate only undone jobs

that haven been unsuccessful in previous iterations. Finally,

collaborative lanes can be viewed as a hybrid of data-driven

computation and topology-driven computation– classified in

[16]– that has a partition size equal to the warp size.

VI. CONCLUSION

In this paper, we presented Stadium hashing (Stash),

a parallel hashing method on GPUs that, unlike previous

techniques, supports efficient concurrent mixed operations

by multiple simultaneously operating threads, effectively

enables scaling the hash table to exceed the GPU limited

global memory, and does not limit the size of the key

nor the size of the value. We then introduced Stash with

Collaborative Lanes (clStash) that enhances the GPU warp

utilization and further improves the insertion performance.

We showed that Stadium hashing can outperform existing

GPU parallel hashing methods by up to 2 and 3 times for

in-core and out-of-core tables respectively.

ACKNOWLEDGMENT

This work is supported by NSF Grants CCF-0905509,

CNS-1157377, CCF-1318103, and CCF-1524852.

REFERENCES

[1] Dan A. Alcantara, Andrei Sharf, Fatemeh Abbasinejad, Shub-
habrata Sengupta, Michael Mitzenmacher, John D. Owens, and
Nina Amenta. Real-time Parallel Hashing on the GPU. In ACM
SIGGRAPH Asia, pages 154:1–154:9, 2009.

[2] Dan A. Alcantara, Vasily Volkov, Shubhabrata Sengupta,
Michael Mitzenmacher, John D. Owens, and Nina Amenta.
Building an Efficient Hash Table on the GPU. In GPU
Computing Gems Jade Edition, Morgan Kaufmann Publishers
Inc., pages 39–53, 2011.

[3] Rajesh Bordawekar. Evaluation of Parallel Hashing Tech-
niques. In GTC, 2014.

[4] Pedro Celis, P.-A Larson , and J.Ian Munro. Robin hood
hashing. In Symp. on Foundations of Computer Science, pages
281-288, 1985.

[5] Shuai Che, Jeremy W. Sheaffer, and Kevin Skadron. Dymax-
ion: Optimizing Memory Access Patterns for Heterogeneous
Systems In SC, pages 1–11, 2011.

[6] Gregory Diamos, Haicheng Wu, Jin Wang, Ashwin Lele, and
Sudhakar Yalamanchili. Relational Algorithms for Multi-bulk-
synchronous Processors. In PPoPP, pages 301–302, 2013.

[7] Ismael Garcı́a, Sylvain Lefebvre, Samuel Hornus, and
Anass Lasram. Coherent Parallel Hashing. SIGGRAPH Asia,
pages 161:1–161:8, 2011.

[8] Luke J. Gosink, Kesheng Wu and, E. Wes Bethel, John D.
Owens, and Kenneth I. Joy. Bin-Hash Indexing: A Parallel
Method For Fast Query Processing. Laurence Berkeley National
Laboratories, 2008.

[9] Tianyi David Han, and Tarek S. Abdelrahman. Reducing
Branch Divergence in GPU Programs. In GPGPU-4, pages 3:1–
3:8, 2011.

[10] Mark Harris, and Michael Garland. Optimizing parallel prefix
operations for the Fermi architecture. In GPU Computing Gems
Jade Edition, Morgan Kaufmann Publishers Inc., pages 29–38,
2011.

[11] Mark Harris, John Owens, Shubho Sengupta, Yao Zhang,
and Andrew Davidson. CUDPP: CUDA data parallel primitives
library. http://cudpp.github.io, 2007.

[12] Maurice Herlihy, Nir Shavit, and Moran Tzafrir. Hopscotch
Hashing. In DISC, pages 350–364, 2008.

[13] Hyesoon Kim, Richard W. Vuduc, Sara S. Baghsorkhi, Jee-
Whan Choi, and Wen-mei W. Hwu. Performance Analysis
and Tuning for General Purpose Graphics Processing Units
(GPGPU). In Synthesis Lectures on Computer Architecture,
2012.

[14] Sylvain Lefebvre, and Hugues Hoppe. Perfect Spatial Hash-
ing. In SIGGRAPH, pages 579–588, 2006.

[15] Duane Merrill, Michael Garland, and Andrew Grimshaw.
Scalable GPU Graph Traversal. In PPoPP, pages 117–128,
2012.

[16] Rupesh Nasre, Martin Burtscher, and Keshav Pingali. Data-
Driven Versus Topology-driven Irregular Computations on
GPUs. In IPDPS, pages 463–474, 2013.

[17] Rupesh Nasre, Martin Burtscher, and Keshav Pingali. Morph
Algorithms on GPUs. In PPoPP, pages 147–156, 2013.

[18] Rasmus Pagh and Flemming Friche Rodler. Cuckoo Hashing.
In Journal of Algorithms, pages 122–144, 2004.

[19] Rasmus Pagh, Zhewei Wei, Ke Yi, and Qin Zhang. Cache-
Oblivious Hashing. In Algorithmica, pages 864–883, 2014.

[20] T. Sorensen, G. Gopalakrishnan, and Vinod Grover. Towards
Shared Memory Consistency Models for GPUs. ICS, pages 489–
490, 2013.

[21] Nicholas Wilt. The CUDA Handbook: A Comprehensive
Guide to GPU Programming. Pearson Education, pages 127–
128, 2013.

[22] Haicheng Wu, Gregory Diamos, Tim Sheard, Molham Aref,
Sean Baxter, Michael Garland, and Sudhakar Yalamanchili.
Red Fox: An Execution Environment for Relational Query
Processing on GPUs. In CGO, pages 44:44–44:54, 2014.

[23] Yongpeng Zhang, Frank Mueller, Xiaohui Cui, and
Thomas Potok. GPU-Accelerated Text Mining. In Workshop
on Exploiting Parallelism using GPUs and other Hardware-
Assisted Methods, 2009.

[24] Eddy Z. Zhang, Yunlian Jiang, Ziyu Guo, Kai Tian, and
Xipeng Shen. On-the-fly Elimination of Dynamic Irregularities
for GPU Computing. In ASPLOS, pages 369–380, 2011.

[25] Yuan Zu, and Bei Hua. GLZSS: LZSS Lossless Data
Compression Can Be Faster. In GPGPU-7, pages 46:46–46:53,
2014.

74

