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Abstract—Memory graphs are very useful in understanding
the behavior of programs that use dynamically allocated data
structures. We present a new memory graph representation,
MG++, and a memory graph construction algorithm, that greatly
enhance the utility of memory graphs. First, in addition to
capturing the shapes of dynamically-constructed data structures,
MG++ also captures how they evolve as the program executes
and records the source code statements that play a role in their
evolution to assist in debugging. Second, MG++ captures the
history of actions performed by the memory allocator. This is
useful in debugging programs that internally manage storage or
in cases where understanding program behavior requires examin-
ing memory allocator actions. Our binary instrumentation-based
algorithm for MG++ construction does not rely on the knowledge
of memory allocator functions or on symbol table information.
Our algorithm works for custom memory allocators as well as
for in-program memory management. Experiments studying the
time and space efficiency for real-world programs show that
MG++ representation is space-efficient and the time overhead for
MG++ construction algorithm is practical. We show that MG++
is effective for fault location and for analyzing binaries to detect
heap buffer overflow attacks.

Keywords—memory graph, evolution history, memory allocator
history, fault location, buffer overflow attacks

I. INTRODUCTION

A memory graph, where nodes represent allocated mem-
ory chunks and edges represent links between them created
by memory stores, is effective in visualizing the shapes of
heap-allocated data structures constructed at runtime. Memory
graphs are useful in program understanding [1], or identifying
data structures used by a program to replace them with
more efficient ones [2]. In programs with bugs, execution of
faulty code often results in anomalies that can be observed
in the memory graph. Thus memory graphs are useful for
helping locate memory bugs (e.g., memory leaks and illegal
memory access patterns [3]–[5]) as well as in general-purpose
debugging [6]. However, prior representations [1], [2], [7]
fail to capture important information and their construction
algorithms make assumptions that limit their utility:

• Lack evolution history. Existing representations [1],
[2], [7] are a snapshot of the heap at a program
point but do not capture the runtime evolution of the
memory graph. This deprives the user of critical in-
formation useful in verifying data structure properties
and understanding how anomalies were introduced in
the memory graph [8].

• Lack mapping to source code. Memory graphs used
in prior work do not capture the program statements

whose execution constructs and modifies the memory
graph. This makes it hard for the user to relate memory
graph anomalies to faulty source code statements.

• Lack memory allocator history. Since existing mem-
ory graphs do not capture the behavior of memory
allocators, they are not effective when understanding
program’s (faulty) behavior requires examining the
internal actions of the memory allocators (e.g., updates
to the internally-maintained free list). This limitation
is particularly problematic when programs use custom
memory allocators.

• Allocator information requirement. Existing meth-
ods for constructing memory graphs [1], [2], [7]
must know what functions allocate/free memory—
information from these functions (e.g., starting address
and size of allocated memory chunk) is required
during graph construction. The allocator-based ap-
proaches can only be applied when allocator infor-
mation is available.

Keeping our focus on dynamic data structures, we over-
come all of the above shortcomings by developing MG++,
a new representation of heap memory graphs, and a novel
approach to construct them. In addition to information tradi-
tionally captured by memory graphs, MG++ also captures the
runtime evolution history of data structures and its mapping to
the source code (Section II-A). Intuitively, MG++ compactly
represents the memory graph at the end of the execution, as
well as the evolution history; from this history, the memory
graph at any earlier program execution point can be extracted.
MG++ also captures the internal actions of the memory allo-
cator (Section II-B). This is useful in debugging programs that
internally manage the storage or where understanding program
behavior requires examining the interaction between program
actions and memory allocator actions. We provide examples of
real bugs where this information is critical for understanding
faulty behavior. We also found the additional information avail-
able in MG++ representation useful for manually analyzing
program data structures when coupled with Graphviz [9] to
visualize the memory graph.

Our novel technique for MG++ construction is based on
binary instrumentation and captures memory allocator behavior
without requiring knowledge of the allocator function. The
technique is based on the key observation that each field within
an allocated chunk of memory is accessed via an address
computed as an offset from the starting address of the allocated
chunk. This enables us to construct the memory graph without
assuming that the allocator functions will supply us with
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the starting address and size information for each newly-
allocated chunk. Rather, we are able to construct the memory
graph by simply monitoring heap references and operations
involving them. Runtime information is analyzed to construct
the graph by grouping heap references together to form nodes
and using stores in memory to create edges between graphs
nodes (Section III-B).

We have implemented our memory graph construction
technique using the PIN dynamic binary instrumentation
framework [10] for Linux executables running on the IA-32
architecture. We have evaluated the efficiency and effective-
ness of our techniques on various real-world programs; we
now highlight the results. The space required for storing the
complete memory graph evolution history of a large real-world
program (the CPython interpreter) using MG++ representation
is less than 150 MB; using prior memory graph representations
would require about 100 GB (capturing snapshots after each
memory graph change). For the benchmarks evaluated, our
MG++ construction approach manages to keep execution time
of instrumented code to an average of 1.7x in comparison to
an allocator-based approach while the worst case slowdown
is less than 5x. This shows that our approach provides a
practical method for constructing memory graphs in scenarios
where allocator information is not available. We illustrate the
benefits of our representation in locating faults in GNOME and
Mozilla and detecting heap buffer overflows using the RIPE
test suite [11].

The key contributions of this paper are:

1) The MG++ memory graph representation that cap-
tures the runtime evolution of the memory graph and
maintains a mapping to the program code responsible
for the graph’s evolution.

2) Additional MG++ features that handle cases where
memory management actions must be included in the
analysis.

3) A method for constructing memory graphs that is
independent of allocator or symbol table information
and can handle custom memory allocators as well as
in program memory management.

4) Evaluation of MG++ illustrating its usefulness for
(1) fault location in real-world programs, and (2)
detection of heap buffer overflows.

II. MG++ REPRESENTATION

We first present the MG++ representation that captures the
evolution of heap data structures as well as the mapping to
relevant source code. Next we present the additions to MG++
which capture the behavior of the memory allocator functions
as well as splitting and merging of allocated memory chunks.
Finally, we show how the memory graph at any program
execution point can be extracted from MG++.

A. MG++ for Heap Data Structures
A straightforward approach for tracking the evolution of

heap data structures is to capture the traditional memory graph
at each program execution point where it is modified. For
example, Figure 2 shows the execution of a sequence of
statements from a C program that creates a singly-linked list
by creating two nodes (statements 11 and 13) and linking them
to form the list (statement 15). The last statement (19) is faulty,

mistakenly breaking the linked list via the NULL assignment.
The programmer can examine the corresponding series of
traditional memory graphs [7] and understand how the link
list grows and is finally broken by the execution of the faulty
statement (19). While examining the sequence of memory
graphs allows the programmer to observe the evolution of the
link list, including its corruption, this approach is impractical
due to its memory cost.

(3):13 new_node n e x t

NULL

(4):14

(1):11 node n e x t

(5):15

NULL

(2):12

NULL

(6):19

∗ ∗ ∗ Execution Point → Timestamp 6 †

Figure 1. The compact MG++ representation.
To efficiently capture the memory graph’s evolution we

introduce a compact representation, MG++, from which the
memory graph at any execution point can be extracted. As
we can see in Figure 1, MG++ is compact because, by
construction, MG++ eliminates redundancy across the series
of memory graphs corresponding to the six execution points
uniquely identified by timestamps 1 through 6. The additional
annotations in MG++ represent timestamps for capturing the
order in which nodes/edges are created/deleted and identities of
source code statements responsible for changes to the memory
graph. In particular, in Figure 1:
• The two non-NULL nodes are labeled with (1):11 and

(3):13 indicating their creation at timestamps (1) and
(3) by execution of statements 11 and 13, respectively;

• The outgoing edge from new node−>next to NULL is
labeled (4):14 as it was created at timestamp (4) by
execution of statement 14; and

• Since node−>next is assigned at timestamps (2), (5),
and (6) by statements 12, 15, and 19, it has three
outgoing edges labeled (2):12, (5):15, and (6):19. The
lifetimes of these edges can be inferred from the
timestamps – the (solid) edge labeled with timestamp
(6) is the most recent edge; the earlier (dashed) edges
exist from the time of their creation to when the next
edge is created.

We observe that the use of timestamps prevents redundancy
across multiple memory graphs and thus makes the MG++
compact. In particular, if a node or an edge is created at
timestamp t, and it remains unchanged until the end of
execution, represented by timestamp T , then the MG++ will
have a single copy of the node or edge labeled with t implying
that it has remained unchanged until T .

Given a MG++, the memory graphs corresponding to series
of execution points can be extracted and shown to the user.
The user can then observe the evolution of the dynamic
data structure, identifying steps in execution at which the
data structure appears to get corrupted, and then, using the
statement numbers contained in MG++, identify the faulty
code. We now provide a formal definition of MG++.

†Throughout the paper, Execution Point → Timestamp t stands for “at
execution point corresponding to timestamp t”.
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Execution trace Traditional Memory Graph

11.node = malloc(sizeof(snode));

∗ ∗ ∗ Execution Point → Timestamp 1

node

 sizeof(snode)

12.node−>next = NULL;

∗ ∗ ∗ Execution Point → Timestamp 2

node

 sizeof(snode)

NULL

13.new node=malloc(sizeof(snode));

∗ ∗ ∗ Execution Point → Timestamp 3

node

 sizeof(snode)

NULL

new_node

 sizeof(snode)

14.new node−>next = NULL;

∗ ∗ ∗ Execution Point → Timestamp 4

node

 sizeof(snode)

NULL

new_node

 sizeof(snode)

NULL

15.node−>next = new node;

∗ ∗ ∗ Execution Point → Timestamp 5

node

 sizeof(snode)

new_node

 sizeof(snode)

NULL

19.node−>next = NULL;

∗ ∗ ∗ Execution Point → Timestamp 6

node

 sizeof(snode)

NULL

new_node

 sizeof(snode)

NULL

Figure 2. Executed statements and corresponding traditional Memory Graphs.

The MG++ is defined as a tuple (V,E) such that:
• V is a set of nodes such that each node vi consists

of 〈(tsi) : Si;Hi〉, where Hi is a set of heap
addresses {h1

i , h
2
i , . . .} that the node represents, tsi is

the timestamp at which the node was created, and Si

is the source code statement which led to creation of
the node vi. The statement is identified by its location
in the source code, i.e., 〈file name:line number〉.

hi
1 hi

2…..(tsi) : Si

• E is a set of directed edges Hi.h
k
i → Hj .h

1
j (Hi.h

k
i

represents the heap address that contains a pointer
to the heap address Hj .h

1
j where Hj .h

1
j is the first

heap address of node vj); each edge has a label
〈(tsij) : Sij〉, where tsij is the timestamp at which the
edge was created and Sij is the source code statement
that created the edge. There can be multiple edges
corresponding to the same heap address. The edge
with the highest timestamp is marked as the current
edge.

…. hi
- …..(tsi) : Si

hj
1 hj

2…..(tsj) : Sj

(tsij):Sij

B. Modeling the Memory Allocator
The MG++ representation presented so far does not capture

the behavior of the memory allocator itself. Therefore it may
be ineffective in cases where understanding program behavior
requires allocator information, or when the program has a
custom memory allocator for dynamic data structures. In such
cases, a memory graph node can no longer be simply defined
as an allocated chunk of memory, since the allocator’s actions
may split a big memory chunk into smaller chunks (during
allocation) or join two smaller chunks into a bigger one
(following a free).

To capture the history of splitting and merging of memory
chunks, we introduce two new kinds of nodes and edges, called
cluster nodes and merge edges, in the MG++ representation. A
cluster node marks a big consolidated memory chunk formed
by joining multiple smaller memory chunks. Representing the

node as smaller nodes joined by merge edges enables us
to track the history of memory allocation and deallocation
operations. This action is captured in the memory graph by
joining the two nodes using a merge edge. For the purpose of
interaction with other nodes, a cluster node is a single node
although it internally stores multiple nodes corresponding to
earlier smaller chunks.

Figure 3 shows a sample execution trace of a C program
that uses an allocator based on Lea’s dlmalloc allocator [12]
along with corresponding timestamps. In addition, we also
show the MG++ immediately before the execution and at the
end of the execution. Dlmalloc maintains the free memory
chunks in a doubly-linked list. The oval head and tail nodes
have been shown in the figure for clarity. The MG++ at
timestamp 0 shows such a free list with a big memory chunk
having starting address tmp1. Dlmalloc serves different memory
requests by splitting this big chunk into smaller chunks, and
stores back the freed memory chunks in the same doubly-
linked list. When two contiguous memory chunks are freed,
we consolidate them to form a bigger memory chunk. Such
a chunk is formed in this example when adjacent memory
chunks corresponding to tmp4 and tmp5 are freed (lines 12
and 15) and are consolidated via internal malloc actions.
MG++ stores this information using a cluster node – the
diamond-shaped node shown in Figure 3. The cluster node has
timestamp 26 and points to the two smaller chunks joined by
a merge edge (edge corresponding to timestamp 26). A cluster
node enables the MG++ to retrieve the earlier heap snapshot
using the timestamp information.

The formal definitions of the set of cluster nodes and merge
edges follow:
• V ′ is a set of cluster nodes such that each cluster node

v′i is defined as < (tsi) : starting address;Ni >
where Ni is an ordered list of nodes vi ∈ V joined
together by merge edges.

hi
1 hi…tsi hj

1 hj…tsj hl
1 hl…tsl…...

(tsij)

• A merge edge m connects two nodes vi, vj ∈ V inside
a cluster node and has a label < (tsij) > such that
the timestamp marks the merging of the node vj in
the cluster node.
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Execution trace MG++ Representation
1.tmp1 = malloc(sizeof(struct snode)); ***1
2.tmp2 = malloc(sizeof(struct snode)); ***2
3.tmp3 = malloc(sizeof(struct snode)); ***3
4.tmp4 = malloc(sizeof(struct snode)); ***4
5.tmp5 = malloc(sizeof(struct snode)); ***5

..
6.tmp1−>next = tmp2; ***8
7.tmp2−>next = tmp3; ***9
8.tmp3−>next = tmp4; ***10
9.tmp4−>next = tmp5; ***11
10.tmp1−>next = tmp3; ***12

..
11.free(tmp2); ***15

..
12.free(tmp4); ***18

..
13.tmp1−>next = tmp3; ***21

..
14.tmp3−>next = NULL; ***25
15.free(tmp5); ***26

*** At Timestamp 0

Head t m p 1 Tail

*** At Timestamp 26

(1) t m p 1 n e x t (9) t m p 3 n e x t
(21)

NULL
(25)

Head (8) t m p 2 n e x t (26) : tmp4 Tail

(10) t m p 4 n e x t
(11) t m p 5 n e x t

(26)

Figure 3. MG++ capturing the actions of the memory allocator.

Algorithm 1 Memory Graph retrieval algorithm
1: /* ni: node in MG++; nj : node in memory graph; MG++target:

MG++ at target timestamp; MGtarget: Memory Graph at target
time stamp */

2: INPUT: MG++final - the MG++ at final timestamp tsfinal;
target timestamp tstarget where tstarget ≤ tsfinal

3: function GRAPH RETRIEVE()
4: Step 1: /* retrieve MG++target */
5: Remove all the nodes created after tstarget
6: Remove all the edged created after tstarget
7: Join all the nodes split after tstarget
8: Separate all the nodes merged after tstarget
9: for all Heap addresses hi in MG++target do

10: Set the outgoing edge with highest timestamp as the
current Edge

11: end for
12: Step 2: /* retrieve MGtarget */
13: for all nodes ni in MG++target do
14: starting address(nj) ← Head(ni)
15: Size(nj) ← Size(addrList(ni))
16: MGtarget ←MGtarget + nj

17: end for
18: for All edges ei in MG++target do
19: add corresponding edges in MGtarget

20: end for
21: return MGtarget

22: end function

• Each node vi ∈ V carries a sourceID which marks
the parent nodeID corresponding to the node out of
which the node vi is formed after a split.

The definitions of the set of nodes V and the set of edges E
are similar to those in Section II.

C. MG++ Rollback and Retrieval
Given the MG++ at timestamp tsfinal, the memory graph

MG for any time stamp t ≤ tsfinal can be efficiently
reconstructed by selecting appropriate subsets of nodes and
edges. We can reconstruct the step-by-step evolution snapshots
of the memory graph enabling us to navigate back and forth
over the changes in memory graph during the execution.

(3):13 new_node n e x t

NULL

(4):14

(1):11 node n e x t

(5):15

NULL

(2):12

NULL

(6):19

MG++ at Execution Point → Timestamp 6

(3):13 new_node n e x t

NULL

(4):14

(1):11 node n e x t

NULL

(2):12

MG++ at Execution Point → Timestamp 4

node

 sizeof(snode)

NULL

new_node

 sizeof(snode)

NULL

MG at Execution Point → Timestamp 4

Figure 4. Memory Graph rollback and retrieval.

Algorithm 1 shows how we retrieve MGtarget, the memory
graph at target timestamp tstarget from MG++final, the MG++
corresponding to final timestamp tsfinal, such that tstarget ≤
tsfinal. The retrieval takes place in two steps. In the first step,
we retrieve MG++target, the MG++ at the target timestamp
tstarget. For this, all the nodes, edges, and merge edges having
timestamp greater than tstarget are removed from the graph.
Also, the addresses of any nodes that were split after the target
timestamp are joined together. Removal of nodes may result
in isolated data nodes, which are removed. Edges which were
overwritten by a store executed after the target timestamp are
restored as follows. For each of the heap addresses, the edge
with the highest timestamp is set as current edge. Similarly,
for each node, merge edge with the highest timestamp is set as

294



current merge edge. In the second step, MGtarget, the memory
graph at the target timestamp is constructed from MG++target.
This is done by creating nodes and edges in the memory graph
corresponding to the nodes and edges in MG++. The starting
address of a node is the same as the head of the address list in
the corresponding MG++ node. The size of a memory graph
node is calculated by joining the sizes of addresses in the
address list of the corresponding MG++ node.

Figure 4 illustrates retrieval of the memory graph at time
stamp 4 from a MG++ at timestamp 6. In the first step, the node
timestamps are examined. Since both nodes have timestamps
less then 4, they are retained. The edges with timestamps ≥ 4,
i.e., edges with timestamps 5 and 6, are deleted. This leads to
an isolated data node which is removed, yielding the MG++
at program point corresponding to timestamp 4. The starting
addresses of the two nodes are node and new node, respectively.
The sizes of these nodes are equal to the size of snode, i.e.,
size of head address + size of next.

III. PORTABLE MEMORY GRAPH CONSTRUCTION

We have developed a novel MG++ construction algorithm
based on binary instrumentation. By not relying on allocator
function information, we develop a portable algorithm that can
build the MG++ for programs using different memory allo-
cators, custom allocators, and in-program memory managers.
The implementation does not rely on source code or symbol
table information. To our knowledge, this is the first attempt
to capture the memory usage of a program without relying on
source code or symbol table information.

A. Key Observations
The MG++ construction is based on two observations:

(1) Accesses to fields within a memory node. Each address
inside an allocation site (i.e., node in the memory graph) is
always derived from the starting address. The fields can be
accessed as an offset from the starting address or the field
address is explicitly calculated by adding the offset to the
starting address. For example, in Figure 5 the starting address
of the memory allocated is stored in register eax, the node
field val in instruction number 6 is accessed as eax+0, and in
instruction number 9 the node field next is accessed as eax+4.
We observed this behavior in a variety of compilers: GCC,
LLVM, Microsoft VC++, and Intel’s C compiler. Even when
using registers to pass pointers to fields, or to pass the contents
of a char array from within a structure as a string, an address
inside the allocated memory chunk is accessed transitively
from the starting address (address C is accessed as an offset
from address B, while B is accessed as an offset from starting
address A). This observation can be understood in terms of
allocator behavior: the allocator returns the starting address of
an allocated memory chunk to the program and the program
can access the internal addresses of an allocated memory chunk
only through the starting address of the memory chunk. The
above observation lets us join all the addresses being derived
from the same starting address into a memory graph node, i.e.,
nodes can be identified without knowledge of memory allocator
functions used.

(2) Pointers point to the head address of a memory graph
node. When the internal actions of a memory allocator are also
being considered, we cannot rely only on the first observation
for constructing a memory graph node. The allocator gets
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Figure 5. Memory access example.

the starting address of the memory space from the system
(using the brk() or mmap() system calls) and derives all the
internal addresses from this starting address. Using only the
first observation we will end up with a single node (multiple
nodes in case of mmap()) for the whole program.

Therefore we form memory graph nodes using the obser-
vation that all pointers point to the head address of a memory
graph node. Any address being pointed to becomes the starting
address of a new memory graph node.

In prior works memory graph nodes correspond to allocated
memory chunks and the construction techniques rely on the
knowledge of calls to the allocator function. Moreover, if the
program uses a custom memory allocator or it manages mem-
ory internally, then traditional memory graph representations
fail to provide any useful information because they will simply
show a single memory graph node.

B. Construction Algorithm
Given a program execution trace which captures the op-

erations on heap references during the program execution,
our algorithm builds the MG++ by grouping together heap
references to form a memory graph node. The technique for
identifying heap references is described in the implementation
description (Section IV). Whenever a heap address-handling
instruction is encountered, it is analyzed for its effects on the
graph. The timestamp attached to each node and edge marks
the order of their creation during the execution of the program.
For example, a node will always have a lower timestamp
than an edge pointing to it because the node was formed
earlier in program execution and the edge was added later.
The timestamp is initialized at the start of memory graph
construction and is incremented with each change to the graph.
Note that we do not capture information about node deal-
location, as the MG++ maintains information about nodes
even after their deallocation (complete evolution history) so
handling of deallocation does not require any special treatment.
Algorithm 2 summarizes memory graph construction, changing
the memory graph according to the instructions being executed.
For a heap address haddr, in Algorithm 2, node(haddr)
denotes the node corresponding to haddr. Given an instruction
i, the following four cases arise:

Case 1) If the current instruction i operates only on one
heap address which has never been encountered before the
current execution point, then a new node is created (call to
Create Node, line 8). In Create Node, the address is added to
the address list of the new node. The node is also given a new
timestamp which marks its creation.

Case 2) If instruction i operates on heap address + offset,
the algorithm proceeds as follows. If both the base heap
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Operation Instruction MG++ Before MG++ After
Join Addresses(haddr1, haddr2) haddr1 + offset ( =haddr2 ) (ts) haddr1 (ts) haddr1 haddr2

Merge Nodes(haddr1, haddr2) haddr1 + offset ( =haddr2 ) haddr1 haddr2 ( ts) :haddr1 haddr1 haddr2
(ts)

Split Node(haddr2) haddr1 ← haddr2
haddr3 .. . haddr2 ....

. . . haddr1 .. .

haddr3 .. .

. . . haddr1 .. . haddr2 .. .

Figure 6. MG++ construction operations.

Algorithm 2 Memory Graph construction
1: /* haddr: heap address; node(haddr): node corresponding to

haddr; data: non heap address value */
2: INPUT: Execution Trace
3: OUTPUT: Memory Graph (MG)
4: function GRAPH CONSTRUCTION()
5: switch instruction i :
6: case i has haddr1
7: if haddr1 6∈ MG then
8: Create Node(haddr1)
9: end if

10: case i has haddr1 + offset(= haddr2)
11: if haddr2 6∈ MG then
12: Join Addresses(haddr1, haddr2)
13: else if node(haddr2) 6= node(haddr1) then
14: Merge Nodes(haddr1, haddr2)
15: end if
16: case i is haddr1 ← data
17: Create Edge(haddr1, data)
18: case i is haddr1 ← haddr2
19: if haddr2 6∈ MG then
20: Create Node(haddr2)
21: else if haddr2 is not head of node then
22: Split Node(haddr2)
23: end if
24: Create Edge(haddr1, haddr2)
25: end function

address and offset heap address have not been encountered
earlier, then a new node is created and both addresses are added
to the address list of the node (omitted from the algorithm for
simplicity).
– If the base heap address has been encountered earlier (i.e., it
corresponds to a node) and the offset heap address has not been
encountered until that execution point, then the offset heap
address is added to the address list of the node corresponding
to the base address (Figure 6, row 1).
– If both the base heap address and the offset address have
already been encountered before, and correspond to different
nodes, then the nodes are merged together using the merge
edge (call to Merge Nodes, line 14). This leads to the creation
of a cluster node (Figure 6, row 2). An example of this
situation is the memory allocator consolidating two adjacent
free memory chunks into one bigger chunk.
Case 3) If the instruction i is a memory write, A←B where A is
a heap address and B is a data value (e.g., tmp3−>next = NULL
in Figure 3) then a data edge from the address is created (call to
Create Edge, line 17). The edge is assigned a new timestamp
that marks its creation.

Case 4) If instruction i is a memory write, A←B where
both A and B are heap addresses (e.g., tmp1−>next = tmp2 in
Figure 3), an edge is created, from the address written to, to
the node corresponding to the address value written (call to
Create Edge, line 24). If the address value written is not the

starting address of a memory graph node then the node is split
such that the address value written forms the head of the newly
created node (Figure 6, row 3). A common example of such a
situation is when memory allocator allocates a smaller chunk
out of a bigger free memory chunk. If the address value written
is a new address, a new node is created as in step 1 (call to
Create Node, line 20).

Node merging and splitting operations come into play
only when the internal actions of the memory allocator are
included in the analysis. If such internal actions are not
considered in the analysis then accessing an address from
a node as an offset from the address of a different node
(line 13: haddr1 + offset(= haddr2) and node(haddr2)
6= node(haddr1)) is considered to be suspicious program
behavior, e.g., a potential heap buffer overflow.

An Example. Figure 7 illustrates our approach when run
on the example given in Figure 3. The first column shows
the sample C source code statements executed at each step
during construction of a linked list. The second column shows
the memory graph formed once the source code in the same
row is executed. When the execution starts on line 1, a new
heap address tmp1 is encountered because of the call to malloc.
A new node is created with initial time stamp of 1 (call to
Create Node, line 8 in Algorithm 2). Executing statements up
to line 5, heap addresses tmp2, tmp3, tmp4 and tmp5 are encoun-
tered inside malloc. All these memory addresses are derived as
an offset of the initial address inside malloc so they are added
inside the same MG++ node (call to Join Addresses, line 12
in Algorithm 2). When the next field is written with value tmp2,
the original node is split into two nodes (Split Node, line 22
in Algorithm 2) to form tmp2 as the starting address of the
new node. Similarly, other nodes are created due to memory
writes in the lines 7, 8 and 9. The free operation on tmp2 leads
to the node’s addition to the doubly-linked list of free chunks
internally maintained by malloc. We have represented the head
and tail of the doubly linked list of free chunks with oval nodes
(not present in the C code) for clarity. Similarly, free(tmp4) adds
the node to the free list. When tmp5 which is adjacent to tmp4
is freed, malloc consolidates the two chunks. A merge edge is
created to join the nodes corresponding to tmp4 and tmp5 and
a cluster node is added to the MG++ (Merge Nodes, line 14
in Algorithm 2). Note that the algorithm performs all of the
above actions without knowledge of the memory allocator.

IV. IMPLEMENTATION AND EVALUATION

Implementation overview: Our system takes a program
binary as input. The binary is instrumented to capture the heap
references and operations on them. The instrumented program
is executed to generate a trace, containing the information
about the heap references, operations on heap references and
timing information. If debugging information is present in
the binary then information about mapping to source code is
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1.tmp1 = malloc(sizeof(struct snode)); ∗∗∗1 (1) t m p 1

2. tmp2=malloc(sizeof(struct snode));
3. tmp3=malloc(sizeof(struct snode));
4. tmp4=malloc(sizeof(struct snode));
5. tmp5=malloc(sizeof(struct snode));

∗∗∗2
∗∗∗3
∗∗∗4
∗∗∗5

(1) t m p 1 t m p 2 t m p 3 t m p 4 t m p 5

6. tmp1−>next=tmp2; ∗∗∗8 (1) t m p 1 n e x t (8) t m p 2 t m p 3 t m p 4 t m p 5
(8)

7. tmp2−>next = tmp3;
8. tmp3−>next = tmp4;
9. tmp4−>next = tmp5;

∗∗∗9
∗∗∗10
∗∗∗11

(1) t m p 1 n e x t (8) t m p 2 n e x t
(8)

(9) t m p 3 n e x t
(9)

(10) t m p 4 n e x t
(10)

(11) t m p 5 n e x t
(11)

10. tmp1−>next = tmp3;
..
11. free(tmp2);

∗∗∗12

∗∗∗15 (1) t m p 1 n e x t (9) t m p 3 n e x t
(12)

(10) t m p 4 n e x t
(10)

(11) t m p 5 n e x t
(11)

Head (8) t m p 2 n e x t Tail

12. free(tmp4); ∗∗∗18
(1) t m p 1 n e x t (9) t m p 3 n e x t

(12)
(11) t m p 5 n e x t

(10)

Head (8) t m p 2 n e x t (10) t m p 4 n e x t Tail

13. tmp1−>next = tmp3;
..
14. tmp3−>next = NULL;
15. free(tmp5);

∗∗∗21

∗∗∗25
∗∗∗26

(1) t m p 1 n e x t (9) t m p 3 n e x t
(21)

NULL
(25)

Head (8) t m p 2 n e x t (26) : tmp4 Tail

(10) t m p 4 n e x t
(11) t m p 5 n e x t

(26)

Figure 7. An illustration of MG++ construction.

also generated. The trace is analyzed off-line to generate the
memory graph.

Our binary instrumentation is based on PIN-2.6 [10]. We
only instrument loads, stores and a set of heap reference-
handling instructions (ADD, LEA, SUB, INC, XCHG). Other
instructions may have to be instrumented depending on the
compiler. The instrumented binary is then executed, generating
the execution trace. At runtime, PIN determines the heap
address range for the program by monitoring the system calls
(brk() and mmap()) as well as the address space of the program,
and outputs the valid heap address range and those instructions
which handle heap references. These optimizations help reduce
the size of our execution trace. The execution trace contains
the timestamp information and the statement identifier for each
of the executed instructions along with the address references
involved in the instruction. An automated analysis of the
execution trace constructs the memory graph. The valid heap
address range is used to identify heap references in the trace.

Experimental setup: All measurements were performed
on an Intel Core 2 6700 @ 2.66GHz with 4 GB RAM, running
Linux kernel version 2.6.32. The experiments indicate that our
memory graph representation and construction technique are
efficient and effective in real-world scenarios.

Benchmarks: We measured the cost of using MG++
in terms of space and execution time to show that our ap-
proach is practical. A summary of benchmarks used in our
evaluation is shown in Table I. Our benchmarks are divided
into three categories. First, widely-used programs: the ls GNU
core utility, Tidy HTML checking&cleanup, and the GNU
bison parser generator. Second, programs that perform internal
memory management: the commonly-used CPython and Perl
interpreters. In the third category, we have graph applications
(graph coloring, independent set, and shortest path) with small
real-world graphs as input, which we believe reflect common
debugging scenarios. The benchmarks in the last category

are read-intensive, “build-then-traverse data structure” style
programs.

A. Cost of Constructing MG++
Space Required: Table II’s columns 2 and 3 show the

space required for MG++, without and with allocator analysis,
respectively. In order to show the space-efficient nature of
MG++, we compared the space requirement of MG++ with
that of a snapshot approach for capturing the data structure
evolution history. The snapshot approach stores snapshots
of memory graphs after each change using representations
similar to the ones mentioned in [1], [2], [7]. The memory
required to capture the sequences snapshots of memory graph
is approximated by assuming a snapshot of the average number
of nodes stored upon each change to the memory graph
(Table II, column 4). The size of each node is assumed to
be 8 bytes (a single field). The space required by MG++,
excluding (including) the allocator ranges from 3 MB to 138
MB (7 MB to 141 MB, respectively). This is two orders of
magnitude less than that of capturing sequences of memory
graphs using prior representations. In fact, this data shows
that capturing sequences of memory graphs is impractical,
while MG++ is highly space-efficient. The memory required
for MG++ depends on the number of objects allocated (MG++
nodes) and manipulated (leading to creation of MG++ edges).

Program Execution Time: Table II’s columns 8 and 9 show
the execution time for running the instrumented code for our
technique, without and with allocator analysis, respectively.
Table II’s column 5 (Original) shows the cost of running the
original program; column 6 (Null PIN) shows the cost of
running the program under PIN without any instrumentation;
column 7 shows the cost of collecting trace for memory
graph using allocator information [1], [2], [7], i.e., only calls
to allocator functions and memory writes are instrumented.
Although program execution time increases significantly due
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Table I. OVERVIEW OF BENCHMARKS.

Program Description Data Structure Input Details
ls (GNU core utilities [13]) Array & Linked list coreutils-8.0 source dir ls -R coreutils-8.0/

Tidy (HTML check & clean [14]) Binary tree variant Tidy Project Page.html Version 1.46
Bison (GNU parser generator [15]) Array & Linked list ANSI C grammar Version 2.4.1

CPython [16] Linked lists & Trees Page rank program Version 2.7.8
Perl [17] Arrays & Linked lists File search program Version 5.20.0
Graph Coloring Linked list of arrays NetScience [18], [19] 1,589 nodes; 2,742 edges
Independent Set Linked list YeastL (protein interaction network) [18], [20] 2,361 nodes; 7,182 edges
Shortest Path Shard Wiki-vote (Wikipedia network) [21] 7,115 nodes; 103,689 edges

Table II. TIME AND MEMORY COSTS OF CAPTURING MEMORY GRAPHS.

1 2 3 4 5 6 7 8 9 10
MG++ Representation MG++ Construction Method

Program Space Required (MB) Program Execution Time (seconds) Slowdown
Description MG++ Snapshot Instrumented (col 8/

w/o with Approach Original Null PIN Allocator MG++ w/o MG++ with col 7)
allocator allocator approach allocator allocator

ls 3.8 6.9 ≈ 1,895 0.02 1.25 1.97 2.14 5.41 1.08
Tidy 22.4 32.1 ≈ 2,484 0.01 1.46 6.46 8.90 9.63 1.37
Bison 2.5 32.3 ≈ 283 0.06 2.04 2.23 2.68 9.82 1.20
CPython 137.8 140.5 ≈110,242 0.09 7.84 24.60 30.74 32.85 1.25
Perl 48.1 50.2 ≈ 65,652 1.11 11.73 26.09 26.41 32.52 1.01
Graph Coloring 82.3 83.5 ≈ 311 0.05 0.68 8.69 37.33 38.08 4.29
Independent Set 6.3 10.2 ≈ 451 0.05 0.53 13.44 47.27 50.79 3.51
Shortest Path 47.9 84.7 ≈ 50,827 0.06 0.57 8.25 13.68 45.84 1.68

to instrumentation, it is a necessary cost of dynamic analysis.
Column 10 shows the relative time overhead for our approach
in comparison to the allocator-based approach. The average
slowdown for the read-intensive benchmarks (graph-coloring,
independent-set, shortest-path) is 3.16x while for the other
benchmarks the average slowdown is 1.18x. The slowdown
is higher in case of read-intensive programs because our
MG++ construction algorithm has to monitor all the heap
reference-handling instructions, including reads. The total av-
erage slowdown is 1.7x. These results show that the MG++
construction algorithm gives a feasible method of memory
graph construction for cases where allocator information is
not available. Instrumenting the memory allocator increases
the execution times by 2x to 4x in comparison to when only
application code is instrumented.

B. Fault Location using MG++
Fault location for data structure errors is a novel appli-

cation of MG++. Data structures have structural properties
that must hold during execution. However, bugs can cause
these properties to be violated and the violations can be
detected by analyzing the memory graphs. Prior approaches
have used this idea for detecting corrupted data structures [22]
and data structure repair [23]–[25]. The evolution history of
data structures and the source code mapping in MG++ make
it possible to detect violations and locate the faulty code
responsible for causing the violations.

We show the usefulness of MG++ in fault location using
Mozilla BugID 588187. Due to this bug, Mozilla crashes
while traversing a linked list. The linked list in the program
has a simple constraint: each entry→next field must point to
another linked list node or NULL. Figure 8 shows an excerpt
of the traversal code. If entry→next contains a value which is
neither NULL nor a heap address then the execution will enter

the loop (line 1) and crash at line 2. We detect this bug by
matching the given constraint over the MG++ of the corrupted
linked list. Upon detecting corruption, the MG++ is rolled
back to the point where the MG++ is consistent with respect
to the constraint. Using the source code information embedded
in MG++, the statement which introduces the corruption in
the linked list is identified as the faulty statement.

1 while (entry) {
2 if (entry→Key == key) { <−−− crash here
3 return entry→Data;
4 }
5 entry = entry→Next;
6 }

Figure 8. Linked list traversal.

The above bug was handled without making the memory
allocator as part of the analysis. There are cases where
internal actions of the memory allocator are required to be
a part of analysis and therefore MG++ can enable fault
location. The Glibc memory allocator keeps track of free
chunks via a doubly-linked list. Numerous real-world bugs
(GNOME BugIDs 697397, 449433, 318401; KDE BugIDs
119108, 281770, 224877, 237913) are associated with the
corruption of the free chunks list. Figure 9 shows a simple
C program which causes Glibc corruption (*** glibc detected
*** corrupted double-linked list) later in the program. The pro-
grammer accidentally passes the address instead of the value of
tmp→target in line 4. This overwrites the free chunks metadata,
in turn corrupting the doubly-linked list. The program will
crash later in the execution when malloc tries to access the
elements of the doubly-linked list. We detect the violation of
the doubly-linked list invariant by matching the invariant if
element e points to element e’ then e’ should point back to e
over MG++. Upon detecting corruption, the MG++ is rolled
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back and the statement responsible for corruption is identified.

We have developed a fault location framework based on the
MG++ representation. The framework consists of a language
to write data structure constraints, a tool to automatically
generate a constraint matcher and a fault locator. Invariants are
matched based on the type of the MG++ node (this requires
debugging information). Detailed discussion about the fault
location framework is out of scope of this paper.

1 struct node ∗ tmp;
2 tmp = (struct node ∗)malloc(sizeof(struct node));
3 tmp→ target = malloc(value size);
4 memcpy(&tmp→ target, value, value size);

Figure 9. Sample code that corrupts Glibc’s free chunks list.

C. Detecting Buffer Overflow Attacks using MG++
In this experiment we tested the use of MG++ to de-

tect heap buffer overflows on the basis of observation 1 in
Section III-A. Our assumption was that if an address of a
memory node X is being accessed as an offset from an address
inside memory graph node Y then it is a heap buffer overflow.
We tested our technique against 12 attack benchmarks from
the RIPE buffer overflow testbed [11]. For this experiment
we did not include allocator internals in the analysis. These
benchmarks exercise various types of heap buffer overflows
including return address, function pointers, and vulnerable
structs, and have been commonly used in prior work to test
the effectiveness of attack detection systems. As shown in
Table III, our technique was able to detect heap buffer overflow
for all vulnerabilities, except for vulnerable structs. In the case
of vulnerable structs, an attack-prone buffer resides along with
a target function pointer inside the same memory graph node.
There is no buffer overflow across memory graph nodes in
this case and thus our technique fails to capture it. Valgrind’s
memcheck [26] can also detect other attacks except for vul-
nerable structs; it uses a valid bit for each byte of allocated
memory and reports an error in case unallocated memory
is written. Memcheck cannot be applied in the absence of
allocator information while our technique will be able to detect
buffer overflow without allocator information.

Table III. HEAP BUFFER OVERFLOW DETECTION RESULTS.

Vulnerabilities # of benchmarks Exception raised
Return Address 1 Yes

Old base Pointer 2 Yes
Function Pointers 7 Yes
Vulnerable Structs 2 No

V. LIMITATIONS

- Our algorithm identifies a heap address by checking if the
value falls in the valid heap address range. If a non-heap
address operand with value in the valid heap address range
is encountered, our approach creates a one-field node in the
memory graph for it. Such a node is unnecessary and can be
removed using a post-construction analysis.
- The size of a memory node constructed by our algorithm is
different from the allocated size in cases where trailing fields
of an allocated node are never read or written.

VI. RELATED WORK

A. Memory Graphs
Prior heap analyses fall into two main categories: static

and dynamic. Static techniques include shape analysis [27],

[28] and other techniques that are aimed at deriving a compile-
time approximation of the heap structure [29]. However, static
analysis does not give a clear picture of the runtime heap
activity in a particular execution. Dynamic analysis techniques
like ours collect data from program runs and analyze it either
online or offline. Several prior dynamic techniques are aimed
at visualizing and navigating a single snapshot or a series of
snapshots of the heap [5], [30]–[32]. These works are orthog-
onal to our work and can make use of MG++ internally for
memory efficiency. DDD [33] and Zimmermann & Zeller [30]
use symbol table information for constructing memory graph
while Raman & August [7] use allocator function information
for memory graph construction. Work on visualizing memory
management behavior [34], [35] has focused on analyzing
memory allocator’s behavior and performance. Unlike our
work, these approaches are not aimed at capturing the memory
graph for program understanding or debugging applications.
The technique presented in [36] is specifically aimed at de-
tecting recursive data structures and dynamic degree invariants.
Our approach captures all pointer mutations of the heap and
the resulting MG++ can be used for detecting data structures
and their links. Finally, MG++ representation is similar to that
of persistent data structures [37].

B. Applications of Memory Graphs
Memory graphs are at the heart of a number of different

applications aimed at program understanding and debugging.

Memory debugging and general-purpose debugging. A
number of approaches have aimed at displaying memory
uses of the program using memory graphs thereby enabling
programmers to detect memory leaks or identify memory
corruption patterns [3]–[5]. In Zeller’s work [6], program state
is captured as a memory graph and state differences between
passing and failing runs are used to isolate cause-effect chains
for a program failure.

Program Understanding. Myers and Duke [1] extract de-
sign abstractions from memory graphs to provide users an
intuitive representation. Malik [38] analyzes spectra of heap
graphs to extract dynamic invariants.

Data Structure Extraction. Jung and Clark [2] apply invari-
ant detection on a memory graph to identify the data structure
used by the program. Lin et al. [39] extract type information
from program binary and provide an abstract representation
of the variables used in the program. They rely on standard
library function calls for the typing information.

All of the above techniques rely on memory graphs and
therefore can benefit from our improved representation as it
captures program behavior with greater precision, including
the behavior of the memory allocator. Moreover, the compact
nature of our representation will allow the above techniques
to scale to longer program runs.

VII. CONCLUSION

We have presented MG++, a new memory graph represen-
tation that captures the evolution history of heap data structures
and carries a direct mapping from runtime data structures
to the relevant source code. MG++ enables analyses that
must consider internal actions of the allocator. We have also
presented a MG++ construction technique which does not rely
on source code or symbol table information. This construction

299



technique is useful in scenarios where allocator information is
unavailable and none of the allocator-based approaches can be
applied. The experiments indicate that the representation and
construction technique are practical, efficient, and effective in
real-world applications.
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