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Abstract

Load-reuse analysis finds instructions that repeatedly access the
same memory location. This location can be promoted to a register,
eliminating redundant loads by reusing the results of priormemory
accesses. This paper develops a load-reuse analysis and designs a
method for evaluating its precision.

In designing the analysis, we aspire forcompleteness—the goal of
exposing all reuse that can be harvested by a subsequent program
transformation. For register promotion, a suitable transformation is
partial redundancy elimination (PRE). To approach the ideal goal
of PRE-completeness, the load-reuse analysis is phrased asa data-
flow problem on a program representation that ispath-sensitive, as
it detects reuse even when it originates in a different instruction
along each control flow path. Furthermore, the analysis iscompre-
hensive, as it treats scalar, array and pointer-based loads uniformly.

In evaluating the analysis, we compare it with an ideal analysis.
By observing the run-time stream of memory references, we col-
lect all PRE-exploitable reuse and treat it as the ideal analysis per-
formance. To compare the (static) load-reuse analysis withthe
(dynamic) ideal reuse, we use anestimatoralgorithm that com-
putes, given a data-flow solution and a program profile, the dy-
namic amount of reuse detected by the analysis. We developeda
family of estimators that differ in how well they bound the profil-
ing error inherent in theedgeprofile. By bounding the error, the
estimators offer a precise and practical method for determining the
run-time optimization benefit.

Our experiments show that about 55% of loads executed in Spec95
exhibit reuse. Of those, our analysis exposes about 80%.

Keywords: profile-guided optimizations, register promotion, pro-
gram representations, data-flow analysis.

1 Introduction

Without comparison, caches are the besthardwaredefense against
the von Neumann memory bottleneck. Capitalizing on data local-
ity, caches win byreusingrecent memory accesses. How can com-
pilers benefit from these reuse opportunities? In the ideal case, the
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compiler promotes repeatedly accessed memory locations toreg-
isters. Register promotion is the bestcompilersolution for reduc-
ing the memory traffic. By removing redundant loads, it decreases
the dynamic operation count and shortens instruction schedules.
This paper focuses on compile-time detection of load reuse that
is amenable to register promotion. We measure the amount of load
reuse in programs, and design and evaluate an analysis for reuse
detection.

Register promotion entails three subproblems. First,load-reuse
analysisfinds loads and stores that access the same address, to-
gether with the execution paths along which the reuse exists. In the
example below, ifa1 always equalsa4 along pathp1, then load a4
can benefit from reuse alongp1. Similarly for pathp2. Second,
alias analysisverifies that the detected reuse is not disrupted by
intervening stores. Below, ifa0 is never equal toa4, then register
promotion ofa4 is safe. Finally, a programtransformationstores
the prior memory access in a register and replaces the redundant
load with a register reference. In the example, register promotion
is not immediately applicable becauseload a4 is not redundant on
all paths. Suchpartial reuse can be compensated by hoisting a copy
of the load along pathp3. Commonly, the hoisting is formulated as
partial redundancy elimination (PRE)[27,29,35].
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Detecting reuse is profitable even when register promotion is pre-
vented (due to aliasing or lack of registers). In such a case,the PRE
transformation step can employ alternative, albeit less effective,
reuse mechanisms. When promotion is unsafe due to interfering
stores, the redundant load can be replaced with adata-speculative
load, which works as a register reference when the kill did not oc-
cur, but as a load when it did [7,21,24,38]. When registers are not
available, load reuse can be exploited usingsoftware cache con-
trol [21, 24, 34]. By directing which loaded values remain in the
cache and which bypass it, the compiler can improve the subopti-
mal hardware cache replacement strategy.

This paper focuses on the first component of register promotion,
load-reuse analysis. Because an optimization is only as powerful
as its analysis, improving the precision of the analysis is of high



significance. The second component, alias analysis, has a different
aim: while load-reuse analysis detects memory references thatmust
go to the same location, alias analysis finds those thatmay, thus
identifying killing stores. Recent research indicates that, for reg-
ister promotion, a simple alias analysis may be sufficient [19, 28].
The third component, PRE transformation, was explored in [11],
where we describe how to effect a complete removal of alldetected
reuse. In this paper we concentrate on increasing theamountof
detected reuse.

Design. The design of the load-reuse analysis emphasizesscal-
ability andcompleteness. Scalability is achieved by developing a
sparse, SSA-based program representation, which grows moder-
ately with the program size.

The analysis isPRE-completeif it detects all reuse that the PRE
transformation can exploit. Aiming for PRE-completeness is not
a narrow goal, as PRE covers most scalar transformations based
on data-flow analysis. It generalizes common-subexpression elim-
ination, loop-invariant code motion, and constant propagation. Be-
yond the power of the PRE class are, however,loopoptimizations,
such as loop fusion and interchange. These array-oriented transfor-
mations can be used as a preprocessing, locality-improvingphase,
after which PRE can harvest the scalar reuse opportunities [14].

To approach PRE-completeness, the load-reuse analysis ispath-
sensitiveandcomprehensive. Path-sensitivity has two flavors. First,
we can expose reuse even when it exists only on a subset of paths
coming to the load (in the example, pathp3 has no reuse). Second,
we find the equivalence of address expressions even when it ispath-
specific (it is sufficient thata1 equalsa4 along the pathp1 and not
along all paths). The analysis iscomprehensivein that memory ref-
erences to scalars, arrays or pointer-based data structures are han-
dled uniformly, without any high-level program information, such
as type information.

Technically, our load-reuse analysis is formulated as a data-flow
problem in order to directly guide the PRE transformation [11,25].
In our analysis, data-flow problems are solved on theValue Name
Graph (VNG)[6], a program representation that enhancesdata-flow
analysis by exposing equivalence among address expressions. This
paper extends the VNG representation in two directions. First, we
improve its power by modeling indirect memory references. Sec-
ond, because the original VNG [6] did not scale well, we develop a
sparseVNG, based on the SSA form [18].

Evaluation. Typically, optimizations are evaluated by reporting
the amount of computations removed. Unfortunately, such absolute
measure says little about how much potential remains unexploited.
Instead, our evaluation measures the level of PRE-completeness:
how far is the analysis from an ideal one? Because detecting load
reuse is in general undecidable, we can only hope to find an approx-
imation of the ideal reuse amount. For that purpose, we perform a
simulation-based limit study: by observing the dynamic stream of
memory references, we find all reuse available under a given input
and use it as an upper bound of the PRE-exploitable reuse in the
program.

While the (static) load-reuse analysis identifies redundant loads and
their reusepaths, the (dynamic) limit study yields therun-time
numberof redundantly executed loads. To compare these disparate
quantities, we weight the static reuse using the program profile gen-
erated by the simulator. The result is the run-time amount ofstati-
cally detected redundant loads. This amount can, besides measur-
ing the precision of the analysis, guide the code-duplication trade-
offs in code-restructuring optimizations [1,8,9,30,31],as described
in [11]. Unfortunately, any method for computing the run-time
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Figure 1: The experimental framework, as presented in the paper.

amount of reuse from a profile is impaired by the profile’s inher-
ent inability to precisely reconstruct frequencies of execution paths
on which reuse was detected by the analysis. This holds both for
the commonly usededgeprofiles and for the more powerfulpath
profiles, which record frequencies of not just CFG edges but also
(some) finite paths [4]. While existing profile-directed optimiza-
tions disregard the profiling error [11, 33], our family ofestimator
algorithms computes its bounds. The estimators form a hierarchy:
the more complex, the tighter the error bounds.

Summary. This paper culminates our efforts in developing a path-
sensitive framework for value-flow optimizations [5–11]. Here, we
develop a few missing pieces of the framework (sparse VNG, esti-
mators) and also evaluate its effectiveness (on the load-reuse opti-
mization, using the limit study).

In summary, the contributions of the paper are threefold:

1. Load-reuse analysis:we generalize the Value Name Graph
representation [6] by supporting analysis of indirect memory
accesses. We also develop a scalable, sparse version of the
representation.

2. Load-reuse limit study: we develop a simulation-based
method for detecting the amount and sources of load reuse
in a program and use it to evaluate a static load-reuse analy-
sis. The reuse available in significant benchmarks (Spec95)is
reported.

3. Profile-based estimators:we develop algorithms that use
edge profiles to assign a dynamic weight to an analysis-
detected reuse. The estimators can be ordered by precision;
even modest complexity is enough to use edge profiles and
get sufficient precision.

Our entire experimental framework is summarized in Figure 1. Our
experiments show that about 55% of loads executed in Spec95
could be removed through reuse. Of those, 80% are detected by
our load-reuse analysis.

The rest of the paper is organized as shown in Figure 1. Section 2
describes the simulation-based reuse detection. Section 3is de-
voted to the static load-reuse analysis. Section 4 presentsthe es-
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timators and Section 5 evaluates the analysis. Finally, Section 6
concludes by discussing related work.

2 Dynamic Amount of Load Reuse

This section focuses on load reuse visible at run time. We present
a simulation-based limit study that has multiple uses:a) measur-
ing the amount of reuse in programs (how large is the optimization
potential of register promotion?),b) evaluating the load-reuse anal-
ysis by providing a reference point (how close is the analysis to its
ideal performance?), andc) tuning the analysis (which are the re-
dundantly executed load instructions?). In this section, we describe
the design of our simulation and show that a large fraction (55%)
of loads executed in Spec95 exhibits reuse opportunities.

The primary use of the limit study is to evaluate the precision of
the load-reuse analysis. The precision is measured as the level of
completeness. An analysis isT -completeif it detects all reuse that
can be removed from the program with a program transformationT . In this paper,T is thepartial redundancyelimination (PRE)[11,
25,29]. PRE is a code-motion transformation that can exploit reuse
even when it exists only on a subset of execution paths incoming
to the redundant load. Therefore, PRE has become the basis of
modern register promotion techniques [7,15,27,35].

Unfortunately, detecting load reuse is in general undecidable [32]
and so no compile-time PRE-complete load-reuse analysis exists.
Therefore, we use an empirical, run-time analysis that measures
the reuse in the program as the program executes. In order to pro-
vide a close approximation of PRE-completeness, this simulation-
based limit study should collect all reuse that PRE can remove, but
no reuse that is beyond PRE’s power. The simulation should thus
mimic the character of the PRE transformation.

PRE removes redundancy by (conceptually) hoisting the partially
redundant load against all control flow paths until it reaches a mem-
ory operation that generates the reuse. At this point, the contents
of the promoted memory location is stored in a register that carries
it to the original load. The reused valued can be carried for asmall
number of loop iterations, using multiple registers [6, 15,37]. In
summary, the PRE operational restriction is that the redundant load
can reuse a result of some other static instruction (or itself), where
the result must be a small number of dynamic instances old.

The simulation algorithm reflects this PRE property. The run-time
reuse is detected by remembering for each static memory instruc-
tion its access history:the dynamic stream of its recent addresses.
A dynamic instance of a load is then redundant if a prior load or
store accessed the same location without an intervening store. If an
intervening store did occur, the load is still redundant; the interven-
ing store becomes the reuse source.

As mentioned above in passing, the design of the simulation tech-
nique has two contradictory goals. On the one hand, the limitstudy
should yield anupper bound:each reuse that can be removed with
PRE must be detected. On the other hand, the bound should be
tight: if a reuse for a given static load is intermittent (e.g., because
it is sporadic or input dependent), it should be filtered out asnoise.
In the example below, the reuse between recurrent array accesses
(i.e., between the store ofA[i + 2] and the load ofA[i]) is PRE-
exploitable by allocating two registers that will carry thevalue for
two iterations [7,13,15]:

for (i=0; i<N-2; i++) f A[i+2] = A[i]; g
On the other hand, the reuse below is noise. While some consec-

utive loads from the hash table may access the same location,the
reuse is not guaranteed to occur each time the program takes the
path across the loop backedge. Therefore, PRE cannot exploit this
reuse.

while (c=read()) f .. = hashtab[hash(c)]; g
To verify the PRE requirement that a path carries its reuse each time
it is followed, the simulator would have to do extensive bookkeep-
ing of followed paths. Consequently, we favor a noisier (less tight)
upper bound on reuse over an expensive simulation. To reducethe
noise, we limit the number of memory cells remembered in the ac-
cess history of each static load and store. A small numberh (1 to 4)
of recent accesses is sufficient to capture most loop carriedreuses,
like the first example above [16].

As pointed out in Section 1, PRE is not capable of exploiting loop-
level reuse, like the one between loadsa and b below. Hoistingb does not work. Instead, the loops must be merged using loop
fusion [14], after which PRE can harvest the reuse.

for (i=0; i<N; i++) f a: .. = A[i]; g
for (i=0; i<N; i++) f b: .. = A[i]; g

The simulation algorithm will (correctly) not identify theloadb to
be redundant (unlessN � h) because the access history remem-
bers only lasth accesses made by loada. Hence, the simulation is
consistent with the power of PRE.

Reuse Level. Figure 2 plots the amount of simulation-observed
load reuse. For each benchmark, the experiment was carried out at
three points in the compilation: for the original program, after opti-
mizations, and after register allocation. The compiler used was the
latest public release of Impact [17]; the optimizations included the
local, global, and loop invariant redundant load elimination, as well
as superblock optimizations [23]. Note that while in the floating-
point benchmarks (the four on the right) the removal of many loads
was accompaniedby the decrease of observable reuse, in the integer
benchmarks the optimizer left many redundant loads unoptimized,
which suggests that programs with complex control flow require
more powerful, path-sensitive optimizations and/or better alias in-
formation. Also note the increase in observed reuse after register
allocation, which is due to spill-code loads (the target processor
was PA-7100).

We show the amount of reuse for the history depth 1 and 4. In-
creasing the history depth raises the observable reuse muchmore in
integer programs than in the scientific ones, where more recurrent
accesses would be expected. A manual examination of simulation
results strongly suggests that the additional reuse collected at the
deeper access history is mainly noise, similar to the intermittent
reuse in the hash-table example above. Also shown in the graph
is the fraction of reuse in which both the generator and the redun-
dant load belong to the same procedure. These reuse patternsare
not strictly intraprocedural, as the procedure might have returned
and been called during the reuse. However, these “intraprocedu-
ral” reuse levels serve as a reference point for our intraprocedural
load-reuse analysis (Section 5).

Input Variance. Profile-directedoptimizationand simulation-
directedoptimization designare valuable only if the program in-
put exercises input-independent, pervasive program characteristics.
How much does reuse vary across different inputs? We modi-
fied the inputs on several benchmarks and compared the observed
reuse. The results are shown in Table 1. The input-based variation
of the reuse level is within 18%, which may suggest that reuseis
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benchmark input reuse% reuse from % l+s
before opti train / test h = 4 loads stores 106
m88ksim dcrand.big 87.9 68.2 48.6 34

dhry.big 74.5 90.4 13.6 135
compress 104 q 2131 79.2 56.1 71.4 13

ref ! 5:105 e 2231 71.3 57.2 64.4 520
li boyer-test 77.9 70.4 50.4 55

8 queens 87.4 76.2 43.6 324

Table 1: Sensitivity of load reuse level to program input. The
columnl+s gives the number of executed loads and stores.

largely input independent. The greatest difference is inm88ksim,
in which each input directs the execution into different procedures.
For the same reason, this benchmark has less reuse generatedby
stores in thetest input (fractions add up to more than 100%, as
a reuse instance may be generated by multiple instructions,a load
and a store). We have manually examinedcompress and discov-
ered that the lower reuse in the larger input is due to fewer noisy
loads. Input variance may therefore be useful as a noise reduction
mechanism; by taking intersection of reuse detected on different
inputs, we may determine regular, statically detectable reuse.

Simulation Memory Requirements. While the simulation limit
study is considerably more expensive than control flow profiling,
it is used once (to design and tune the analysis) unlike the cheaper
profiling which is repeated (to optimize each program). Still, the
simulation speed was acceptable, at about 9.4 seconds per 1 million
loads and stores executed (on PA–8000). The memory required
varied greatly. The largest data structures were needed byswim
(103MB + 32MB hash table) and the smallest bycompress (4MB
+ the same hash table).

3 Load-Reuse Analysis

While the previous section described the approximatedynamic
load-reuse analysis, this section presents the conservative static
analysis.

Detecting load reuse reduces to finding path-sensitive must-alias
information: we want to know which address expressions are al-
ways equivalent and along which control flow paths.1 Our anal-
ysis is formulated as a data-flow analysis, for two reasons. First,
when detected reuse is expressed as a data-flow solution, it can di-
rectly guide the subsequentPRE transformation, which is driven by
the data-flow problems of availability and anticipability [11, 25].
While the former problem exposes the reuse (by finding a prior
load or store), the later verifies whether the PRE transforma-
tion is not harmful to the program (by determining whether the
reuse can be consumed by a future load). The second reason is
that data-flow analysis can leverage existing program representa-
tions [6,7,12,20,37] designed to expose reuse not accessible to the
traditional data-flow analysis [25,29].

The analysis in this paper is based on theValue Name Graph,
a value-centric representation that enhances traditionaldata-flow
analysis by appropriately naming the value that flows between
equivalent computations [6]. A valueflowsbetween two (address)
expressions if they compute the same value (address). In traditional
data-flow analysis, each value is identified with its lexicalname,
e.g., its abstract syntax tree. When two names match, the addresses
(may) compute identical values. But what name should be used
when the value flows between equivalent addresses that have dif-

1Recall that the use of may-alias information to disambiguate intervening stores is
conceptually independent from detecting load reuse, as described in Section 1. This
section also shows how may-aliasing is accounted for in our load-reuse analysis.
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ferent names? The VNG overcomes the naming problem by synthe-
sizing names that fully trace the flow of the analyzed value and by
performing data-flow analysis on this synthesized name space. The
synthesized names are created using symbolic substitutions along
each control flow path; as a result, the VNG exposes equivalences
among address expressions that become visible only after symbolic
algebraic manipulations.

This paper addresses two deficiencies of the original VNG [6]. The
first is the lack of expressiveness specific to detecting loadreuse.
Because the VNG only models value flow through arithmetic com-
putations, it cannot trace flow of addresses through the memory,
and hence cannot handle indirect addressing. The second defi-
ciency is the high memory demands of the original VNG, a con-
sequence of its rigorous reflection of algebraic characteristics of
the value flow. In this paper, the VNG is made moreeffectiveby
incorporating indirect addressing into the symbolic interpretation,
and moreefficientby developing asparseVNG representation that
is smaller and scalable.

Constructing the VNG. The VNG combines advantages of three
orthogonal analysis approaches. Each of them overcomes differ-
ent obstacles in equivalence detection:global value numbering
finds equivalent expressions that have different names due to as-
signments to temporaries [2];symbolic interpretationfinds equiv-
alences requiring algebraic simplification, such as recurrent array
accesses [7, 13];data-flow analysisconnects expressions that may
be equivalent only along some control flow paths [25,29]. First, we
sketch the construction of the original VNG enhanced to accommo-
date indirect addressing. The following subsection describes how
to build the sparse VNG.

The construction has three steps, each corresponding to oneof the
underlying approaches. First, the symbolic interpretation creates
names necessary to trace the value flow. Second, value numbering
determines which names are synonymous references to the same
value. The result of the first two steps is the VNG representation,
on which the third step computes value-related data-flow problems,
using any traditional data-flow analyzer.

Step 1: Create the symbolic names.The goal is to create suf-
ficient names so that a value can be identified even when it flows
outside the scope of the lexical name under which it was origi-
nally computed. Where the original name is not valid, we use an
equivalent symbolic name. The symbolic names are created onde-
mand by propagating backwards the address operand of each load.
The propagation effectively creates a “symbolic” slice of the ad-
dress operand, by substituting into the propagated addressexpres-
sion each relevant assignment and performing some algebraic sim-
plification. While the original address operand representsthe lexi-
cal name of the address value, the slice expression is the symbolic
name. Below, we analyze the address of the load; its lexical name
is y + 4. After this name is propagated through the preceding as-
signment, the name of the address changes to2� x+12, which is
a symbolic name. Note that the symbolic substitution was followed
by algebraic simplification.y := 2� x+ 8  name= 2� x+ 12z := load (y + 4)  name= y + 4
Due to loops, such a back-substitution process may not terminate.
Therefore, we perform the substitution only forw iterations of each
loop, wherew is a small constant (1 to 4), analogical to the access
historyh used in the simulation in Section 2.

To accommodate indirect addressing, we enrich the symboliclan-
guage of value names with a pointer dereferencing operator� and

back-substitution rules for loads and stores. Loads increase the in-
direction level: when a namet+1 is propagated backwards acrosst := load L, it will change to�L+ 1. Stores may reduce the indi-
rection: acrossstore L; t, the name�L+ 1 will change tot+ 1.

To obtain the performance reported in Section 5, it was sufficient to
represent addresses with a symbolic nameE = c0 + c1v1 + : : :+cnvn + �(E0), whereci are literals,vi are program variables, andE0 = E j �. The termE0 adds addressing indirection. In the
actual implementation, one may want to set a maximum number of
indirection levels, to limit the number of symbolic names created
during back-substitution. In our experiments, we used level 0 (no� operator in the address name) and level 1 (one� operator in the
address).

Figure 3(b) shows the VNG for the program in Figure 3(a). We
illustrate the back-propagation usingp4, the address operand of the
load in node 9. When propagatingp4 across the assignmentp4 :=p3 + 1 in node 7, the right-hand sidep3 + 1 is substituted into
the current namep4. We obtainp3 + 1, which becomes another
name for the analyzed address of the load (9). After crossingp3 :=
load Lp in node 6,�Lp is substituted forp3 and�Lp+1 becomes
yet another name for the address (Lp is the address of the global
variablep). The name will be further changed at nodes 4, 3, and 1.
(Note that the Figure 3(b) is showing the VNG construction only
along thethenpath.) The address operands of remaining memory
operations will also undergo this back-propagation. The process of
name creation is demand-driven, as only the necessary namesare
created.

When back-substitution is completed, the graph containsvalue
threadsthat connect the different names of the analyzed value.
Along the control flow path associated with a value thread, the
threaded names refer to the same value. Therefore, all memory
operations on a thread access the same memory location.

Step 2: Find synonymous names.The value threads are used
by data-flow analysis to compute availability of prior memory ac-
cesses. For example, reuse exists between nodes 4 and 6, as they
lie on the same thread. Unfortunately, threads alone cannotfind
reuse between the equivalent nodes 5 and 9, because they are not
on the same thread. However, their address expressions (t1 andp4)
are both symbolically reduced by the back-propagation stepto the
same namep1, at the entry of node 2. This proves that both of
these memory references must access the same memory location;
the names from the two parallel threads aresynonymousat each
node, as expressed by the dashed edges.

We call the second stepsymbolic value numbering, as it extends the
standard global value numbering [2] with the symbolic manipula-
tion. It finds the synonymous names by “collapsing” the threads in
a forward pass. Collapsing is performed by insertingstore �Lp+1
onto the thread connected with the dashed edge. The new store
writes to the same location as its synonymouscounterpart (store t1)
but is placed on the parallel thread, which enables detecting the
reuse between node 5 and 9. The insertion of the store completes
the VNG construction.

Step 3: Solve data-flow problems.Once the VNG is constructed,
any conventional data-flow analysis can propagate facts along the
threads augmented by the second step and answer the two ques-
tions posed by the PRE transformation: which memory accesses
are equivalent, and along which control flow paths? In our exam-
ple, the reuse between store (5) and load (9) will be revealedin the
form of a memory access beingavailableat node 9.

The Sparse VNG. Experiments with the original VNG (shown
in Figure 3(b)) revealed three sources of inefficiencies preventing
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(a) the source program. (b) the original VNG. (c) the SSA form of VNG. (d) the Sparse VNG.

p: global

if ( )
*p-- = v;

w = *++p;

loadpt := pp- -

storep
* t := v
loadp
++p
storepw := �p

1
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4
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p1 = load Lpt1 = p1p2 = p1 � 1
store Lp; p2

store t1; vp3 = load Lpp4 = p3 + 1
store Lp, p4
w = load p4 t1p1p2 + 1p3 + 1 p4�Lp�Lp + 1Lp

[p1] := [�Lp] load [Lp][t1] := [p1][p2 + 1] := [p1][�Lp + 1]1 := [p2 + 1] store [Lp]
store [t1][�Lp + 1]2 := �([�Lp + 1]0; [�Lp + 1]1)[p3 + 1] := [�Lp + 1]2 load [Lp][p4] := [p3 + 1]

store [Lp]
load [p4]

Congruence classes:C0 : f[�Lp + 1]0gC1 : f[Lp]gC2 : f[�Lp]; [p1]; [t1]; [p2 + 1]; [�Lp + 1]1gC3 : f[�Lp + 1]2; [p3 + 1]; [p4]g
load C1
store C1
store C2C3 := �(C0;C2)
load C1
store C1
load C3

Figure 3:The Value Name Graph.The original form, and the construction of the Sparse VNG.

practical deployment. First, the synonym relationships are main-
tained at each node, consuming much memory. Second, many
symbolic names do not belong to any value thread on many nodes,
wasting slots in data-flow bit-vectors. Such a constructionruns out
of 1GB virtual memory on some procedures that grew during inlin-
ing. Last, threads contain many switches between symbolic names,
which reduces bit-vector parallelism, slowing down the analysis.
We present here asparseVNG representation. It reduces memory
and time requirements, while maintaining the same power as the
original formulation. The memory savings are more than 30-fold
on some large procedures.

To obtain the sparse form, we skip the expensive Step 2 above and
transform the VNG created in Step 1 into an SSA program with
the following (local) transformation: first, for each symbolic namee we create a scalar variable, denoted[e]. Second, at CFG nodes
where a namee1 is back-substituted intoe2, we insert the assign-
ment[e1] := [e2]. Figure 3(c) contains the result of such transfor-
mation. The memory references are correspondingly rewritten to
refer to these new variables.

In this intermediate form, each[e] variable will receive an SSA sub-
script after which the synonyms can be maintained globally using
the global value numbering (GVN) [2], rather than on each node,
which fixes our first deficiency. In our example, only[�Lp + 1]
needs an SSA subscript and a�-node. After GVN places the[e]
variables into congruent classes, the memory references can refer
to the class names, which serve as names for all the synonymous
names in a class. After converting to class names, the[e1] := [e2]
assignments can be removed. The result is thesparse VNGshown

in Figure 3(d). The rewriting process that led to the sparse VNG
removed from value threads many switches (some will remain at �-
nodes, such as that betweenC2 andC3) and made the name space
denser (four class names versus eight symbolic names), thusfixing
the remaining two deficiencies. Additionally, having the SSA prop-
erties, the sparse VNG can be implanted into existing SSA-based
PRE implementations, improving their precision [27].

Killing stores. The VNG analysis detects reuse aggressively.
Because the value threads extend uninterrupted across potentially
killing stores, the VNG detects instructions that always read from
the same location but it does not reflect that a storemaychange the
contents of this location between these two reads. This exclusive
focus on must-aliasing is an intentional design decision; by sep-
arating the killing effects, the VNG can detect a weaker formof
reuse, one that may occasionally be interrupted, and exploit it with
data-speculative loads, as mentioned in Section 1.

The killing information expressed as may-alias information can be
accommodated in a natural way when data-flow analysis is com-
puted on the sparse VNG. Using our running example, assume thatp4 may equalLp. Because[p4] belongs to congruent classC3 and[Lp] belongs toC1, each store toC1 must kill reuse in classC3
and vice versa. Therefore, in Figure 3(d), the store in node 8would
kill the reuse for the load in node 9. Depending on the optimizer,
this kill may entirely destruct the reuse, preventing register promo-
tion, or may mark only the reuse as unsafe, enabling its exploitation
using a data-speculative load [21,24,34].
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4 Estimators

The output of the load-reuse analysis is a data-flow solutionthat
holds on paths along which reuse was detected. For any execu-
tion of the program, the total frequency of thesereuse pathscorre-
sponds to the run-time number of loads that would be removed by a
completePRE transformation [11,36] and thus also to the dynamic
amount of reuse detected by the analysis.

In this paper, anestimatoris an algorithm that reconstructs the to-
tal frequency of reuse paths from a program profile. The estimator
returns aprofile-weighted reuse, which estimates the optimization
benefit and thus can guide profile-directed optimizations [11, 22].
In this paper, the weighted reuse serves as a measure of PRE-
completeness: when the profile used by the estimator is generated
by the limit-study simulator, the weighted reuse shows whatfrac-
tion of the simulator-detected reuse was found by the analysis, and
therefore indicates the precision of the analysis.

For pragmatic reasons, ourestimatoralgorithms compute the op-
timization benefit fromedgeprofiles, which are widely used and
can be reused for various optimizations. Unfortunately, edge pro-
files contain an inherent profiling error. Because they do notcap-
ture branch correlation, they cannot reconstruct path frequencies
faithfully to the actual execution, which prevents precisecomputa-
tion of weighted reuse. Existing estimators disregard the branch-
correlation error. Built on the assumption that branches donot cor-
relate, they are not concerned with how much the weighted reuse
differs from the actual reuse [11, 33]. To gain confidence in edge-
profile-based estimates, we compute not a single reuse amount, but
instead itslower andupperbounds, by assuming pessimistic and
optimistic control flow scenarios.

This section presents fiveestimatoralgorithms that differ in their
complexity and error-bounding precision. The practical reason for
developing a hierarchy of increasingly better estimators (Figure 4)
is that when a simpler (and faster) estimator yields loose bounds,
the optimizer can run the next better (but slower) estimatorand
have a guarantee that the new bounds will not be worse. To further
enhance practicality, the estimators use static analysis information
that is also needed by the subsequent PRE transformation, which
amortizes their cost.

While estimators cannot eliminate the inherent edge-profile error,
by computing error bounds, they indicate the fundamental limita-
tions of edge profiles. Our second best estimator was able to bound
the error down to 5%, a 4-fold improvement over the simplest esti-
mator. Therefore, with good algorithms, edge profiles seem to pro-
vide sufficient precision, at least for optimizations basedon load
reuse analysis. Other optimizations may still require correlated
profiles, such aspath profiles [3, 4, 39]. Unfortunately, even path
profiles remedy the correlation problem only partially, as they mea-
sure the frequency of paths that may not fully overlap the detected
reuse paths, thus capturing only part of the correlation needed to
reconstruct the reuse weight. In fact, we are not aware of anypro-
filing technique, short of a complete execution trace, that enables
computing the weighted reuse with no profiling error. As a step to-
wards this goal, the algorithmic abstraction behind our estimators
formulates what profiling information enables error-free estimates.

The problem Statement: computing the weighted reuse.Fig-
ure 5(a) illustrates the problem of computing weighted reuse. As-
sume that the load-reuse analysis detected that the three loads refer
always to the same memory locationx. Also assume that the nodeD contains a (killing) store that may write tox, according to the
alias analysis. Given the edge profile annotated on the CFG, what
is the minimum and the maximum number of reuse opportunities

PRE

CMP1
CMPc

CMPr
CMPfm

o
re

p
re

ci
se

Figure 4:The estimators and their precision ordering.

onx permitted by that profile?2

The Estimators. The weighted reuse can be computed as the
sum of frequencies over allreuse paths, i.e., all paths between the
three loads in Figure 5(a), excluding the paths crossing thekilling
nodeD. Each time any of these paths is taken, exactly one load
of x can be removed. Namely, the paths are[A;f;C], [C; j;E],[A; f;h; i; j;E], and[A;f; h; i; [k; l]+; E], where ‘+’ denotes the
usual non-zero repetition. Even if we could determine the fre-
quency of each reuse path, summing their frequencies by enumer-
ating them would not be feasible, as the loop generates infinitely
many paths.

Rather than dealing with individual paths, our estimators find pro-
gram points that efficiently summarize groups of paths with identi-
cal reuse properties. For the upper bound, we find a set of program
points calledgenerators, on which the reuse is available along all
incoming paths. To compute the actual value of the upper bound,
we determine how much reuse can flow between generators and the
set ofconsumerpoints, on which a load consuming the reuse ex-
ists along each outgoing path. For the lower bound, we find theset
of stealerpoints on which the reuse is available along no incoming
paths. To arrive at the lower bound, we determine how muchreuse-
freeflow can reach the consumers,stealing[4] the reuse flowing
from the generators.

The estimators differ in how they compute these three sets and how
precisely they account for the possible flow of reuse among them.
Next, we present a brief overview of the individual estimators.

PRE is the simplest estimator. Mirroring closely the PRE trans-
formation, generators are taken to be those instructions that
generate the reuse; stealers are the points where a load is in-
serted by PRE to compensate partial redundancy; and con-
sumers are the partially redundant loads. To determine which
generators (or stealers) may provide (or steal) reuse for each
consumer load, PRE uses control flow reachability.

The PRE estimator is imprecise because it includes in its worst-
case assumptions also those reuse paths whose weight can be com-
puted precisely even from the edge profile. Such paths can be ex-
cluded from the worst case by placing generator, stealer, and con-
sumer points closer together, effectively reducing the number of
paths among them. To find such a placement, the remaining esti-
mators use the observation that all branch-correlation error harmful
to reuse calculation can be contained into a special region,called a
CMP region(short for code-motion-preventing region), originally
developed to identify obstacles to code motion in a completePRE
transformation [11].

2Thepermittedminimum/maximum is a tight bound. Our estimators are not tight.
Still, the more precise the estimator, the tighter the bounds it computes.
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Figure 5:An example of computing the weight of load reuse from the edgeprofile.

The CMP is the smallest multi-entry, multi-exit region in which the
entries can be divided between generators and stealers, andthe exits
between consumers and (strict) non-consumers. Being the smallest
such region, it finds the desired closest placement, considering in
concert all reuse paths, not only those leading to a single load. The
CMP contains all the error because, on each node in the CMP, the
reuse is generated only alongsomeincoming pathsandcan be con-
sumed by a load only alongsomeoutgoing paths. Consequently,
without the knowledge of branch correlation in the CMP, it isnot
possible to determine how much incoming reuse actually flowed to
consumers in the profiled program execution. On the other hand,
outside the CMP region, the reuse can be computed without an er-
ror. The CMP estimators thus focus on reducing the error contained
in the CMP region, as follows:

CMP1 estimator conservatively assumes that there is a single
CMP (hence the1 in the name), in which all entries and ex-
its are mutually reachable. This false reachability may con-
nect consumers to spurious generators and stealers, producing
loose bounds.

CMPc attacks false reachability by partitioning the CMP region
into connected CMP subregions, using control-flow reacha-
bility between CMP entries and exits. The individual con-
nected CMPs are treated with the CMP1estimator.

CMPr exploits entry-exit reachability further. Compared to
CMPc, it removes false reachability even within each con-
nected CMP, by computing reuse as a network flow problem.

CMPf exposes to the networkf low computation all the CFG
edges in the CMP, not just the summary entry-exit reachabil-
ity information, thus exploiting a refined notion of reachabil-
ity that accounts for how much reuse can flow between CMP
entries and exits, and not just whether they are reachable.

CMP Correlation Profiling estimator is not based on edge pro-
files. Instead, it assumes profile information that correlates
CMP entries and exits sufficiently to avoid the profiling error.

The Algorithms. Next, we present the estimators in more detail.
Each estimatore returns upper and lower bounds on the total reuse
in the programP , which are denotedUe(P ) andLe(P ), respec-
tively. Also, f(d) denotes the execution frequency ford, whered
is a CFG node or edge. Finally,L(P ) denotes the set of loads in
programP .

PRE. The reuse bounds are calculated separately for each con-
sumer point, i.e., for each static load. The sum of bounds over all
loads then bounds the total program reuse. For each loadl, we find
thegeneratorsetG(l) of loads and stores that generate the reuse forl. The setG(l) contains those loads and stores that are backwards
reachable froml along some (kill-free) reuse path. Also through
reachability, we find thestealerset of CFG edgesS(l) onto which
PRE would insert a load to makel fully redundant. The reachabil-
ity is computed on the sparse VNG, shown in Figure 3(d), where
store C2 is backwards reachable fromload C3, across the�-node.

To compute the upper bound on the reuse detected for loadl, we
assume the most optimistic control flow scenario that all reuse gen-
erated inG(l) flows to l. In other words, the frequency of reuse
paths betweenG(l) and l equals the lower ofl’s andG(l)’s fre-
quencies. The lower bound assumes the worst case: all flow from
stealers reachesl, maximizing the frequency of reuse-free paths
that reachl; the remaining paths must be reuse paths originating at
the generators. Hence we get: (themax operator makes the lower
bound non-negative)

the PRE estimator:

UPRE(P ) = Xl2L(P )minff(l); Xg2G(l) f(g)g
LPRE(P ) = Xl2L(P )maxf0; f(l)� Xs2S(l) f(s)g

Let us apply the PRE estimator on the program in Figure 5(a).
The bounds for loadsA andC are trivial, asA is not redun-
dant andC is fully redundant:LPRE(A) = UPRE(A) = 0 and
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LPRE(C) = UPRE(C) = 35. The profiling error affects only
the partially redundant loadE. Its generators and stealers areG(E) = fA;Cg andS(E) = f(g; h); (g; k); (D;E)g, yielding
boundsLPRE(E) = 45 andUPRE(E) = 135. The total reuse for
the program isLPRE(P ) = 80 andUPRE(P ) = 170, which is a170=80 = 112:5% error.

The large PRE’s error is not all due to the inherent deficiencies
of the edge profile. The cause of the error is “overbooking” ofa
generator by multiple consumers. In Figure 5(a), loadA is a gen-
erator common to consumer loadsC andE, which together con-
sume more reuse thanA can generate (C counts 35 andE counts
100). Technically, the cause of overbooking is that PRE charges
the entire frequency contribution of a generator to multiple reuse
paths that originate in the generator. Instead, the generator fre-
quency should be divided among these paths. This can be done by
moving theA generator into the edges(f;C) and (f;h), which
become the new generators, effectively dividing the contribution ofA among loadsC andE. The CMP region is an abstraction that di-
vides the contribution of generators, stealers, and consumers. The
CMP region for the running example is shown in Figure 5(b); it
effectively excludes the reuse path[A;f;C] from the worst-case
considerations.

First, we present the definition of the CMP region. Formally,the
CMP is a subgraph of the Sparse VNG. To simplify the presenta-
tion, we establish the restriction that the sparse VNG contains no�-nodes. Under this restriction of generality, each memory location
has exactly one name. Without having to switch names, we can rea-
son about estimators using the CFG, rather than the more general
VNG.3While the estimator extensions to handle an arbitrary VNG
are small, their explanation is beyond the scope of this paper and
can be found in [5].

Given the restriction, the CMP region is identified by solving the
problems of anticipability and availability, which are defined as fol-
lows [11].

Definition 1 Let p be any path from the CFGstart node to a noden. The contents of memory with addressx is availableatn alongp iff x is loaded or stored onp without a subsequent killing store.
Let r be any path fromn to the CFGendnode. The load of addressx is anticipatedatn alongr iff x is loaded onr before any killing
store or a store tox. The availability ofx at the entry ofn w.r.t. the
incoming paths is defined as:

AVAILin[n; x] = 8<: Must all
No if x is available along no paths.
May some

Anticipability (ANTIC) is defined analogously.

Definition 2 The CMP region for addressx, denotedCMP[x], is
a set of nodesn whereAVAILin[n; x] = May andANTICin[n; x] =
May .

Figure 5(b) shows the CMP region for the addressx. Each CMP
region has a set of entry edges and exit edges. Each entry is either
Must- or No-available; we denote themnM andnN , respectively.
ThenM entries act as generators and thenN entries act as steal-
ers. Similarly, exits are eitherMust- or No-anticipated, denotedxM
andxN , respectively. ThexM act as consumer points. The non-
consumerxN exits do not participate in the estimator algorithms.

3Note that a sparse VNG (Figure 3(d)) without name switches could still contain
name switches in its intermediate (dense) form (Figure 3(b)).

The CMP is the smallest region in which reuse is uncertain; gener-
ators cannot be moved closer to consumers, because they would en-
ter the CMP regions, where reuse is not available along all incom-
ing paths and thus they would no longer act as generators. Identi-
cal arguments prevent moving stealers and consumer points.The
CMP thus maximizes the number of paths that can be excluded
from the worst-case assumptions about branch correlations; out-
side the region, the reuse can be computed without any error,even
from an edge profile. It can be shown that all reuse bypassing the
CMP region can be measured by finding generator points on which
the reuse is available alongall incoming paths and will be con-
sumed alongall outgoing paths. Such generators have no branch-
correlation uncertainty—their reuse isdefinite. In Figure 5(b), the
definitegenerator points arem andn. Each of them provides 35
units of reuse that will be fully consumed (m’s by C andn’s byE).

To formalize the above discussion, the CMP divides the reuseon an
addressx into definiteanduncertain. The definite reuseRd(x) has
no error and equals the sum of frequencies of all definite generatorsGd(x). For the example in Figure 5, the definite reuseRd(x) =70. In the formulas below,M(P ) is the set of all address names
mentioned in the program text. The definite generatorsGd(x) are
placed as close to the consumers (the loads ofx) as possible.

all CMP estimators:

UCMP(P ) = Xx2M(P )(Rd(x) + UCMPu (x))
LCMP(P ) = Xx2M(P )(Rd(x) + LCMPu (x))Rd(x) = Xg2Gd(x) f(g)Gd(x) = f(u; v) j AVAILout[u; x] = Must ^(AVAILin[v; x] = May _ v = load x) ^

ANTICin[v; x] = Mustg
The CMP estimators differ in how they computeUCMPu (x) and
LCMPu (x), which are the bounds of the uncertain component of the
weighted reuse. Figure 6 compares the CMP estimators.

CMP1 is the simplest CMP-based estimator. It identifies CMP en-
tries and exits and, to minimize its cost, assumes that each CMP
entry-exit pair is mutually reachable. The resulting optimistic sce-
nario is that allnM entries are generators for allxM consumers.
The upper bound is then the smaller of the total generator andthe
total consumer frequencies (Figure 6). The lower bound follows
the same conservative assumption that the CMP region is fully con-
nected. CMP1 is efficient; it computes only theANTICandAVAIL
data-flow solutions. Entries and exits are identified by examining
the two data-flow solutions locally at each node. Both the solutions
and the entries are also needed by the PRE transformation [11]. For
the running example in Figure 5(b), CMP1 yieldsLuCMP1(x) = 10
andUCMP1u (x) = 60. The total program bound isLCMP1(P ) = 80,

UCMP1(x) = 130, which improves PRE’s upper bound by remov-
ing overbooking of loadA, reducing the error to130=80 = 62:5%.

CMPc improves precision by eliminating some false entry-exit
reachability assumed by CMP1. It identifies connected CMP sub-
regions, thus partitioning generator, stealer, and consumer sets.
The smaller sets result in less overestimation when considering the
worst-case scenarios. The bounds are computed separately for each
connected CMP and then summed. In practice, we observed that
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Figure 6: The CMP-based estimators:algorithms for computing the uncertain component of weighted reuse.nM , nN , andxM are the
frequencies of the corresponding CMP entries and exits. maxflow(u; v) denotes the maximum flow between verticesu andv. CMP1
assumes all CMPs are one, i.e., that all entries and exits aremutually reachable.CMPc separates connected CMPs, eliminating some false
reachability.CMPr exploits intra-CMP reachability, using a max-flow computation. CMPf exposes to the max-flow all intra-CMP edges,
including their actual profile weights.

the partitioning of the CMP region produced the highest increase in
precision among all presented techniques. The CMPc estimator is
more complex than CMP1: it must compute 1) reachability of CMP
entry-exit pairs and 2) the transitive closure of reachability in order
to group the entry-exit pairs into connected subregions. However,
these two results are also needed in PRE to guide profile-directed
speculation [11]. In the running example, the CMP is connected,
hence the CMPc estimate is identical to that of CMP1.

CMPr adds more precise handling of intra-CMP reachability.
Each CMP is represented as a bipartite graph in whichentryand
exit nodes are connected if they are reachable in the CMP (Fig-
ure 6). The bipartite graphs are connected into a larger network
using three super-nodesNM , NN , andXM that connect all gen-
erators, stealers, and consumers, respectively. The flow capacity
of edges connecting the super-nodes reflect the frequency ofCMP
entry and exit edges; the capacity of intra-CMP edges is (conser-
vatively) infinite. Equipped with this network, we compute the
upper reuse bound as the maximum flow betweenNM andXM .
Similarly, the amount of reuse that can be stolen from consumers
is given by the max-flow betweenNN andXM . Compared to
CMPc, the CMPr estimator does not compute transitive closure of
reachability, but instead the more costly network-flow. Note that
the network construction implicitly partitions CMP into connected
subregions. The network for our running example is shown in Fig-
ure 5(c). Because CMP exit(i; j) is not reachable from CMP en-
try (g; k), less reuse can be stolen than in CMPc, which improves
its lower bound:LCMPru (x) = maxf0; (40 + 20) � 30g = 30,
LCMPr(P ) = 100, UCMPr(P ) = 130, which is a130=100 = 30%
error.

CMPf . While an entry-exit pair may becontrol flowreachable, it
may not be sufficientlyfrequencyreachable. In Figure 5(b), such
a pair is the CMP entry(f; h) and the CMP exit(l; E). The only
path connecting them contains a weak link—the edge(i; k) with
a low weight of 5. Even though there is enough reuse on the en-
try, the weak link prevents this reuse from saturating the exit; only
5 units of reuse can be exploited. To account for weak links, it
suffices to expose to the max-flow computation the inside struc-
ture of the CMP at the edge level, including edge frequencies, as

shown in Figure 5(d). After the weak link is accounted for, the up-

per bound of the previous estimator is improved:UCMPfu (x) = 45,

LCMPf(P ) = 100, UCMPf (P ) = 115, which is a115=100 = 15%
error.

CMP Correlation Profiling. Using the CMP region, we can spec-
ify what information from a profiler would enable computing the
reuse with no branch-correlation error. Coming back to Figure 5(b),
we can observe that the precise amount of uncertain reuse equals
the number of times a generator entrynM is followed by a con-
sumer exitxM . Therefore, measuring the pair-wise correlation be-
tween CMP entries and exits captures all branch correlationthat
affects the amount of reuse. After the data-flow analysis identifies
the CMP regions, the profiler can instrument the program to col-
lect this pair-wise information. Whether such a pair-wise profiling
can be (efficiently) performed prior to knowing the shapes ofCMP
regions in the profiled program is an open question.

Experiments: estimator precision. Figure 7 compares the
precision of the estimators. For each benchmark, we plot the
weighted reuse obtained by four estimators (we have not imple-
mented CMPf ). The reuse is broken up into four parts; the left
two bars together represent the definite reuse componentRd, on
which all benchmarks are normalized. The third and fourth bars
are the lower and the upper bounds on the uncertain reuse. The
floating-point benchmarks (the lower four) have nearly no uncer-
tain reuse, due to simple control flow. On the other hand, the reuse
in integer benchmarks has a significant uncertain component. We
can observe that with good algorithms, the profiling error can be
greatly reduced. Note that while, in theory, CMPc is not strictly
more precise than PRE (as the precision ordering shows), it per-
forms much better in practice. In fact, CMPr is appreciably better
than CMPc only ongcc. Hence, due to its simplicity, CMPc may
be the estimator of choice. Overall, the average error was 15% for
PRE and 5% for CMPr.
An important observation we made was that the estimator preci-
sion is strongly dependent on the pointer aliasing information. By
interrupting some reuse paths, the killing stores induce more CMP
regions, with more entries and exits, increasing the amountof un-
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Figure 7:The experimental comparison of estimator precisions.

certain reuse. For the comparison in Figure 7, we selected the con-
figuration of load-reuse analysis that caused the largest estimator
errors (kill set = each array and pointer store, and each procedure
call; see Section 5).

Experiments: the effectiveness of profile-guided PRE.The es-
timator experiment also shows the power of the program transfor-
mation stage [11] of our path-sensitive optimizer [5–11]. First, the
leftmost bar in Figure 7 shows the reuse that exists on all paths
coming to a load. Thisfull redundancy represents the dynamic
amount of loads that can be removed with global common subex-
pression elimination (CSE). The second bar shows the reuse that
exists on some incoming paths but is still definite. This additional
reuse can be exploited with the standard code-motion PRE [25]. Fi-
nally, third bar (the lower bound) of the CMPc estimator gives the
additional loads that can be removed with profile-guided specula-
tive PRE (Section 3.2 in [11]). On average, the standard PRE ex-
ploits less than half of all partial redundancies; the profile-guided
PRE exploits nearly all (the total amount of partial redundancies
lies somewhere between the lower and the upper reuse bounds).

5 Experiments

This section experimentally evaluates the load-store analysis from
Section 3 in relation to the limit study from Section 2. Because
our implementation of the analysis is intraprocedural, thereference
point for comparison is the intraprocedurally observed reuse. To
minimize noise in the baseline, we use the reuse collected atthe ac-
cess historyh = 1. We analyzed the unoptimized source programs.
In summary, for each benchmark, the baseline for comparisonis
the “X” mark in the leftmost column in Figure 2. Figure 8 plots the
amount of reuse discovered by the analysis. The plotted amount
was computed as the mean average of the lower and upper bounds
returned by the CMPr estimator.

The load-reuse analysis was carried out under varying assumptions.
The two highest bars in Figure 8 show the reuse detected at 1-level
and 0-level address indirection, respectively. Our implementation
considered only indirect loads, not stores, which may explain the
lack of indirect reuse in some benchmarks. To determine the reuse-
detection power of the analysis, these two bars assumed perfect
aliasing under which no stores along a reuse paths would killthe
detected reuse. While not all of this aggressively detectedreuse can
be promoted to registers, it can be exploited with alternative reuse
mechanisms, such as data-speculative loads, as noted in Section 1.
Overall, the comparison with the limit study shows that our analysis
is about 80% PRE-complete.

Aliasing. We also studied the killing effects of intervening stores
and procedure calls. Because our compiler does not perform alias
analysis, we considered three hypothetical levels of pointer aliasing
precision, specified as follows: first, we assumed that only proce-
dure calls killed the detected reuse; second, we added to thekill set
all stores except for stores to global variables; third, allstores and
procedure calls killed the reuse. Due to aggressive inlining, only
a small amount of reuse was lost at procedure calls (the whitebar
segments). However, array and pointer stores remove almostone
third of reuse (the dark, middle segments). While this pessimistic
hypothetical aliasing gives disappointing results, otherresearchers
showed that even a simple alias analysis may produce memory dis-
ambiguation that is near-optimal for purposes of register promo-
tion [19,28].

Register Pressure.Besides aliasing, a lack of registers is another
reason why detected reuse may not lead to register promotion. The
register pressureat a CFG node is the number memory locations
whose reuse path crosses that node; each location needs one reg-
ister. We averaged the register pressure over all nodes, weighting
each node by its profile frequency. For the 0-level perfect aliasing
analysis configuration, the highest average register pressure was 34
registers forsu2cor. Such an amount of registers will be soon
available in general-purpose processors.

6 Related Work

Simulation-Based Analysis Evaluation. While in microarchi-
tecture the use of upper-bound limit studies has become common-
place, in compiler optimization this trend is recent. In fact, [19] is
the only simulation-based evaluation of an analysis known to us.
Diwan et al use a simulator to derive an ideal performance of an
algorithm for removing heap-based loads. The ideal performance
is used to determine what alias analysis is near-optimal forthe load
removal, but still not too expensive. Our work differs in that we
focus on load-reuse analysis, rather than on the may-alias analy-
sis. Larus and Chandra developed acompiler auditortool, which
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Figure 8:The reuse exposed by the static load-reuse analysis.

analyzes the program trace to discover limitations and bugsin the
compiler [26]. Reinmanet al developed a load-reuse profiler tech-
nique similar to our simulator limit-study, with the primary goal to
give load-reuse hints to the processor [34].

Estimators. Frequency analysisis the only existing systematic
method for profile-weighting a data-flow solution [33]. Likeour
estimators, it is based on edge profiles. Unlike the estimators, fre-
quency analysis does not bound the profiling error. However,con-
sidering that the inherent edge-profile error is small, as suggested
by our experiments, the maximum amount of error in the resultof
frequency analysis will be correspondingly small (the result always
falls between our lower and upper bounds). Our estimators offer an
alternative to frequency data-flow analysis. While frequency anal-
ysis requires an elimination-style data-flow solver, our estimators
use reachability or network flow algorithms, which may be easier
to implement. Due to the small size of the CMP region, estimators
are expected to run faster than a frequency data-flow solver.

Load-Reuse Analysis. Traditionally, load removal is navigated
by a lexical load-reuse analysis, in which only loads with identical
names (scalars) or identical syntax-tree structure (record fields) can
be detected as equivalent [19, 27, 27]. Techniques based on value
numbering can match expressions that have different names,but
their symbolic interpretation power is limited to handlingcopy as-
signments [2,37]. Therefore, they cannot capture equivalences that
require symbolic interpretation, such as the recurrent array accesses
shown in Section 2 for which specialized techniques have been de-
veloped [7,13,15]. Our load-reuse analysis encapsulates both value
numbering and symbolic capabilities. While it is less powerful that
array dependence techniques [14], the experiments show that our
analysis uncovers about 80% of opportunities exploitable by par-
tial redundancy elimination, including array and pointer loads.
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